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Topological group extensions with Abelian kernels are analyzed using factor sets and following the
pattern of the work of Eilenberg and MacLane on extensions of groups without topology. In this
analysis, the Eilenberg-MacLane cohomology is replaced by the Mackey—Moore one, whose cochains
are Borel mappings and which is especially suitable in the case of Polish groups (Hausdorff second
countable complete groups). The connection between cohomology groups of degree 2 and equivalence
classes of topological group extensions with Abelian kernels is established. A fundamental sequence
of cohomology groups and group homomorphisms is proven to be exact, and it is shown that, in
some interesting cases, the low degree cohomology groups of topological semidirect products are

determined by the corresponding cohomology groups of the factors.

1. INTRODUCTION

The occurrence of group extensions in the physical
literature is quite a recent phenomenon that can be
traced back to the lectures of Michel at the Istanbul
Summer School in 1962.1 However, group extensions
were implicitly considered in the early days of quan-
tum mechanics by Weyl2? and later by Wigner.3 In the
work of Wigner, topological considerations are of prim-
ary importance for the handling of multipliers (or fac-
tors, as they are called by Wigner). The emphasis on
the topology is even more manifest in Bargmann's
paper,4 where the study of continuous unitary projec-
tive representations is pursued in the case of an arbi-
trary topological group G, in particular of a Lie group.
In this work the multipliers appear as factor sets of
extensions of G by U(1) (the group of complex numbers
of absolute value 1), and one is immediately faced with
a difficulty: They can be chosen to be continuous in a
neighborhood of (1, 1), but, in general, they cannot be
chosen to be continuous in G X G. This is a typical pit-
fall of the theory of topological group extensions, where
the discontinuity of factor sets is an unpleasant but
unavoidable fact. However, using a result of Dixmier,%
one can prove that it is always possible to choose Borel
factor sets when Gis a Polish group, i.e., a Hausdorff
second countable and complete group.

The class of Polish groups contains all the second
countable locally compact groups (in particular the
finite- dimensional second countable real or complex
Lie groups) and some groups of mappings, for instance
the Abelian group of m-times continuously differenti-
able mappings of R” into R, where m and » are in N.
Many of these groups occur as symmetry groups in
physics, where the interest in topological extensions
of Polish groups arises especially in connection with
the problem of projective representations.4-6:7 The
aim of this paper is to study some basic questions of
the theory of topological extensions (with Abelian ker-
nels) of Polish groups, following the track of Mackey$
and Moore.9,10,11 Ap application to a physical sym-
metry problem of the results obtained here is given in
Ref. 12,

In Sec. 2 we introduce the Mackey-Moore cohomology,
which is especially suitable for the study of topological
extensions of Polish groups and which is obtained from
the usual Eilenberg-MacLane cohomology by requiring
that the cochains should be Borel mappings. We prove
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(Theorem 1 and its corollary) the exactness of an
important sequence of group homomorphisms and of
Mackey-Moore cohomology groups of a topological
group G with values in a Polish G-module A,. This
generalizes the result of Moore? for G and A second
countable and locally compact.

Topological group extensions with Abelian kernels
are studied in Sec. 3, and the difficulty associated with
the nonexistence of continuous factor sets is pointed
out. If G is a group and A, is a G-module, a well-known
theorem of Eilenberg and MacLanel3.14 affirms the
existence of an isomorphism of the group of equiva-
lence classes of extensions of G by A, onto the group
of cohomology of degree 2 of G with values in A ,. We
show (Theorem 2) that this result is partially valid
also in the case where G is a Polish group,A  isa
Polish G-module, and only topological extensions of G
by A, are considered, provided one replaces the Eilen-
berg-MacLane cohomology by the Mackey-Moore one.
By “partially valid” we mean that we are able only to
prove the existence of an injective group homomor-
phism.

In Sec.4 we use a generalization of a theorem of
Mackey (Theorem 9.4 of Ref. 6) in order to derive
some propositions on the low degree cohomology groups
of topological semidirect products.

For the reader's convenience, few definitions and
results in the theory of Borel, Baire, and Polish spaces
are collected in Appendix A. In Appendix B the same
is done for the cohomology theory of cochain com-
plexes; the reader is referred to this appendix for the
cohomological notation. In Appendix C we show that
the notion of a Baer addition may also be introduced
in the study of topological extensions of Polish groups.

NOTATION AND SOME BASIC DEFINITIONS

Let R be an equivalence relation in a given set E.
We denote by [x] the equivalence class of x € E, tacitly
understanding “modulo R” if no misinterpretation is
possible. Given a mapping f: A — B, a subset A’ of A,
and a subset B’ of B such that flA’) € B’, we denote by
f (A’ — B") the mapping deduced from f by passing to
the subsets A’ and B’, As it is usual, we write f| A’
for f| (A’ = B). If A and B are topological spaces, then
the continuity of 7| (A’ — B’) has to be understood as
the continuity in the induced topologies. The neutral
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element of a group G is denoted by 1 (resp. by 0) if the
law of composition is written multiplicatively (resp.
additively), and e ; stands for 1 or for 0. When topo-
logical groups are considered, the meaning of a “pro-
duct group” (resp.of a “quotient group”) is always
that of a “topological product group” (resp. of a “topo-
logical quotient group”). We also write “locally com-
pact” for “Hausdorff locally compact” throughout.

Let G be a group, let A be an Abelian group (resp.a
vector space), and let ¥ be an operation (resp.a linear
operation) of G on A. As is well known, this means that

¥:G — Aut(4)

is a group homomorphism., Then A, equipped with ¥,
is called a G-module (resp.a linear G-module) and we
denote it by A ,. Furthermore, AS will stand for the
subgroup (resp.the vector subspace) of A

{ala ¢ A and ¥(s)a = a for all s € S},

where S is any subgroup of G. Let A, and A}, be two
G-modules. A mapping a:A, —~ A’ is called a G-
module homomorphism (or simply a G-homomorphism)
if it is a group homomorphism and if

ao¥(g) = ¥'(g)ea

for all g € G.

Let G and A be topological groups, with A Abelian.
An operation ¥ of G on A such that the mapping

(g,a) P¥(gla=g-a

of G X A into A is continuous (joint continuity) is said
tobea topological operation. In this case the G- module
A, is called a fopological G-module. Suppose A’ is
also a topological G-module and let a:A, 2> Ay, be a
G-homomorphism. If a is continuous, then it is called
a topological G-homomorphism.

A sectior associated with a surjective group homo-
morphism p:G — G’ is a mapping ¢: G’ — G such that
poo = Id,, (the identity mapping of G’). Obviously, it
is an injective mapping; if o(e ;) = e, the section o is
said to be normalized. If G and G’ are topological
groups, then a section o associated with p and which is
a Borel (resp.a continuous) mapping (see Appendix A)
is said to be a Borel (resp.a continuous) section.

2, THE EILENBERG-MACLANE AND MACKEY-
MOORE COHOMOLOGIES

Let G be a topological group and let A, be a topo-
logical G-module. Many different cohomologies of G
with values in A, have been proposed in the mathe-
matical literature. We will consider here two of them
which are relevant for our purposes.

(i) The Eilenberg-MacLane cohomologyl13.14 ig the
cohomology of the Eilenberg-MacLane cochain complex
C*(G, A ) with the cohomology groups H?(G, A ) of de-
gree p (p € Z) of G with values in A, (see Appendix B).

(ii) Ifp > 0,1et C§(G,A,) be the subgroup of C#(G,A,)
of all the (normalized) Borel mappings of the product
space G? into A, Notice that this choice is meaningful
because the Borel space associated with the product of

p topological spaces is the product of the Borel spaces
associated with the p factors.25 If p < 0,put C#,(G,A,) =
C?(G,A,). In this way we get a subcomplex C¥(G, A )

of C*(G, A,), because f € C¥G, A,) implies &f €
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C}G, A,) by well-known properties of Borel mappings
(cf. Ref. 9, Proposition 1.2). We shall call C¥G,A) a
Mackey-Moore cochain complex and its cohomology
the Mackey-Moore cohomology.8~11 The relevant
groups of C}(G, A,) will be denoted by the usual Eilen-
berg-MacLane symbols with an additional subscript
‘(b ’!.

Remark 1: A cochain complex C*(G,A ) may be
defined as the subcomplex of C:(G,Aq,) obtained by
requiring that, for any p > 0, the elements of C2(G, A )
be continuous mappings of G? into A,. However, the
cohomology of Cz (G, A w) is, in general, not very useful
for the group extension problem (cf.Sec. 3, Remark 3).

Remark 2: If G is a discrete group, then
C*(G,A,) = C%(G,A ) =C3(G,A))

because any mapping of a discrete space into an arbi-
trary topological space is continuous and hence Borel.

Remark 3: The Mackey-Moore cohomology is
especially suitable in the case where G is a Polish
group and A, a Polish G-module (see Appendix A and
next section).

Let again G be a topological group and let A(Y}),
Aglz(g,, . es ,Ai"(zl) be topological G-modules. A dlagram

al) a(2) a(n-1)
AU AQ e

Al

is said to be an exact sequence of topological G-
modules if

(1) all the a9 are topological G-homomorphisms,

(2) the diagram is exact,i.e.,Kera(i+1) = Imaof®) for
1<i<n-—2,

If all the Ai'?,.) are Polish G-modules, we shall say
that we have an exact sequence of Polish G-modules.

Now consider an exact sequence

m ”
0 Ay A, AL 0
of Polish G-modules. As A” is Hausdorff and 7 is con-
tinuous, Im: = Ker7 is closed in A and thus ({4, isa
Polish G-module. By a theorem of Banach (Ref. 16,
Satz 9; cf. also Ref. 17, §35, V), the mapping ¢ | (A’ = (A"))
is a homeomorphism and thus ¢ is a closed mapping.
In addition 7 is an open mapping. In fact, let

A" a/van T an

be the canonical factorization of 7, where 7’ and 7" are
continuous group homomorphisms with 7’ the canonical
surjection and with 7" bijective. As the quotient group
A/ L(A’) is Polish, we may apply the theorem of Banach
quoted above and conclude that 7 is open because 7" is
a homeomorphism,

Let a:A,— A’ be a topological G-homomorphism.
We denote by a the homomorphism of cochain com-
pPlexes

C*(G,A,) = C*(G,A%)

such that &(f) = ao f for all f € C»(G,A ) if p > 0 and
a(f) = o(f) for all f € A, Since a is continuous,

#CH(G,A,)) € CH(G, A%,
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and we denote by @, the homomorphism of cochain
complexes

GI(C(G,A,) = CL(G, A% ).

Theorvem 1: Let G be a topological group and let

m

:0 A, tsa,-Ts 4y

- 0

be an exact sequence of Polish G-modules. Then

E:0 —> C*(G, A,) ——> C*(G,A,) ~T> C*G, Ay) —> 0
and

G,: 0 —>C3 (G, A ,)-——>C*(G Ay) ~—+C"‘(G AY)—>0
are exact sequences of cochain complexes.

Proof: The exactness of G is well known,14 and
can easily be checked directly. In order to prove that
€, is exact too, one has to show, for each p € Z, the
exactness of the diagram

% 4
5(G,AY) —> C4(G,A ) —>
C4(G,AYn) —> 0,

Gt

5:0—>C

This is obvious if p < 0. If p > 0, we first notice that

1157

because 7oL = 0, Let f € Kern4. As f(G?) C (A},
there is one and only one mapping f' € C?#(G,A’, ) such
that f = Lo f'. But, ¢ being injective and continuous, the
image under ¢ of any Borel set of A’ is a Borel set of A
(Ref. 18, §6, Cor. to Théoréme 3) and therefore f' €
C4(G, A ). On the other hand 12 () = f, so that Kermf &
ImLP and hence Kerf$ = Imdj. Now take f” € C4(G, A W)
and choose a normahzed sectlon ¢ associated w1th T as
follows. Since t(A’) is a closed subgroup of A, there
exists a Borel set B, of A such that, for each z € 4,

By (a+ t(AY)is a set with one and only one element
(Ref 5, Lemma 3). Thus,if B, N t(A’) =a, B =B, 0
is a Borel set of A with B N @A) ={o} andBﬂ(a + L(A ))
is a set with one and only one element for all a € A.
There exists a unique mapping o: A” — A such that, for
anya c A,

(comBN @+ tAN) =B N (a+ tA"))
and, obviously, o is a normalized section associated with
7. In addition o is a Borel mapping: If C is any Borel
set of A, then B N C is a Borel set too and
o(C)=0c1BNC)y=aBnNC)
is a Borel set of A” because n| B is 1n]ective and con-

tinuous. Therefore o.f” € C4(G,A,), T4(00f") = f",and
we conclude that nl’ is sur]ectlve

the injectivity of ¢ implies that of L ; furthermore, By the theorem of Appendix B one gets
w(C(G,A%L)) & Ker7t Covollary: Let G and € be as in Theorem 1. Then
o 79 o 11
0 — HO(G, A’q,,)——éHO(G A¢)—>H0(G Ay, —&s HY(G, A/, )__>...
OP- p p 5p Lp+1
+—%> H#(G, A}, )—>HP(G A )——>HP(G Alw) L5 HP+1(G, Al ) s - -
and
, (.b) ()0 (tyl
00— HY(G,A )——>H°(G A\p)————> HY(G, A”,,)——> HNG, A )——>
51)-1 ) (7 b)g 55[, (Lb)p;l
ser——> HJ (G, Ay )~——>H"(GA ) —=— H3(G,A}.) ——> H8+*1(G, A),) ——> =+

are exact sequences of Abelian groups.

3. LOW DEGREE COHOMOLOGY AND TOPOLOGICAL
GROUP EXTENSIONS WITH ABELIAN KERNELS

Let G and A be topological groups, where A is Abelian,
and let ¥ be a topological operation of G on A. For
p =0,1,2,the groups H?(G,A ) and H4(G,A ) have the
following simple interpretations.
(i) The groups H9(G,A,) and Z°(G,A ) (resp.H{(G,A )
and Z9(G, A,)) may be trivially identified and then

HO(G,A,) =HYG,A,) = AC.
(ii) The elements of Z1(G, A,) are called crossed homo-
morphisms of G into A and the elements of B1(G,A )
are the principal crossed homomorphisms. Hence
Hl(G,Aq,) is the group of equivalence classes of crossed
homomorphisms modulo the principal ones. If G is a
Polish group and if A, is a Polish G-module, then

ZKG,A) =2ZL(G,A,)
and so

H}(G,A,) = HY(G,A)).

This can be shown as follows, using an argument of
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Banach (Ref 16, Satz 6 and Ref. 19, Chap. I, Théoréme 4).
If fe ZL(G, A‘l,), then there exists a meager subset M of
G such thatfl G — M is continuous (Ref.17, §28,I and II).
Let g € G and let (g ) be any sequence of elements of G
converging to g. The set Ug’lM M’ is meager too and

there exists g’ € G — M’ because G is a Baire space
(Appendix A). It follows that g,g’ € G— Mfor alln ¢ N
and thus

limfg,) = liﬂﬂg"g’) - 11_)1‘2)‘1’(gn)f(g,) = fg).

This can be performed for any g € G, and so f is con~
tinuous.

(iii) The cohomology groups HZ(G, A ) and HZ(G,A ) are
related to equivalence classes of extensions of G by A.

We recall that an extension of G by A 20 ig an exact
sequence
6:0—>A-EP>G 51 (3.1)

of groups.21 This means that in diagram (3.1) E is a
group and the arrows are group homomorphisms with
t injective, p surjective, and

Kerp = Imt.
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We say that E is the group obtained from the extension
€ of G by A. By the axiom of choice there exists a nor-
malized section o associated with p. Let ¥ be the group
homomorphism of G into Aut(4) such that

L(¥(gla) = o(g)tla)o(g)? (3.2)

for all ¢ € G and all a € A. Then A, is a G-module and,
as ¥ is independent of the section ¢ chosen, one says
that € is an extension of G by A, (or, alternatively, an
extension of G by A relative to \If) We shall identify A
and 1 (A) through ¢ and describe an extension of G by A
as an ordered pair (E, p), where p: E — G is a surjec-
tive group homomorphism such that Kerp = A.

Two extensions € and ¢ of G by A are said to be
equivalent if there exists a group homomorphism y
such that the diagram

G:0—>A-SE-L5G—1

lIdA l.y lldc (3.3)

E":0—>ALSE'E5G—>1

is commutative. Note that actually y is a group iso-
morphism and that if € is an extension of G by A, then
any extension of G by A equivalent to € is an extensmn
of G by A, too.

For any operation ¥ of G on A, the set Ext(G,A ) of
equivalence classes of extensions of Gby A, can be
given the structure of an Abelian group with the SO
called Baer additionl4 as the law of composition.

A topological extension

€,:0—>A->ELt5GC-—>1
of G by A is a group extension with the following addi-
tional requirements:

(a) E is a topological group;
(b) t[(A — t(A)) is a homeomorphism;
(c) p is continuous and open.

Notice that the mapping deduced from p by passing to
the quotient by t(A) is a homeomorphism by virtue of
(c). The operation ¥ of G on A given by (3. 2) is topo-
logical; thus we have a topological G-module A, and €,
is said to be a topological extension of G by A, (or of
G by A relative to ¥). Again we shall identify A and
t(A) through t and describe a topological extension of
G by A as an ordered pair (E, p), where E is a topo-
logical group and p: E — G is a surjective, open, and
continuous group homomorphism such that Kerp = A.

Two topological extensions €, and €] of G by A are
said to be equivalent if there is a topological group
isomorphism y such that the diagram (3. 3) is commu-
tative.

Let G and A be Polish groups and let ¥ be an arbi-
trary topological operation of G on A. With the Baer
addition as the law of composition (for details see
Appendix C and Ref. 22), the set Ext,(G,A,) of equiva-
lence classes of topological extensmns of G by A, be-
comes an Abelian group.

Note that if G and A are Polish groups, then £ is a
Polish group too: It is Hausdorff, second countable, and
complete by Proposition 3.1 of Ref. 23 and thus metriz-
able (Ref. 18, §3, Prop.1). Moreover, if G, E,and A are
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Polish, then the continuity of ¢+ and p already implies
that ¢| (A — t(4)) is a homeomorphism (hence ¢ is
closed) and that p is open. This can be shown by the
same argument used in the case of an exact sequence of
Polish G-modules (see Sec. 2).

Now, we come back to the cohomology groups H2(G,A )
and H3(G,A,). As is well known,13;14 there exists a
group 1somorph1sm

a:Ext(G,A,) ~ H2(G,A )
such that if [(E, p)] Ext(G,A ), then
o([(E,p)]) =[f] € H2(G,A),

where f € Z2(G,A ) is the factor set of (£, p) defined
by a normalized section o associated with p, i.e., it is
the mapping of G X G into A such that

fle, g') =o(glolg

The elements of the equivalence class a-1([0]) are said
to be the inessential extensions of Gby A,. If G is a
Polish group and if A ; is a Polish G-module, a weaker
form of this result may be proven for topological group
extensions as follows.

No(gg’) 1.

Lemma 1: Let E and G be Polish groups and let
p:E — G be a continuous surjective group homomor-
phism. Then there exists a normalized Borel section
associated with p.

Proof: Once we have noticed that Kerp is a closed
subgroup of E, we apply Lemme 3 of Ref.5 as in the
proof of Theorem 1. ]

Theovem 2: Let G be a Polish group and let A,
be a Polish G-module. Then there exists an injective
group homomorphism

a,:[(E,p)] = [f] (3.4)

of Ext,(G,A ) into H}(G,A ), where f is the (Borel)
factor set of (£, p) defined by a normalized Borel sec-
tion associated with p.

Proof: Let (E,p) be an arbitrary topological ex-
tension of G by A,. By Lemma 1 one has a normalized
Borel section ¢ associated with p, and therefore, if f is
the (Borel) factor set defined by o, we may show the
existence of the mapping a, of (3.4) as in the case of
group extensions without topology (see Ref. 14, Chap. 1V,
Theorem 4.1).

It suffices to notice that

(i) f' is the factor set of (£, p) defined by a normalized
Borel section ¢’ associated with p if and only if

h:gt o'(glo(g)?!

is a Borel mapping of G into A such that f’ = f + a&;

(ii) if (E’,p’) € [(E, p)] and if y is the topological group
isomorphism of the commutative diagram (3. 3), then
vo0 is a normalized Borel section associated with p’
and f is the factor set of (E’, p’) defined by y-o0.

Again, it is clear from the definition of the Baer
addition that the mapping, o, is a group homomorphism
{cf. AppendixC). In order to prove the injectivity of o,
let us first make two preliminary remarks.
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(1) All the elements of the equivalence class a,{[(E,p)])
= [ f] are Borel factor sets of (&, p) defined by norma-
lized Borel sections associated with p [cf. (i) above].

(2) Suppose (E, p) is such that a,{[(E, p)]) = 0 (the
equivalence class [0]), and let ¢ be any normalized
Borel section associated with p and defining the factor
set 0, Then ¢ is a Borel group homomorphism of a
Polish group into a Polish group and thus continuous
by a theorem of Banach already mentioned. It follows
that the surjective mapping g: £ — A given by

Ble) = ea(ple))t
is continuous too. Furthermore, any element ¢ of £
may be written as f(e)o(p(e)) and thus the bijection

e = (B(e), o(p(e))) (3.5)

of E onto A X ¢(G) is 2 homeomorphism.

Now, let (E, p) and (E’, p’) be two extensions of G by
A, such that

oy ([(E, p)]) = o, (((E’, p")]) = 0.

By virtue of the remark (1) above, we can choose two
normalized Borel sections o and ¢’ associated, res-
pectively, with p and p’ and defining the factor set 0.
A group isomorphism y: E — E’ making commutative
the diagram (3. 3) is defined by

y(e) = Ble)o’(p(e)).

Using the homeomorphism (3.5), one sees easily that
is continuous. The same argument shows the continuity
of y~1, because

vy ie’) = B'(e")olp’(e”)

for all e’ € £, | |

Remark 1: Mackey has proven that if G and A are
locally compact second countable groups, then o, is a
group isomorphism.8 Moore claims that this is also
true in the case of G locally compact second countable
and A Polish.11

Remark 2: It follows from the proof of Theorem 2
that if (E, p) is any element of the equivalence class
a31(0), then E is topologically isomorphic to A X, G,
the external topological semidirect product of G by A
relative to ¥,24 The elements of a;1(0) are the inessen-
tial topological extensions of G by A .

Remark 3: If E,G,and p are as in Lemma 1, there
is not, in general, a continuous section associated with
p even if E and G are connected Lie groups.22

Remark 4: A topological extension (£, p) of G by
A is said to be quasifibered23 if there exists a norma-
lized section o associated with p and continuous at 1.
For each topological operation ¥ of G on A, the set
Ext@F (G, A ) of equivalence classes of quasifibered
extensions of G by A, is a subgroup of Ext,(G,A,). If
G and A are first countable and Hausdorff, then

Ext,(G,A,) = Ext@F (G, A )

(Ref. 25, Theorem 2; cf. Ref. 23, Prop. 3. 6).
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4. LOW DEGREE COHOMOLOGY OF TOPOLOGICAL
SEMIDIRECT PRODUCTS

Let G be a topological group, let K be a normal sub-
group of G,and let A, be a topological G- module such
that ¥(k) =1d , for all 2 € K. Suppose that the group G
operates on K by

(g,k) = g(k) = gkg™1,

and consider the operation ¥ of G on CH(K,Ay )
(p € Z) such that ¥0 = ¥ and, if p > 0,

(Tr(g)Neys.ensk,) = V()& (R Y), .

for all f€ C4(K,A, x) and all (ky,..
any p € Z and any g € G,

& Uk ,))

.,kp) € K?, For

500 ¥r(g) = ¥r+1(g)ob2; (4.1)
thus Z5(K,A | x) is stable for ¥? and we can consider
the operation

Bo:g o ¥2(g)| (25— Z8)

of Gon Z4(K,A, | g induced by ¥r, Besides, (4.1)
shows that we have also an operation ¥§ of G on

B4 (K,A, g induced by ¥2. By passing to the quotient
we get an operation ¥2 of G on H (K, A, ). From now
on these operations will be tacitly understood.

The following lemma is a generalization of a result
of Mackey (Ref. 6, Theorem 9.4).

Lemma 2: Let G be a topological semidirect
product of S by K and let A, be a topological G-module.
Suppose that ¥(K) = {Id ,}. Then, if f’ is any element
of Z3(G,A ), there exist f € [f'],f; € Z3(K,A ), 2
Borel mapping f, of K X S into A, and f; € Z3(S,A, is)
such that

Siks, k's") = [k, s(k')) + fo(k", s) + f3(s,s") (4.2)
for all k, %’ in K and all s, s’ in S. The mappings f; and
S, satisfy
(1) frls(e),s(R") = W(s)f lk, k") + folkk’, s)

- fz(ky s)— fz(k,, s)

and
(i) folk, ss’) = fols'(R), s) + ¥(s)f,(k,s’)

for all £,%’ in K and all s,s’ in S. Conversely, given
f1 € Z3(K,A ), a Borel mapping f, of K X § into A,
and f; € Z3(S,A | 5) satisfying (i) and (ii), the mapping
fof G X G into A defined by (4. 2) belongs to Z2(G, A ,).

Proof: Throughout this proof %, k', and' k” (resp.
s, s’,and s”) will denote arbitrary elements of K (resp.
of S). Using repeatedly the fact that f is a 2-cocycle
and that ¥(K) = {Id ,}, we obtain
fiks, k's") = f'(k,s(k")) + f'(s,s") + f'(s, k') — f(s(k'), s)
— [k, s) — W(ks)f'(k',s') + f'(ks(R"), ss').

Let f, be the Borel mapping of K X S into A given by
folk, s} = f(s, k) — f(s(k),s).

As G is a semidirect product, there exists k € C1(G,A )
such that

hiks) = f'(k, s).

(4.3)
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Hence
f'(kS, k'S') =f1(k9 S(k')) + fz(k’, S) + f3(S, S’)

— bhiks,k’s’),

where f; = f| K X K and f; = f'| S X S, and it follows
that

f=(f +oh) e [f]
satisfies (4.2). Now
Of(ks,k's', k"s") =— filk,s(k’)) + ¥(s)f;(k’, s ("))

— filks (k"),(ss") (k")) + f1(k, s(k's"(R")))
— fa k', 8) + Ws)fp k", s') — fo(k", s57)

+ folk's' ("), s), 4.4)
and, by virtue of (4.3),
fol K x{1} =0 and f,R1fxS=0.

Since 6f = 0 we see, by putting 2 = s’ =1 (resp.2’ = 1)
in (4.4), that f, and f, satisfy (i) [resp.f, satisfies (ii)].

Conversely, let f; € Z3(K,A | g), let f, be a Borel
mapping of K X § into A, and let f; € Z§(S,A,,5). Sup-
pose that these mappings satisfy (i) and (ii). ¥ f is
defined by (4. 2), then, using (i) and (ii) in (4. 4) as well
as the fact that f, is a 2-cocycle, we get &f = 0. n

Remavk: Condition (i) of Lemma 2 is equivalent to
(i) ¥Ys)fy =1, + oy

for all s € S, where the normalized Borel mapping
f$): K — A is given by

FER) = — ¥(s)f,(k, s71).
Condition (ii) is equivalent to

(1i") fsg) = f9) + F(s)rly)

(4.5)

for all s,s’ in S.

Suppose that f; € ZZ(K, A, ) and a Borel mapping
Jfo:K X 8§ = A satisfy (i) and (ii). If f; € [f,], then there
exists h € C}(K,A, ) such that f; = f, + 6k and we
have, for each s € S, a Borel mapping

i) = fl) + ¥i(s)h —

of K into A, where f(3) is given by (4.5). It is easy to
check that f4 and f5(s) (s € S) satisfy (i’) and (ii’). Hence
[fi] € H3(X,A, x)° and we conclude that
S f1 € Z3(K, A, ) and there exists l
[f1]|a Borel mapping f,:K xS - A g
} such that f; and f, satisfy (i) and S
(ii) of Lemma 2

H%(K,A“K)’ =

is a subgroup of HZ(K,A 5.

Proposition 1: Let G be a topological semidirect
product of S by K and let A, be a topological G-module
such that ¥(K) = {Id ,}. Then
(i) H?(G;Ay)zHg(K:AHK)S’

(i) HIG,A) S HUK,Ay o5 X HL(S,Ay5),
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Proof: Throughout this proof again 4,2’ (resp.s,s’)
will denote arbitrary elements of K (resp.of S). Part
(i) of the proposition is a consequence of ¥(K) = {Id ,}.
Proof of @i): There is a mapping

a:(f,fa) = f

of ZHE,A, )5 X Z1(S,A, ) into Z}(G, A,) such that
Slks) = f1(R) + fy(s).

In fact,
Slksk's’) = fi(ks(k’)) + fy(ss’)

= f1(k) + ¥(s)f1 (k") + fy(s) + ¥(s)fy(s”)
= flks) + Y(ks)f(k's’).

Obviously a is a group homomorphism, and moreover
it is surjective because, if f € Z}(G,A ), then

(FL(s)f)(R) = W(s)f(s~1) + flk) + f(s) = fik),

and so f= a(f | K,f|S). Let R be the equivalence rela-
tion in Z}(K, A, )5 X Z}(S,A, 5) defined by the (nor-
mal) subgroup {OiE x B}(S,A,, Sﬂ, and let R’ be the equi-
valence relation in Z}(G,A ) defined by B}(G,A ). Note
that

(f1,/3) = (1, /3) (mod R)
implies

fi=1f1
where a, € A. Therefore,

of f1, fo)ks) = fi(k) + fols) = a(f1, fo)ks) + bay(ks),

i.e., a is compatible with R and R’. By passing to the
quotients, we get a surjective group homomorphism

and fé =fé' + 6@2,

o, HHE,A, g)S X HI(S,A, s - HI(G,A ).
We end the proof of (ii) by showing that a is injective

too. Let (fy,f,) € ZRHK, A, x5 X Z}(S,A, s) be such
that

@, ([(f1,£2)]) = [O].
Then o(f;, f,) = 6a, where a € 4, i.e.,
f1k) + fo(s) =— a + ¥(s)a,
whence f; = 0, f, € BL(S,A,,s), and [(f1, )] = [(0, 0)].

Proof of (iii): Consider the set E of all the ordered
pairs (f;, f,) such that

(1) f1_ € Z}(K,A, x) and fy: K X S — A is a Borel map-
ping,

(2) f, and f, satisfy (i) and (ii) of Lemma 2.
By Lemma 2 there is a mapping

a:(f]_:fz’fs) l_)f
of E X Z3(S,A, ) into Z3(G,A,) given by (4.2). Define

(iii) H2(G,A,) ~ H}(K,A, )" X H§(S,A, s), provided that an equivalence relation R in £ X Z2(S,A ) as follows:

1 1 ={o}.
HYS,HNK, A Do) = 0}

J. Math. Phys., Vol. 15, No. 8, August 1974

(f1 S, f3) = (f1, 13, f3) (modR) (4.6)
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if and only if

f1 = (mOng(K,A\HK)) and f3 Ef:’i (mOng(S:A\Hs))-
X R’ is the equivalence relation defined by B%(G,4,) in
Z%(G,A ), then we shall show that a is compatible with
R and R, i.e., that (4. 6) implies

a(fpfz:fg) = a(f’pfé,fé) (mod R’).

Put

th .f= a(ﬁ’fé,f:ls) - a(f]_;fz,fa);
en
ks, k's’) = bhq(k, s(k") +f2(k’,s) + bhgy(s, s’),

4.7

where hy € CHK, A, ), fo =fp — fp,and by € CL(S, A y5).

The mappings k., f,, and h, satisfy the conditions
¥2(s)6h, = ok, + OF(§) (4.8)
Flsn = ) + F1(s)As),

where f(§): K —> A is given by
Fk) = — ¥(s)fp (R, s71).

We identify canonically H}(K, A, ) with Z}(K,A | g
and consider the mapping

and
(4.9)

his > ¥l(s)hy — hy — F(§) (4.10)
of S into H}(K, A, ). This is meaningful since
8(n(s)) = ¥(s)6h, — 6k, — () =0
i 1 1
by (4.8),i.e.,h € C (S,Hb (K’Aw]x)‘i‘* IS). Furthermore,

e Z1 1
heZ (S’Hb(K’AwK)Q, ), because

x1s

Sh(s, s’) = h(s) + ¥i(s)k(s’) — h(ss’)
= fts§') — f(g) — \Tfl(s)f(sz’) =0
on account of (4.9). By assumption, there is 2} €
Hl(K,A ) such that
h(s) = — k' + ¥l(s)h}
and thus, by virtue of (4. 10),
Falk, ) = (hy — hy)(s(R)) — ¥(s)(hy — R y)(R).

We may choose k’ € C1(G,A,) such that ’| S = 0,
h'| K =hy — kY, and k'(ks) = h'(k); then
Oh'(ks, k's") =f2(k’,s) + ohy(k, s(k")). (4.11)

On the other hand, we may pick out an element %" of
C(G,A ) such that k”(ks) = hg(s), and then

8h”(ks, k's") = bhgy(s, s’). 4.12)
Therefore, by (4.7), (4.11), and (4. 12) we see that the
normalized Borel mapping h =k’ + h” of G into A,
satisfies 6k = f, and thus ¢ is compatible with R and
R’. By passing to the quotients, we get a mapping

o, :H%(K,A‘P 1x) X H%(S,AHS) ~ H2(G,A )

which is surjective by Lemma 2. One can easily see

J. Math. Phys., Vol. 15, No. 8, August 1974

1161

that o, is a group homomorphism; it remains to show
its injectivity. For this,let [f;] € H}(K, A, 0, [fz] €
HZ(S,A, s), and suppose

a,(f1} [f5]) =[0]-

Then there exist # € C}G,A,) and a Borel mapping
fo: K X 8§ — A such that (f,,f,) € E and

Sh(ks,k's’) = f,(k, s(B") + fa(k’,8) + fa(s,s"). (4.13)

Putting s =s’ =1 in (4.13) we get f; = 5(k | K), and
putting k£ =k’ = 1 we get f; = 5(k| S); hence o, is injec-
tive. -

Remember the following definitions:

(1) An Abelian group A is said to be divisible if, for
any n € N* (the set of all integers > 0),nA = A.

(2) One says that an Abelian group A is forsion free i,
for any a € A different from 0, the relation na = 0
with # in N implies n = 0.

Proposition 2: Let G,K,S,and A, be as in Proposi-

tion 1. Suppose in addition that A is divisible and torsion
free and that S is a finite group. Then

(i) HR(G,AY) =HY(K,Ay )%
(ii) Hbl(G;Aw) ~ H%(K’A\”K)S;
(1) HZ(G,A,) ~ HYK,A, ) .

Proof: As S is finite and as A is divisible and
torsion free, then

H%(S)Ayls) =HP(S:A\HS) ={0}

for all p > 0 (Ref. 14, Chap.IV, Corollary 5.4). The re-
sult follows from Proposition 1 once we have shown
that

1 1 —
H (S’Hb(K’AvIK)?v,‘, \s) ={o}.
We get this because the group H}(K, A, ) = Z}(K, A, )
is divisible and torsion free. For were not Z}(K,A )

torsion free, then given f € Z}(K, A, (x> f = 0, we could
find » € N* such that #nf = 0 in contradiction with the
assumption that A is torsion free. Now take any f €
Z}(K,A, g and any n € N*. Since A is divisible and
torsion free, then, for every k € K, there is a unique

a, € A such that f(k) = na,. Besides, the mapping

J":K — A such that f'(k) = q, is an element of Z}K,A ).
So, f=nf and Z}(K,A, |x) is divisible. [

Proposition 3: Let G be a topological semidirect
product of S by K and suppose S finite. Let F be a field
of characteristic 0 and let A , be an F-linear topological
G-module such that ¥(K) =1{Id,}. Then

HEK,A, )5 =HFK Ay g .
The proof rests on the following.

Lemma 3: Let G,K,S, F,and A be as in Proposi-
tion 3. Then

Hy (KA, QS ™ Z{(K, A, 0)S/6CE UK, A, S
for all p € Z.

Proof: Throughout the proof p will denote an arbi-
trary element of Z. The groups C4(K,A,x), Z4 (K, A ),
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and B4 (K, A, | ) are vector spaces over F in an obvious
way and, furthermore, the F-linearity of A, implies the
F-linearity of the G-modules Ci(K’AwK)EP’

» » . o g
Zb(K’A\le)Ty%’ and B b(K,Av IK);%' Since S is finite,

3 - T?). ?).
there are S-modules ( b)wi’Tfs and (Ub)wf’,,!s such that

Zv (K ., =BPEK . 2y,
b( ’Awlx)\pi’zrs Bb( ’szr)vijg[s @ (Tb)wf’Tls
(4.14)
and
}4 ~ = 4 - 7 ? -~
Cb(K’Ale)\P‘DIS Zb(K’Aw!K)vals ® (Ub)wpyls’
(4.15)

where © denotes the direct sum of sub-S-modules (Ref.
26, Chap. XVIII, Theorem 1). The mapping

B:[f] (modBA (K, A, £)%) > [f] (modBE (K, A, L)
of ZB(K, A, )S/B3(K,A, S5 into HE(K,A, S is an
injective group homomorphism. It suffices to notice
that if £, /" are in Z5(K, A, | )5, then [ f] =
[f'] (modB4(K, A, ) implies [f]=[f] (modB4 (K , A, )5).
We will show that S is surjectivetoo. Letf € Z#(K, A, |,),
and suppose [f] € H4 (K, A, 5. This means that, for
any s € S, there is h?s) e Cé,‘i(K,AHK) such that

To(s)f = f + 6h(s),

By virtue of (4. 14) we have a (unique) decomposition

J =fB + fT’
where f, € B4(K,A, ;) and f; € T3, Moreover,

o (s)fy + UB(s)fp = fg + fp + OB(S)
implies

$4(s)fr = fr
for all s € S,i.e.,fr € ZE(K Ay x)5. As

fT Ef (mOdB%(K’A\p(K)),

we conclude that 8 is surjective. We end the proof by
showing that

B%(K’Aq; |K)s = GC%_l(K;A\HK)S'

For this purpose we consider z € C§1(K, A, ;) such
that ok € B4(K,A | 5.

By (4. 15) there is a (unique) decomposition
h=hy+hy

where k , & Z5 1K, A, ) and h; € Ug L. It follows that
hy € CELE, A, 5.

In fact,
5(¥2-1(s)h — k) = 0
for all s € S, and this implies
6(¥L-1(s)h,— k) =0,
whence

\I/Pl;l(s)hv = hU

J. Math. Phys., Vol. 15, No. 8, August 1974
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for all s € S. As 6k, = 6k, we conclude that
BR(K,Ay x)5 S 6CHLE, Ay, )5,
The inclusion

SCEMK, A, g5 C BL(K,A, oS

is obvious. ]

Proof of Proposition 3: Let f € Z§(K,A, x) and
suppose [ f] € H(K, A, 4)5. By Lemma 3 there exists
an element /" of [ /] N Z§(K, A, ,)5;hence [f] €
H?(K,AMK)’ because f; = f’ and f, = 0 satisfy (i) and
(ii) of Lemma 2.

A vector space over a field of characteristic 0 is
divisible and torsion free; therefore we have the follow-
ing.

Corollary: Let G,K,S, F,and A, be as in Pro-
position 3. Then

HY (G, A JNHB (K, A, )5~ Z4(K, A, 08/ SCH LK, Ay 5

forp =0,1,2.

We emphasize the analogy of this result, based on the
assumptions that S is finite and that A is a vector space
over a field of characteristic 0, with a result in the
cohomology theory of Lie algebras (Ref. 27, Theorem 1),
where the role of S was played by a semisimple sub~
algebra.

Remark 1: If A, is an F-linear topological G-
module, then the groups H4(G, Ay) and H§ (K, A, | g)
(p € 2Z) are (quotient) vector spaces over F and the
isomorphisms in Lemma 3 and in the corollary to Pro-
position 3 are vector space isomorphisms.

Remark 2: Lemmas 2 and 3, Propositions 1, 2, and
3, and the corollary to Proposition 3 are also valid if
we replace the Mackey-Moore by the Eilenberg-
MacLane cohomology. Once the subscripts “6” have
been taken away and “Borel mapping” has been re-
placed everywhere by “mapping, ” the statements and
the proofs are verbatim the same. Obviously, in the
Eilenberg-MacLane cohomology we obtain the same
results also if we drop all the assumptions concerning
the topology.
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APPENDIX A: BOREL, BAIRE, AND POLISH SPACES
Let E be a set. A Borel structure on E (or a o-field

of subsets of E) is a collection 8 of subsets of E such

that

(i) Ee€®,

(ii) if E'< B,then E— E’' € B,

(iii) if (£,) is any sequence of elements of B, then
UE, € 8,

n

Let % be any collection of subsets of £. The smallest
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Borel structure on E containing % is said to be the
Borel structure generated by %. The set E endowed
with a Borel structure B is called a Bovel space and
the elements of 8B are called the Borel seis of E. The
concepts of induced Borel structure and Borel subspace
(resp. product Borel structure and product Borel space,
resp. quotient Borel structure and quotient Borel space)
are defined in analogy with the corresponding topologi~
cal concepts.15.28 Let E and E’ be Borel spaces. A
mapping f: E — E' is said to be a Borel mapping if, for
any Borel set B’ of E’, f~1B’) is a Borel set of E,
Suppose now that £ is a topological space and let ¢ be
the collection of all closed sets of £, The set E en-
dowed with the Borel structure generated by ¢ is called
the Borel space associated with the topological space
E. Whenever we refer to a topological space as a Borel
space, we tacitly understand the associated Borel space.
So we can freely speak of Borel mappings of a topo-
logical space into a topological space. Notice, in parti-
cular, that any continuous mapping is a Borel one. For
details and results concerning Borel spaces and Borel
mappings see Refs. 15, 17, 28.

A subset S of a topological space E is said to be
nowheve dense (or vare) if E — S (the complement of
the closure of S) is dense in E, and a subset M of E is
said to be meager (or of Baire I. category) if it is the
union of a countable family of nowhere dense sets. A
topological space E such that E — M is everywhere
dense for each meager subset M of E is called a Baive
space. Any locally compact space, as well as any me-
trizable space with a distance compatible with the topo-
logy and for which the space is complete, is a Baire
space (Ref.18, §5, Théoréme 1).

A topological space P is said to be a Polish space if
it is second countable, metrizable, and if there is a
distance compatible with the topology and making P
into a complete space. The product of a countable
family of Polish spaces is Polish, as well as any closed
subspace of a Polish space (Ref. 18, 86, Prop.1). We
say that a topological group G (resp.a topological G-
module A ) is a Polish group (resp.a Polish G-module)
if the topological space G (resp.A) is Polish. In parti-
cular, any second countable locally compact group is
Polish (Ref. 29, TG III, §3, Cor. 1 to Prop. 4 and Ref. 18,
§3, Prop.1). The quotient group of a Polish group by a
closed normal subgroup is Polish. In fact it is metriz-
able and complete by Prop. 4, §3 of Ref. 18, and it is
second countable because the canonical surjection is
continuous and open.

APPENDIX B
1. THE COHOMOLOGY OF A COCHAIN COMPLEX

An Abelian group C* (written additively) is called an
(internally) Z-graded group if it is the direct sum of a
family (C?),., of subgroups. We identify canonically C*
and the external direct sum @ C?, The elements of C?

ped
are said to be the homogeneous elements of C* of degree
p. Let C™ be also a Z-graded group and let » € Z. A
group homomorphism a:C* — C'* is said to be a Z-
graded group homomovphism of degree v if CP) C
C’t+7 for all p € Z, and we denote a|(C? — C’?+7) by
a?, If r = 0, we say simply that o is a Z-graded group
homomorphism. A cochain complex (of Abelian groups)
is an ordered pair (C*, 6), where C* is a Z-graded group
such that C# = {0} for all p < 0 and 6:C* = C* (the
coboundary opevator of (C*, 8)) is a Z-graded group
homomorphism of degree 1 such that 6.6 = 0.
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Then a homomorphism

a: (C*,8) - (C™,5")
of cochain complexes is a Z-graded group homomor-
phism a:C* = C™* satisfying

aocd =900

It is now clear what an exact sequence of cochain com-
plexes is: a diagram

%) %) Q-1
(Cly b)) == (Clay bz)) ===+ ——> (Clup On)),
where the g are homomorphisms of cochain complexes
and
Kera, 4, =Imoy, forl <i<n—2,
A cochain complex (C*, ') is said to be a subcomplex
of (C*,6)H C'?C Chforallp ¢ Zandif 6’ =5|C™.

Given a cochain complex (C*, §) we can define, for
any p € Z,the (Abelian) group Z? = Kers? of the p-
cochains and the group B? = Imé?-1 of the p-coboun-
daries. The quotient group H? = Z?/B? is said to be
the cohomology group of degree p of (C*, 5) and the
family (H?),_, (or equivalently H*(C*,8) = ® H¥)is

pEZ

called the cohomol ogy of (C*, 5).

If a: (C*, 6) — (C'*, 6') is 2 homomorphism of cochain
complexes then, for any p € Z,08, = a|(Z? » Z'?) and
af = & | (B? > B'?) are group homomorphisms. We
denote by o4 the group homomorphism of H? into H’?
deduced from a4 by passing to the quotients. Given an
exact sequence

€:0—> (C™*,8") > (C*,8) 1> (C™,6") —> 0

of cochain complexes, one can define a Z-graded group
homomorphism of degree 1

6@ :H*(Cn*’ 6") _’H*(C’*, 6/)

called the connecting homomorphism for & (for a defini-
tion see Ref. 30, Chap.1,2.1). Then 65,= 6 | (H"? —
H'p+1) is the connectmg homomorphlsm of degree p.

Theorem: If
E:0—> (CI*, 6’)_L$ (C*’ 6)*119 (cu*’ 6”) —0
is an exact sequence of cochain complexes, then

Y g 59

0 H'O HO

1
H"0 H’1 L*

601 L T 52 Lo+l
CoHD X Hgp - X Hgrp _C H'p+1 X

is an exact sequence of Abelian groups.

This theorem can be proved like Theorem 4. 1, Chap.
IT of Ref. 14 (exact homology sequence). In order to
obtain a proof for our case, it suffices to replace there
homology by cohomology.

2. THE EILENBERG-MACLANE COHOMOLOGY

Let G be a group and let A, be a G-module. A map-
ping f: G? - A is said to be normahzed if, for any

{gl’ -, 8,) € G?, (g, g,)=0 whenever 1 €
g1, ...,g . For anyp CN* Qet C?(G,A ) be the set
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of all normalized mappings of G? into A. This set
becomes an Abelian group by defining the addition as
addition of values. For p = 0 let C%G,A ) = A, and put
C?(G,A,) = {0} for all p < 0. Then

C¥(G,A) = @ C¥G,A)
peZ

is a Z-graded group. Consider the Z-graded group
homomorphism § of degree 1 of C*(G,A ) into itself
such that, if p > O

A& o1 8pe) = )P 1f(gy, ..

+ \I‘(gl)f(gz’ .. ')gp.;.l)

©r&p)

P
+,§—31 U8y 808

ceer&pe1)

for all fe €C?(G,A ) and all {g,,.. .,gp+1) & G?+1 (here
£, means the omission of g,). I p = 0, put

g = ¥g)f

for all f € A and all g € G. One checks easily that

8.0 = 0; 50 (C*(G,A ), b) is a cochain complex called

an Eilenbevg-MacLane cochain complex. We use the
same symbol §, defined as above, for 211 Eilenberg~
MacLane cochain complexes and for their subcomplexes,

and so we write simply C*(G,A‘Q instead of (C*(G,A ), b).

The groups Z?, B, H?, and H*(C* (G, A ,)) of the cochain
complex C*(G,A ¢ are usually denoted, respectively, by
Z2(G,A,), BP(G,A ), H?(G,A ), and H*(G,A ).

APPENDIX C: THE BAER ADDITION

Let G be a Polish group, let A, be a Polish G-module,
and let (£, p,) and (£,, p,) be topological extensions of
GbyA,. (llonsider the (topological) subgroup
S =1{(y,e,) (er,e,) € Ey X E, and pyley) = pyley)t
of the product group £, X E,. Since § is closed in
E, x E, (Ref.29, TG I, 88, Prop. 2}, it is a Polish group.
Moreover,

A’ ={(a,— a)|a € A}

is a closed normal subgroup of S and so we can con-
struct the Polish quotient group £ = S/A".

The group homomorphism
[ (915 62) i pl(el) = pg(eg)

of § onto G is continuous and open because the mapping
(e1,€y) ™ e of S onto E, is continuous and open. More-
over, p’ is compatible with the equivalence relation de-
fined by A’ in S; s0, by passing to the quotient, we get

a continuous and open group homomorphism p of £ onto
G. Now let ¢ be the injective group homomorphism.

ot (a, 1A’

of A into E. I ¢’ stands for the group isomorphism
at> (a,1) of Aonto A X {1}, then t = (7|4 X {1}}or’,
where 7 is the canonical mapping of S onto S/A’, On
the other hand, .’ and 7] (4 X {1} = t(4)) are homeo-
morphisms and therefore ¢} (4 - t(4)) is a homeo-
morphism too, We identify A and ¢(A) through ¢ and
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notice that Kerp = A. Furthermore, if ¢, (resp.if 0,)
is a normalized section associated with p, (resp. with
p,), then we have that the mapping

cig (ol(g),cfz(g))A'

of G into £ is a normalized section associated with p
and that, for any g € Gandanya € A,

o(&)ao(g) 1 = (0,(8),04(g))(a, 1)(04(8)" 1, 0,{g)y 1A’
= (¥(ga, NA" = ¥(g)a.

Thus (£, p} is a topological extension of G by A, and the
mapping

(B, 010, (Ey, p3)) P (B, p) = (£, Py) T (E,, Pz)

is a law of composition on the set of all topological
extensions of G by A,. Note that if f; (resp.if f,) is
the factor set of (£,,p4) (resp.of (£,, p,)) defined by
o4 (resp.by 0,), then f = f; + f, is the factor set of
(£, p) defined by ¢ because

o(g)o(g)o(ge’ )t = (fi1(g, &), Folg, 8 NA"
= (f1(g,8") + folg,8"), DA’
=fi(g,8") + fy(&,8")

for all (g,8') G X G.

Exactly as in the case of extensions of groups with~
out topology, one verifies14 that the law T is commuta-
tive, associative, and compatible with the equivalence
relation R defined by means of the commutative dia-
gram (3. 3) in the set of all topological extensions of
G by A,. The Baer addition on Ext (G, A} is then the
quotient law of T by R, i.e., the law of composition

(ELe )L [(Epd]) B (B )] + [(E5p,)]
= [(Eppl) T (Ezspz)]‘

Given a topological extension (E,p) of G by A, we can
consider the ordered pair (E0, p0), where EO is the
opposite topological group of £ (Ref. 29, TG III, §1, 1)
and p? is the continuous and open group homomorphism
e = ple~1) of E? onto G (with kernel A), So, (E9,p9) is
a topological extension of G by A and one verifies,
again as in the case of groups without topology, that it
is an extension relative to ¥. Furthermore,

[(E,p)] + [(E,pO0)] = [(A X,G,pry)].

In fact, put (£, p) T (E%,p0%) = (E, p) and consider the
closed subgroup

G ={(e1,e)A’|e c E}

of E. The mapping « = p| G is a topological group iso-
morphism of G anto G because G is a Polish group.
Therefore, the group isomorphism

y:ila, g) - ax(g)

of A X .G onto £ is a topological one. Moreover, it
establishes the equivalence of (4 X G, pr,) and (£, p)

(cf. Sec. 3) because y(a, 1) = a and (f-y)e,g) = pry{a, g)
for all @ € A and all g € G. One easily verifies

that

[(E,p)] + [(A X,6,pr,)] = [(E,p)]



11656  U. Cattaneo and A. Janner: Mackey-Moore cohomology

once we have noticed that, if (E,p) T (4 X,G,pr,) =
(E’,p"), the mapping

(e, (0,pe)A'P e

of E’ into E is a topological group isomorphism. Sum-
marizing, we have proven that Ext,(G, A ,), equipped with
the Baer addition, is an Abelian group with neutral ele-
ment {(A X,G,pr,)] and with

[(B,p)] =— [(EO,p0)].
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A kind of topological extensions of a space-time group Q by an electromagnetic gauge group J are
investigated in order to determine covariance groups of electrodynamics. Here Q stands for the
Poincaré group, for the Galilei group, or for their neutral components, and J is the Abelian group
of all real-valued functions of class C™ (m € N or m = =) defined in space-time. The topological
groups JofQ so obtained, already inportant in the study of charged particles in external
electromagnetic fields, are analyzed and placed in the general context of combining different
symmetry groups. They are characterized by a given operation @ of @ on J and by factor sets f
such that f(g,¢’) is a constant gauge function for all (g,¢9') € Q X Q. It is shown that all these
groups Jo/Q are topologically isomorphic to the external topological semidirect product of @ by J

relative to ®.

1. INTRODUCTION

According to the standard principles of relativistic
mechanics and electrodynamics, the observables in the
interaction with matter of a classical, i.e., nonquantized,
electromagnetic field are covariantsl of the operations
of two groups, namely P, (the connected component of
the neutral element of the Poincaré group P) and the
electromagnetic gauge group J. It is also usually as-
sumed that this still must be true if we are able to
quantize the fields. So,we are interested in combining
P, and J into a single covariance group,i.e., in coupling
space-time and electromagnetic gauge transformations.
As this is a special case of quite a wide class of prob-
lems, we will put the present investigation in a more
general frame by illustrating the guiding ideas with
some well-known examples.

A natural way for coupling symmetries of different
kinds is to construct a group in which they appear as
ingredients. This can be done sometimes very easily
in the case where these different symmetries can be
made to operate on a given set.

As a first example we may mention the Poincaré
group P, which can be seen as a combination of the
Lorentz group L and the group T of space-time trans-
lations. The elements of L and T are symmetries of
relativistic physics and are transformations of the
Minkowski space M. The coupling arises by considering
the set of all ordered pairs p = (¢,L) (t< T,L € L)
of transformations of M (first L, then {) and by defining
the products pp’ as the result of successive transforma-
tions (first p’, then p). This way leads uniquely to the
Poincaré group P as the external topological semidirect
product? of L by T relative to the natural operation of
LonT.

The coupling of Lorentz transformations and space-
time translations is a minimal one, in the sense that L
and T are canonically identified with subgroups of P.
However, in physics there are also nonminimal couplings
of symmetries. This is the case in crystallography
where, by coupling macroscopic point symmetries
(which are orthogonal transformations forming the
crystallographic point group K) and microscopic trans-
lations (forming the group U of lattice translations, also
called primitive translations), one gets a space group
G. Now, K may be canonically identified with a subgroup
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of G only if G is a so-called symmorphic space group.3
For a nonsymmorphic space group this identification
cannot be made.3,4

A symmorphic space group (resp.the Poincaré group)
is obtained from an inessential extension5 of K by U
(resp.of L by T), and so we can say that the coupling is
inessential. In a nonsymmorphic space group the coupl-
ing is said to be essential, because such a space group
is obtained from an essential extension of K by U. Note
that, a priori,even with an inessential extension we could
have the case where the crystallographic point group K
is not canonically identified with a subgroup of the space °
group G and therefore get a nonminimal coupling. In
fact, K is embedded in G by choosing a complete set of
(right) coset representatives, and the answer to the
relevant question if this arbitrariness gives rise to
a nonminimal coupling depends on whether different
sections® are physically equivalent or not. In the case
of symmorphic space groups there is a physical equiva-
lence of all sections and the coupling is minimal.é

Returning to our particular problem, we note that the
electromagnetic gauge group can be seen as an internal
symmetry group because gauge transformations do not
act on space-time. Therefore, we have a particular
case of the problem of combining space-time and inter-
nal symmetry groups.?;8,9 Furthermore, even if the
coupling is a minimal one, the group obtained is not
purely of academic interest and can give rise to a deep-
er physical insight. This is shown by a well-known
example: The study of the continuous unitary projective
representations of P, gives results which are unexpect-
ed if one considers L, and T as two independent groups.

The construction adopted in this paper for combining
P, and J follows closely the one used for the combina-
tion of L and T into the Poincaré group P. We take as
electromagnetic gauge group J the Abelian group of
three-times continuously differentiable mappings of the
Minkowski space M into R (cf.Sec.2). As both P, and J
operate in a well-known manner on the space of Maxwell
potentials, we consider the set of all ordered pairs
g=(,p)(xe d,p € P,) with an action on this space
obtained by letting p act first and then Ax. The new fact
is that, by requiring that the set J x P, should form a
group operating on the space of Maxwell potentials, we
do not get a unique group as in the case of P. Instead,

Copyright © 1974 by the American Institute of Physics 1166
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we obtain a whole collection {Jq,0 fPo} of groups charac-
terized by the operation &, of P, onJ and by well-
defined maps f of Py X P0 into J such that, for any
(p,p") € Py x Py, f(p,p’) is a constant gauge function.

All the groups J 2, fP, are candidates as covariance

groups of relativistic electrodynamics (classical and
quantum). They are obtained from extensions of P

by Js, with factor sets f (Ref. 5); therefore, one has to
find all equivalence classes of such extensions, pick

out the groups J 4 fP, having a physical meaning, and
partition these groups in classes of physically equivalent
covariance groups. In the present paper this program

is not completely realized. We hope to be able to do it
in a subsequent publication.

We will restrict ourselves to consider only topological
extensions of Py by J 2y after having endowed J with an

appropriate topology. There are strong reasons justifying
this restriction. First of all,a group J, fP, obtained
from a nontopological extension could have a very com-
plicated structure. Without the support of topology we
are not able to discuss its mathematical properties,

and therefore also unable to find the classes of physically
equivalent covariance groups. Secondly, in all the ex-
amples we know of combination of different symmetry
groups, only topological groups appear. At the present
state of knowledge, the physical relevance of nontopologi~
cal group extensions seems to be very doubtful.

The main result of this paper is that any topological
extensmn of Py by J, W1th a factor set f such that

f,p)is a constant mappmg for all (p,p’) € Py X Py
is inessential (and therefore one can say that the cor-
responding coupling of space~time and electromagnetic
gauge transformations is inessential). This means that
the groups obtained from such extensions are topologi-
cally isomorphic (i.e., isomorphic and homeomorphic)
to J Xg, P, the external topological semidirect product
of P, by J relative to ¢ ,. Note that in the minimal
coupling case one precisely gets a topological semi-
direct product.

Even at the present stage, and without going into
details, it is important to think of the physical implica-
tions of the (possible) existence of covariance groups
obtained by a nonminimal coupling of space-time and
electromagnetic gauge transformations. One can argue
that in such a case a relativistically non-covariant
formulation of electrodynamics would be required.

In this paper, calculations are performed not only for
P, but also for the Poincaré group P and for the cor-
responding nonrelativistic space-time groups, namely
for the Galilei group G and for G, the connected com-
ponent of its neutral element. Moreover, we consider
other possibilities in the choice of J. In particular,we
take as electromagnetic gauge group the (Abelian) group
of all the mappings of class Cm (m € Nor m = ») of M
into R with suitable operations of the space-time groups
on it. Beside the intrinsic interest they represent, some
of these cases also play a role in problems of charged
particles in external electromagnetic fields.1? However,
the result that we get is always the same, namely groups
which are topologically isomorphic to external topologi-
cal semidirect products of the space-time groups by the
electromagnetic gauge groups.

Our paper is organized as follows: In Sec. 2 we derive

the rule for the combination of P, and J. The associated
extension problem is formulated in precise mathematical
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terms in Sec.3 and generalized by considering different
space-time and electromagnetic gauge groups with
appropriate operations. We prove that all the topological
group extensions considered are inessential. Some com-
ments on recent publications on related topics are given
in Sec. 4, where the analogies with our work are em-
phasized. In the Appendix we prove that the operation

& of @ on J is topological.

For notations and definitions concerning the cohomology
of groups and group extensions the reader is referred to
Ref. 5. Whenever a finite-dimensional vector space is
considered it has to be understood as a topological vec-
tor space with the canonical topology.

2. THE GROUP EXTENSION ASSOCIATED WITH A
COMBINATION OF P, AND J

In order to state our problem in a proper mathemati-
cal form, we have to be precise on the electromagnetic
gauge funct1ons that we will consider. Let € (R4)

(m € N or m = ») stand for the vector space over R

of all the mappings of class C™ of R4 into R. In other
words, the elements of G2t (R4) are continuous functions
if m = 0, m-times continuously differentiable functions
if m > 0, and indefinitely differentiable functions if

m = . We equip €2 (R4) with the Cm-topology (cf. Sec.
3), and so it becomes a topological vector space. Basing
our choice on the example of a classical electromagnetic
field, we take as electromagnetic gauge group J the
Abelian topological group €3 (R4) (identified with e3m)
in an obvious way]. This preference is rather arbltrary:
There are a lot of more or less reasonable candidates
for the electromagnetic gauge group and a definitive
choice may be made only a posteriori. Using C3(R?) we
are able to put forward some ideas and draw some con-
clusions; however, our results apply to many other pos-
sible choices of the gauge group (cf.the end of this sec-
tion and Remark 2 of Sec. 3).

Again from the example of a classical electromagnetic
field, we get a scalar operation

2,:P,— Aut(d)
of P, on J such that, for all A € J and all x € R4,

(@M (x) = A1 +x), 2.1
where the dot stands for the natural operation of P, on
R4,

Consider the vector space €2(R4;R4) of all the map-
pings of class C2 of R4 into R4; endowed with the C2-
topology it is a topological vector space. The group
P, operates on C2(R%;R4) by the law (p,a) —p.a =
(t, L)-a such that

(p'a)“(x) = A(L'l);; a, plx) (0<p<?3) (2.2)
for all x € R4, where A is the natural operation of L,
on R4, The Maxwell potentials, i.e., the solutions of
class C2 of Maxwell equations, belong to C2(R4;R4).
Let us denote by MP the subspace of @2(R4; R4)(with
the induced topology) of all Maxwell potentials. This
topological space is stable for the operation of P on
CZ2Z(R4;R4) given by (2.2), and the electromagnetic gauge
group J operates on it by
(A,A) P A+A=A + 3. (2.3)

Now we proceed as in the case of the combination of

the Lorentz and space-time translation groups into P:
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(i) We form the ordered pairs (A, p) with A €

J and p € Py;
(ii) We define an action of (A, p) on MP by

(0, p), A) P (A, p)- A=p-A+ax (2.4)
(iii) We require that the following conditions be

satisfied:
(1) The product set

JXPo={rp)lrxeJ and p e Py}

is a topological group operating on MP
by (2.4);

(2) (3, 1D, p) = (A, p)
and
0,0)(x, 1) = (8,(p)r, p) for all
xe Jandall p € Pgy;
(3) {(x,1)|x € J} is a subgroup identified
with J through the topological group iso-

morphism (A, 1) = A;

(4) The group homomorphism (A,p) = p is
continuous and open.

The neutral element of the new group is (0, 1) and its
multiplication is such that, for any A € MP,

(LD, ')A = (1, 0)- (A, p7)- A). (2.5)

From (2.5) we get the law of composition10

LY, ) = (0 + 350N + ¢, pp').

Here, c € J is a constant mapping arising because, in
(2.3),xA = (x +c)-A. A priori,c depends on A, 0\, p,p;
however, it is easy to see that it depends only on p and
p'[using (iii), one gets ¢ = (0, p)(0, p’)(0, pp’)-1]. So we
can write

A PYN' b)) = (0 + &N +1(p,p), pp), (2.6)

where, for all p,p’ in P,
fiPyXPyod
is such that f(p,p’) is a constant mapping and

In addition, f satisfies a relation imposed by the associa-
tivity of the group multiplication [which implies that
fe Zz(Po,J%)]; the class of admissible f is also re-

stricted by the requirement that the group J 2, SfPgy of

the ordered pairs.(x, p) with multiplication (2. 6) should
be a topological one. Note that, for any p € Py and any
red,

(@02, 1) = (0, p)(x, 1)(0, p)-1.
From the classical case just described we abstract
the rule for the combination of P, and the electro-

magnetic gauge group J = €§(R4): We unite P, and J
into a topological group J @nf P, whose elements are the
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ordered pairs (, p)(x € J, p € Pg) and the law of com-
position is given by (2. 6). The values of the mapping f
of Py X Py into J are assumed to be constant mappings
of R* into R, and the mappings ¢ : A — (A, 1) of J into
J%fP0 and p: (A, p)~ p of J%fP0 onto P, are assumed
to be continuous group homomorphisms with : closed
and p open.

In the next section we will show that the ordered
pairs (J %f P, p) are topological extensions of P, by J
relative to &4, and so we shall be led to solve the prob-
lem of finding such extensions. The result that we shall
get is very simple: For any admissible f,J%fPO is
topologically isomorphic to J%OP0 =J Xg,P,. Actually,
this will come out as a particular case of a more general
extension problem. The generalization is threefold:

(a) We take an arbitrary group €*(R4) (m € N or
m = ) as a possible electromagnetic gauge
group J;

(b) 1In the nonrelativistic case we use G, and the
appropriate operation on J instead of P, and
®;

(c) Together with P, and G, we consider P (resp.
G) and a class of operations of P (resp.G)
on J which generalize &,.

The detail of this problem will be given in the next sec-
tion.

3. THE INESSENTIAL COUPLING OF SPACE-TIME
AND ELECTROMAGNETIC GAUGE
TRANSFORMATIONS

In the previous section we said that C/(R4) (m e N
or m = ), endowed with the Cm-topology, is a topological
vector space. Let us now give some details about the
Cm-topology.11,12,13,14 Consider a 4-multi-index
r = (ry, 71,73, ¥3) € N4 of total degree |r| =7y +7, +
¥y +¥3. Let D7, || > 0, stand for the partial differen-
tiation operator

olrl
(8x0) 70 (6x1) "1 (9x2) "2 (8x3) "3

and let DO be the identity mapping. There exists an in-
creasing sequence (K,),.y of compact subsets of R4
such that R* = U K, and,for any leN,K,C K, (the
interior of K,,;). For each pair [, s of integers with
120, 0<ss<mif meNands =0 if m = o, the mapp-
ing

bs x> sup [ D7A(%)]

Irlss,xGKl

of €z(R4) into R is a seminorm. The topology defined
by the family of seminorms (p z) is the Cm™-topology.
Let 7 be the index set of the family (Ps,z)' The collec~
tion € , of all the sets

w,((a,);€) ={xlx e ep(R4) and pai(x) <e€

forl <i<N}, (3.1)
where (a;); ;. y1s any finite family of elements of I and
€ is any real number greater than 0, is a fundamental
system of neighborhoods of 0 in €t (R4).

Equipped with the Cm~topology, €2(R4) (m € N or
m = ©) is a Fréchet space, i.e., a locally convex metriz-
able and complete topological vector space; moreover
it is separable. In fact, CZ(R4) is separable by (12.14.6.
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2) of Ref.11 and by (17.1.2) of Ref. 12, and the real topo-
logical vector space underlying CZ(R4) is the topological
direct sum

er(RY) @ 4CR(RY).

Since a separable metrizable topological space is second
countable, @Z(R4) is Polish (see Appendix A of Ref. 5).

Now, consider a topological linear operation ¢ of a
topological group @ on the vector space R such that
¢(Q,) = {Idg}, where @, is the connected component of
the neutral element of Q. If Q/Q, is a finite group, the
condition that ¢ is topological is redundant. If i is any
given linear topological operation of @ on R%, we can
define a linear operation & of Q on C(R4) (m < Nor
m = ) such that

(@(@N ) = (@A (g1)x) (3.2)
for all A € €Z(R4) and all x € R*. In the Appendix we
prove that if @ is second countable and locally compact,
then & is topological. Note that if @ = Py, if m = 3,and.
if  is the natural operation of P, on R4, then®coincides
with the operation &, defined by (2.1). I @ =P (resp.

Q = G),if m = 3, and if Y is again the natural operation
of P (resp.of G) on R4, then the operation & with ¢(g) =
—1 for all antichronous ¢ and ¢ {(g) = 1 for all ortho-
chronous ¢ is the one occuring in the invariance group
problem considered by Janner and Janssenl0 (see
Sec.4).

In the sequel, we will determine the topological exten-
sions (G, p) of the Polish group Q € {Py, P, Gy, G} by
the Polish group €(R4) (m € N or m = o) relative to
the topological operation & of @ on CZ(R?) defined by
(3.2) and satisfying the following condition:

(RE) There is a normalized Borel section ¢ associated
with p such that, if f is the factor set defined by o, then
fl4,q') € eg(R?) is a constant mapping of R* into R
for all (q,¢") € @ X Q.

The restriction (RE) is suggested by the results of
Sec.2. As was mentioned at the end of that section, the
ordered pairs (J, fP, p) are topological extensions of

[
P, by J% . In fact, P, and J are Polish groups, &, is
topological, andthe mappings p:(A,p) = pand ¢ :x — (A, 1)
are assumed to be continuous, with p open and ¢ closed.
Note that the mapping o:p = (0,p) of P into I, fPg is
a normalized section associated with p and that f is the
factor set defined by 0. Remembering that f € Z2(P,J; ),
that f(p,p’) € J is a constant mapping for all(p,p’) €
P, X P,,and using Theorem 2 of Ref. 5, it is easy to
prove the existence of an element f’ of Z%(Py,J, ) which
is in the same equivalence class of f modulo B2(P0,J%)

and is such that 7'(p, p’) too is a constant mapping for all
(0,p) € Py X Pg. It suffices to notice that

{01, p) € J, fPG and constant}
is a closed subgroup of J‘%fP0 and hence Polish.
Summarizing, we are faced with the following problem:

(PR) Find the topological extensions (G, p) of @ by
Cer(RY), (m € Nor m = ) satisfying (RE), where Q €
{Py, P, Gy, G} and ¢ is defined by (3. 2).

In the sequel we will apply ourselves to solve this
problem, and @ and & will be always assumed as in (PR).

First, notice that if a topological extension (G, p) of @
by Cz(R4), satisfies condition (RE), then any topological
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extension of @ by €z(R4), equivalent to (G, p) satisfies
(RE) too. Thus,we have to find the subgroup of
Ext, (@, Cp(R4),)

Ext(Q, egRY),)
= {[(¢, MI[(G, p)] € Ext,(, C2(R%),) and (G,p)
satisfies (RE)}.
For this purpose we need some preliminary results.

A. An exact sequence of Polish Q-modules
Consider the following mappings:
(1) The injection t:7 = X, of R into €*(R4) such that

A, (x) =7r forall x € RY;
(2) The (continuous) canonical mapping 7 of C2*(R4) onto
the (topological) quotient vector space C(R4)/.(R);
(3) The unique linear operation &’ of @ on R which
makes the following diagram commutative for each
q¢c Q:
R——>epRY)

®'(q) ®(g)

R—T—>Cp(RY).

Note that &' = ¢;
(4) The quotient of &,1i.e.,the linear operation &” of @
on €(R4)/¢(R) such that

(@, 7(\) = @"(gn(n) = 1(d(P).

Thus (C7(R4)/L(R)), is the quotient @-module
er®RY), /LR,.).

Lemma: Let @ and @(R4), be as in (PR), and let
L, 7, &', ®" be defined by ({3-(4). The diagram

€:0-R,, » epRY), & CPRY/L®R),.—0

is an exact sequence of Polish @-modules.

Proof: The diagram € is exact by definition. The
bijective linear mapping » — t(») of R onto ((R) is a
homeomorphism because R is finite-dimensional. More-
over, t(R) is closed in Cf*(R4) [Ref. 11, (12. 13.2)];s0 ¢
is a closed continuous mapping and ¢’ is topological.

As 7 is open, the operation &” is topological too (Ref. 2,
TG III, Sec. 2, Prop. 11). Finally,R and ¢(R) are Polish
spaces, as well as Cg (R%) and the quotient space
Cr(R%/L(R) (see Appendix A of Ref. 5).

B. The cohomology group H(Q, Ry)

Let ¢ be the same mapping as in (3.2),1.e., a contin-
uous (linear) representation of @ on R such that ¢(Q,) =
{ldg}. Consider the subgroup V ={e, e, e’,e’} of @ # Q,

Table I. Character x ; of the representation
g,of VonR(1<si<d)

x ;@

v - . —r
e 14 e e

Xi
X1 1 1 1 1
X2 1 1 -1 -1
X3 1 -1 1 -1
X4 1 -1 -1 1
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where e(=1) is the neutral element, ¢ is the space in-
version, ¢’ is the time inversion, and e’ is the space-time
inversion. It is well known that @ is a Lie group and that
Q@ # Q@ is the topological semidirect product of V by Q.
The characters of the representations of V on R are
given in Table I. Without going into details, we show how
the cohomology group H%(Q, R,) is determined using the
following three results:

(i) Let G be a locally compact second countable group,
let K be a closed normal subgroup of G, and let A, be
a locally compact second countable topological G-module.
Then, there exists an exact sequence of groups15
mf‘

0 ——>H%(G/K, (AK);) -——)H%(G’A\") ﬁ_l_)H%(K’A‘HK)G
te? inf2
(K; A\PIK)G_'_)H%(G/K) (AK)\F) ——ﬁH%(G, A\y), (3.3)
where
¥:G/K — Aut(AX)
is the topological operation with the law
(Kg,a) - ¥(Kgla = ¥(ga.

Here inf, res, and tg denote, respectively, the inflation,
restriction, and transgression group homomorphisms.
For a definition of these mappings see, for instance, Ref.
16, Chap. XI, Sec. 9. The exact sequence (3. 3) is called
the inflation-restriction sequence.

(ii) Let @, be the universal covering group of @, and
let L(Q,) be its Lie algebra. Denote by 1 a trivial group
operation and by 0 a trivial Lie algebra operation.
Applying Theorem 4.1 and Theorem 5.1 of Ref.17 to the
simply connected Lie group @,, we see that H2(Qo, R;)
and the Chevalley-Eilenberg cohomology spacel®
H2(L(Q,), R,) are isomorphic vector spaces. Then, using
the result of Mackey mentioned in Remark 1, Sec. 3 of
Ref. 5 and Theorem 3.2 of Ref, 19, one can easily show
that

H2(Qq, Rq) = H2(L(Qq), Ry) (3.4)

(vector space isomorphism)}.

(iii) Take @ = G and consider the usual identification
(choice of a coordinate system) of each element g of G
with a 5-tuple (¢, 20,t,,v,,0Q), where e, < {1,—1},
t9c R,t, e R3,v, e Rif, 0, € O(3,R) are, respectively,
the time inversion, time translation, space translation,
Galilean boost, and orthogonal transformation para-
meters. Letf e C2(G,R,) [actually f € C2(G,R,)] be
given by
f(g’ gl) =X (gg,)tg ) Ogvg" - tg(%vf,, + X (g')Vg -Ogvg')y

(3.5)
where the dot denotes the inner product on R3 and yx is

the character of ¢. If ¢ = ¢, (see Tables I and 1I),
then10,17 f ¢ Z2(G,R,_) and the vector space
2

H,G ={flixe R} ~R

is a subspace of H%(G, R, ). Analogously, the vector
space 2

H,Go) ={Alfollre R and fo=S1Gg X G} * R

is a subspace of H2(Gg, R;)-
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Table II. Cohomology group H3(Q,R,)(Q € {Po, P, G, G} ;¢ €
{‘1’1: b2, O3 ¢4};Where ¢,(Qo) = {Idn} and ¢1| V= §,» 1<is<4)

H3(Py, R, {o}
H2(G,,R,) ~{R}

b1 o é3 b4
H}(P,R, ) {o} {o} {o} {o}
H3G,R,) {o} ~R {o} {o}

Now we can determine H3(Q, R,)(cf. Table II) as fol-
lows. Suppose first @ = @, and consider the inflation-
restriction sequence (3. 3) with G =@y, K =Z2(Q,)
(the center of Q,), A =R, and ¥ the trivial operation.
As 7(Q,) is finite of order 2,

H}(Z @), Ry) = {0}

(Ref. 16, Chap. IV, Corollary 5.4) and inf2 is injective.
On the other hand,17,20,21

H2(L(Py),Ry) = {0}
and
Hz(L(Go), Ro) = R;

therefore, by (3. 4),
H%(PO>R1) = {0}

and there exists an injective vector space homomor-
phism of H%(Gy, R,) into R. From (iii) it follows that
H2(Go, R,) = H ,(Go) ~ R.

If Q € {P, G}, the result of Table II is obtained by
application of the corollary to Proposition 3 of Ref. 5.
We get immediately

H2(P,R,) = {0}.
Let @ = G. It suffices to check that, if fj = f |Gy X Gg
with f € C%(G, R,,) given by (3.5) and if ¢ = ¢, then
fo € Z%(Gy, R,)V, while if ¢ = ¢,

Ag(e')fo = &g(él)fo = '—fo;

if ¢ = ¢35
Ag(é)fo = a5§(el)fo =—fos
and if ¢ = ¢,

03 fo = $5(€")fo = —fo-

Thus, in the case where ¢ = ¢,,
H3(G,R,) =H /(G) ~ R,

and in the case where ¢ < {¢, 3, P4},
H2(G,R,) = {0}.

C. The group ExtRE(Q,CT (R*)g)

Equipped with the results of the subsections A and B,
we now can solve (PR). :

Theorem: U Q and €p(R4), are as in (PR), then
ExtFE(Q, ex(R4),) = {0} .
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Proof: By the corollary to Theorem 1 of Ref. 5, and
on account of the lemma proved above, the following
diagram is an exact sequence of groups:

él@b (@2
‘e _—_)sz(Q’Rq,') _—,H%(Qs el’{(R4)¢)
()2

62
%, H3Q, Cp®Y/ LR, &2, .

Let (G, p) be any topological extension of @ by CZ(R4),
satisfying (RE), and let a, be the injective group homo-
morphism of Ext,(Q, @(R4),) into H3(Q, CZ(R4),) of
Theorem 2 of Ref.5. Then

((7;5)3 ° ab)([G, p]) =0,

i.e.,
a b([(G, p)]) € Ker(ﬁb)i =Im (Zb)i .

I Qe {Py,P},orif @ =G with &' € {¢y, 3, ¢4}, We
conclude that

ExtEE(Q, ez (R4),) = {0}

using the results of Table II. If @ = Gg, take fy =
f1Gy X Gy with f € C2(G,R,,) given by (3. 5). There
exists a real number y such that

a,([(G, P = ()36 fo));
choosing kg € C}(Gy, € (R4),)such that
hol@)6) = v (3v20 —v, +x)

for all x = (x0,x) € R4, one checks easily that 5ky =
t°yfo. This implies

()36 [f0)] =0,
hence a,([(G, p)]) = 0 and thus
ExtBE(G,, ep(R4),) = {0}.

If Q=G and if " = ¢,, the proof is the same as in the
case where @ = G but with ;g replaced by k €
C1G, ep(R4),) such that

h(g)x) = y(5v2x0 — x (g)v,* X)
for all x € R4, L

It follows from the theorem just proved that, if (G, p)
is any topological extension of Q € {Py, P, Go, G} by
ep(RY), (m € Nor m = ») satisfying (RE), with &
given by (3.2), then G is topologically isomorphic to
Cr(R4) X , Q. This is the result already quoted in Secs. 1
and 2.

Remark 1: The lemma and the theorem of this
section are also valid if Q € {P,,G,} and & is again
defined by (3. 2) (with ¢(Q) = {Idg}).

Remark 2: 1t is easy to see that the choice, instead
of CZR4) (m e N or m = ), of another topological vec-
tor space, say @g(R4), of mappings of R4 into R does
not change the result of the above theorem provided

(a) Gg(R4) is Polish;

(b) @g(R4) contains the constant mappings;

(c) the operation & of @ on G, (R4) given by (3. 2)
is topological.
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Moreover, the result does not change either if, instead
of &, we take another topological operation  such that
Q(g)x = &{¢g)x for all g € @ and all constant mappings
A of R4 into R.

4. CONCLUDING REMARKS

The problem of the union of a relativistic space-time
group and an electromagnetic gauge group into a co-
variance group of quantum electrodynamics was trans-
lated by Rideau??2 too into a study of topological group
extensions. Under different assumptions concerning
the gauge group [taken as the Abelian group underlying
a real (separable) Hilbert space carrying the continuous
unitary representation of spin and mass zero of Py and
the extensions considered (all the topological ones having
a continuous factor set), Rideau's result is exactly like
ours.

In a more recent work,23 Rideau adopts the view that
electromagnetic gauge transformations of the first kind
are not already included in those of the second kind, so
that he faces the subsequent problem of combining dif-
ferent gauge groups together and with a space-time group.
Here, however, we considered the first kind of electro-
magnetic gauge transformations as a special case of the
second one. This point of view is supported by previous
investigations where, instead of covariance groups of
electrodynamics, invariance groups of Hamiltonians or
Lagrangians yielding equations of motion of charged
particles in external (classical) electromagnetic fields
were considered.}0 There also, one was naturally led to
the coupling of electromagnetic gauge and space-time
transformations.

Another point of view is that of Schrader,24 who in-
vestigated a covariance group of Dirac and Klein-Gordon
particles in constant uniform external electromagnetic
fields. His covariance group (the Maxwell group) oper-
ates on the product of the Minkowski space and the set of
all these fields. The Maxwell group is obtained from an
essential extension of the Poincaré group by the Abelian
group of all skew-symmetric real 4 X 4-matrices.

Continuous unitary projective representations of the

‘space-time invariance groups of (nonzero) constant

uniform external electromagnetic fields have been
considered by Bacry et al.25 in order to describe prop-
erties of charged particles. They were able to derive
the additivity and the superselection rule of the electric
charge.

In the work of Janner and Janssen,10 the starting
point is the remark that, generally, electromagnetic
potentials and not fields occur in Hamiltonians or
Lagrangians. Now, the space-time invariance group of a
given electromagnetic potential A is a subgroup only
(possibly an improper one) of the space-time invariance
group of the field derived from A; therefore, space~-time
operators leaving the field invariant need not leave
invariant the Hamiltonian or the Lagrangian considered.
However, these are well invariant under the action of the
ordered pairs (x,¢q) (A€ J and g € Q, where @ < {P,G})
which leave invariant A. The problem of giving to the
set of all the (A, ¢) a group structure is again complicated
by the fact that the group multiplication determined by
the action of the (A, ¢) is not unique. A way out is
to consider these ordered pairs as elements of a co-
variance group J,fQ, where & is given by (3.2) with
¢ = ¢, (see Tables I and II) and with the natural opera-
tion of @ on space-time, and where the factor set f under-
goes the usual restriction. Adopting this point of view,
Janner and Janssen got an invariance group IJQ(A) as the
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subgroup of J,f @ which operates trivially on A.26 The
groups I2(A) are very useful in studying the states of a
charged particle in the external electromagnetic field.
derived from A. As expected, different choices of the
gauge of the electromagnetic potential simply lead to
isomorphic invariance groups.

The situation of I§(A) with respect to J X ;Q is much
the same as that of a space group G (an invariance group
of a given crystal) with respect to a three-dimensional
Euclidean group E(3) (a covariance group of crystal phy-
sics). Indeed,

E(3) = T(3) x,0(3)

[where T(3),0(3),and ¥ have a manifest meaning] is a
transformation group of a three-dimensional Euclidean
space E;. It is obtained from an inessential topological
extension of O(3) by T(3),, and O(3)[resp. T(3)]is canoni-
cally identified with a subgroup of E(3) through the con-~
tinuous section O + (0, 0) [resp. through ¢ = (£,1)]. The
choice of another section with the property of being again
a group homomorphism merely corresponds to a change
of the origin of the affine space canonically attached to
E,. Now comparing E(3) with J X, Q and G with I§(4),
one arrives at the conclusion that translations correspond
to gauge transformations, primitive translations (lattice
translations) to gauge transformations of the first kind,
and the choice of the origin to the choice of the gauge.

In the opinion of the authors this analogy is not a super-
ficial one and deserves further investigation.
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APPENDIX
The operation ¢ is topological

Lemma 1: Let G and A be Polish groups and sup-
pose A Abelian, If ¥is an operation of G on A such that
the mapping g — ¥(g)a of G into A is continuous for all
a € A and the mapping a = ¥(g)a of A into A is con-
tinuous for all g € G,then ¥ is topological.

Proof: Let us first notice that the law of operation

/i (g, a) - ¥ga
is a Borel mapping (Ref. 27, § 27,V) and that G X A is
a Baire space. Since G X A and A are Polish, there is.
a meager subset M of G X A such that f|G X A— M is
continuous (Ref. 27, § 28,1I). Let (g, a) be any element
of G X A and consider an arbitrary sequence (gn, an) of
elements of G X A converging to (g,a). The set

M = U Mgt a,)

is meager and thus G X A — M’ = @ (because G X A is a
Baire space). Let (¢',a’) € G X A —M'. Then

(g'g,a’ +a,)e GXA—M

for all # € N and it follows from the continuity of
f1G x A— M that

lim ¥(g'g,)a' +a,) = ¥g'gla' +a).

n —~oo
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On account of the continuity of the partial mappings
determined by f, we get

Hm (g, Na'+a,)=¥(g')! lim Wgk Yo'+ a,) = Wg)a'+ a)

and
lim ¥(g,)a, = lim ¥(g )(a’ + a,)—lim ¥(g )a’ = ¥gla,
n —*o0 n—+o0 n —>oc

whence the continuity of f. -

Lemma 2: Let G be a topological group, let X be a
metric space, and let ¥ be a topological operation of G
on X. Suppose K is a compact subset of X, let 7 be a
real number > 0, and let g be any element of G. If, for
each x € K, B(¥(g)x; r) is the open ball of center ¥(g)x
and radius 7, then there exists a neighborhood V(g) of
g such that

¥(V(g)x C B(¥(g)x;7) for all x € K.

Proof: As V¥ is topological, there exist, for each « ¢
K, an open x-nbd (neighborhood of x) W,(x) and a g-nbd
V,(g) such that

WUV (DWW, (x) € B(Ug)x; 7).

Note that the x-nbd W ,(x) [resp. the g-nbd V,(g)] is
dependent on g (resp.on x). By the Borel-Lebesgue axiom,
we may extract from the open covering (Wg(x))xe of K

a finite subcovering (Wg(xi))xie, (I € K and finite). If

V)= n v, (),
x;€1 t
then

WV(g))x c B(Hg)x;») forallxc K. [ |

Proposition: Let @ be a second countable locally
compact group. The operation & of @ on €:(R%) (me N
or m = «) defined by (3.2) is topological.

Proof: On account of Lemma 1 we have only to show
that the partial mappings determined by (g, A) = &(g)x
are continuous. Throughout this proof we shall keep m
fixed but arbitrarily chosen.

(1) Continuity of g = ®(g)x = ¢(g) o A o Y(g1)

Let p , be a seminorm of the family which defines
the Cm-topology on ¢(R4) (cf.Sec.3),let » be a 4-
multi-index with |7| < s,and let g5 € Q. If x €« R% and
g € @, then

| D7(®(g)x — &(go)N) ()|
< Z(})! x (@1, (@DOxW(g1)x)
r
- X(QO)")y(i) ((Io)D’(i)A(“p(lIél)x) I

where y is the character of the representation ¢ of @ on
R, 7(7) is a 4-multi-index of total degree |7|,n,,(q) is
a monomial of degree || in the matrix elements of the
Jacobian matrix of /(g-1) at x [independent of x because
of the linearity of ¥ (4-1)], and_the summation is extended

to all 4 »-tuples formed with 9/3x%, 0/0x1, 3/0x2, and
9/0x3. Hence,

| D7(&(g)x — &(go)N) (x)]

< % Fx (@)1, o @IDOXW(g1)x) — D7OAW(g1)x)]

+2 lx(q)m(i)(q) - x(qo)ﬂ,(i)(qo)HD”(")A(ll/(qél)x)| .
r (@) (A1)
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Let ¢ be every real number >0. The operat1ons ¢ and ¥
are topological, so there is a compact ¢,-nbd V (qo) such
that, for any ¢ € V’'(go),

sup Z) Ix(@)n, 4@

i s, x€K; » @

— x@o)N,¢) (@) IDTOAW(ggl)x) | < /2. (A2)

Now let

?r‘ll<ps revay 2z Ix(q)n,(o(qH =k, (A3)
and put

to= 25 4w,

wlgs

As D7®) is continuous and Y is topological, for each
r(i) and each x € K, there exists a_go-nbd VZ®(g,) such
that

| DO (g D)x) —

DONWigPx)| < < (A4)

2t 2k, O 3k,

for all g € V7®(¢,). Moreover, by Lemma 2, we can find
a gg-nbd V7@ (q,) such that (A4) is satisfied for all x €
K,andallge V"(’)(qo) Take

V”(qo) — N
lr@lg s
then
sup 2 1D7Ox(W(g-1)x) — DDA (gpt)x)| <

lrigs,x€EK; (@) 2ks
(A5)

V7@ (gy);

for all g € V"(gy). Finally,for any ¢ in the gy-nbd
V(sl)(Q()) = V(qo) nvy (qO)

b (2@ —@(go)N) < e

by (A1), (A2), (A3), and (A5). This can be done for any
seminorm of the family (p ) and for any real number
€ > 0. Using the fundamental system of neighborhoods
of #(gg)r

{Blgo + W, ((@,); )W, ((a,);€) € &},

where &, is as in Sec. 3 [cf. (3.1)], one easily concludes
that ¢ — &I>(q))\ is continuous for all x € CR(R4).

(2) Continuity of A = &(g)a

The mapping is linear; thus we have only to prove its
continuity at the point 0. Keeping the notation of (1) we
obtain, for any A € €% (R4) and any seminorm p, ,,

< h (g) sup 25 DO (g )x) ],

lrlg s, xEKl r(3)

b (@@ <
where

h(q) = sup Elx(q 1,60@!.

lrigs »(@)

As Y(g-1)K, is a compact set, it follows from the Borel-
Lebesgue axiom the existence of a compact set K, , >
Y(g~1)K, in the sequence (K,) covering R4 of Sec,3.
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Therefore

b (@@ <k @ty O,

and this is valid for any seminorm of (ps.l), whence the
continuity of A - &(g)A for all ¢ € Q.
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The Bloch coherent states for a spin or a system of spins and the Glauber coherent states for bosons
are examined from the viewpoint of Lie algebras. It is pointed out that the Bloch coherent states are
vectors in the space spanned by the basis functions for an irreducible representation of the unitary
unimodular group SU(2), and that the Glauber coherent states are vectors in the space spanned by
the basis functions for the infinite-dimensional irreducible representation of a contracted group of
SU(2). A deeper understanding of many of the useful properties of these coherent states is gained.

1. INTRODUCTION

It has been a common practice which has become
almost routine, when one encounters the boson creation
and annihilation operators a' and @ and the spin opera-
tors 8%, 8%, and S for a spin, or a system of spins of total
angular momentum [S(S + 1)]¥/2, to associate them with
the basis functions |n),n = 0, 1,2, ... (for the bosons)
and |S,m),m =— 8,8+ 1,...,S (for the spin). Asis
well known, the analytical forms of the basis functions
|n) and |S,m) are expressible in terms of the Hermite
polynomials and the spherical harmonics, respectively.
More recently, however, the use of the so-called Glauber
coherent statesl-2 |a) for the bosons and the Bloch
coherent states34 {u) for the spin system has become
more wide spread as these states have been shown to
provide a useful alternative for the description of the
respective systems. Of considerable interest were
some recent results56 which showed that the coherent
states |@) and |p) provide a natural basis for the cal-
culations of the thermodynamic and phase transition
properties of the Dicke model of superradiance and the
BCS model of superconductivity. More significantly,
consideration of these coherent states led to a useful
new approach to the study of equilibrium quantum sys-
tems.”

The Glauber coherent statesl-2 |a) and the Bloch
coherent states34 |u) are formally defined in terms of
the traditionally used basis functions |z) and |S,m) by

an
in),

)2 (1.1)

la) = e lale »
. n

1 25( (29!
(1 + |pul2)Ss-0\p1(25 —p)!

The considerable usefulness of these coherent states
naturally prompted one to pose questions regarding the
origins of these coherent states and the deep connec-
tions which lie behind the algebraic identities formally
relating these coherent states to the traditional basis
functions |») and |S,m). The problem is best looked
upon from the viewpoint of Lie algebras, as we shall
see in the following sections,

2. BLOCH COHERENT STATES AND THE LIE
ALGEBRA ¢

Consider a Lie algebra § which has generators $7, §',
and § such that

1/2
) = ) wt15,2). (L.2)

[Sz’ 3*] =+ Si,
[st,9]=0

[s*, 8] = 287,

for i = z,+ or —,

(2.1)

where 9 in the third relation is the identity. A realiza-
tion of the generators of this algebra is given by (we
shall write S¢ for a realization of the generator §%)
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St=8*+i8Yy =— y—a——zi :tz'-—izimxi
0z ay ox 0z

Se=—ifx2_y2),
ay ax

The corresponding Lie group associated with G with the
above realization of the generators of § is obviously the
three-dimensional rotation group O(3). The basis func-
tions for the (2S + 1)-dimensional irreducible repre-
sentation of O(3) are, as is well known, the functions
|S, m) or for integral values of S, the spherical har-
monics ¥3(9, ¢),m =—S§,— S +1,...,8S.

Suppose we consider another realization of the genera-
tors of the same algebra § given by
S = zi

2¢’

and
(2.2)

(2.3)

where { and z are arbitrary complex variables. This
realization was used by Bargmann® and in the operator
form by Schwinger, 9 and it was also suggested in the
author's previous work? dealing with the problem of
expressing a general Hamiltonian equation in terms of
the coherent states. We now wish to show the following:
(i) the corresponding Lie group directly associated with
the above realization (2. 3) of the generators of § is the
unitary unimodular group SU(2) (which is, of course, iso-~
morphic to the O(3) group), (ii) the Bloch coherent states
|p) are some linear combinations of the basis functions
for an irreducible fepresentation of SU(2). It is more
instructive to illustrate these points in reverse as
follows: Given the group SU(2), we ask what are the
“infinitesmal transformation operators” for the corres-
ponding Lie algebra? As is well known, the group SU(2)
is characterized by the transformations10

(aa* + bb* = 1),

v’ = —b*u + a*v,

u' =au + bv
(2.4)

where the parameters a's and &'s and the variables «'s
and v's are generally complex. Let the three indepen-

dent parameters in (2. 4) be a, b, and b* while let a* be

expressed by a* = (1 — bb*)/a. In the neighborhood of

the identity, we have

a=~1+ ba,

b~ 6b,

b 5 Gb%, (2. 5)
and

a*~1—da.
Copyright © 1974 by the American Institute of Physics 1174
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Thus we get
' = (1 + da)u + dbv, (2.6)
v'=(1—ba)v — 6b*u, (2.7
so the infinitesmal operators of the group are
X1=u£~v%, X2=v£4—, andst—ua—zj; (2.8)
or if we define 8* = — X5,8 = X,, and §% = 3X; we

obtain (2. 3).11

The basis functions for the (2S + 1)-dimensional re-
presentation of the SU(2) group are u2S,u25 1y, u2572¢2,
v25, To see how the Bloch coherent states |u) are
dlrectly related to the basis functions of this form, let
us observe the results of multiplying {u) by the spin
operators, We have

(8)* |w
_ (29)!
1+ |pl2)s F <p!(28—p)!

pp—1)--(p—k+1

1/2

x(zs—p+1)(28—p+2)---(2$—p+k9 uelS,p — k)
_ 1 < (29)! )1’2
(1+ [pl2)s 7 \pl2S —p)!
X (28 —p)2S —p —1)+++(2S—p —k + 1) p#** |S,p)
- 1 29! 2 9 ¥ 28-pur| S .
T+ |pl2)s ?(p!(ZS—IJ)) <“au> veseul ’M”‘l
(2.9)
Similarly, we have
SYE ) — 1 29! \v2z [ 3\
(& w (1+ |ul2)s ?(p!(zs—p)! Vap
xp2seur |S,p)| - (2.10)
and e
Sk |y = —— L (281 \~2
S (1+Iu|2)5p2<p1(2s—p)1>
k

Thus, re-writing the definition of Bloch coherent states

W as
1 23 29! \Y2 s,
= S, =12
W= T e o (p!(2S—p)!) i P>(|2u:112)

clearly shows that |u) can be viewed as some linear
combination of the basis functions for the (25 + 1)-
dimensional representation of the SU(2) group, namely,
| is a vector in the space spanned by the basis func-
tions for the (2S + 1)-dimensional representation of the
SU(2) group. From this viewpoint, we also have the con-
sistent results that the spin operators are given in the
form (2.3). It is easy to see why v (or p) can be set
equal to 1 for practical purposes after being operated
on. This is because the spin operators preserve the
homogeneity of the basis functions v25, ¥25-1p,

v2S-2p2 ., u2S in such a way that the sum of the
powers of v and p in every term of (2.9)-(2.11) re-
mains equal to 2S [this is why the set v25-#u?,p = 0,
1,...,2S8 provides a basis for the (2S5 + 1)-dimensional
representation of the unitary group] and therefore the
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power of v is completely determined by the power of its
“companion” variabie p or vice versa.

It was shown in Ref. 7 that if, in the Hamiltonian equa-
tion
H(8?,8",8)|E) = E|E) (2.13)
the spin operators are represented in terms of the dif-
ferential operators by the substitutions (2. 3), the corres-
ponding eigenfunctions f({, z) in the transformed Hamil-
tonian equation

1 3 ] Jd ., 90 =
gfif, 8 .23\ _ 98 .3 = Ef(§,2)
<2<zaz §a§>’28§’§32>f(§’z)|§:l o

(2.14)
are given by

S8, 2) = (2. 15)

Z} c §2 S-ngn,
It is now clear to us that (2. 15) simply states that the
eigenfunctions in (2. 14) can be expanded as some linear
combinations of the basis functions corresponding to an
irreducible representations of the SU(2) group, in the
same way as that if the spin operators in (2.13) are re-
presented by the substitutions (2. 2), the eigenfunctions in
(2.13) can be expanded in terms of the spherical har-
monics which are, of course, the basis functions for the
irreducible representations of the three-dimensional
rotation group O(3).

The important points of this section can thus be sum-
marized as follows:

The Bloch coherent states |p) are normally viewed
as certain linear combinations of the spherical har-
monics. Not previously noted, however, is the fact that
|w) can be viewed as certain linear combinations of the
basis functions for the irreducible representations of
the SU(2) group, i.e., the states |u) are vectors in the
space spanned by V25 KK K -—0,1,...,2S. It is from
this latter point of view that some of the useful and
distinctive properties of the Bloch coherent states can
be better understood.

3. GLAUBER COHERENT STATES AND THE LIE
ALGEBRA &

Consider the harmonic oscillator Lie algebra X
which has the generators X?, X* and X~ such that

[, L] == X*, [XH L] =—1,
and (3.1)
[X%,9]=0 wherei=z2,+or —,

g in the third relation being the identity, A realization
of the generators of this algebra is well known and is
given by (we write X? for a realization of the generator
X )

2 3.2
XZ—aTa—-—xz——a———1> 3.2)
Ix2

where aT and a are the boson creation and annihilation

operators. The corresponding Lie group associated

with ¥ with the above realization of the generators of

3 will be refered to as H. The basis functions for the

irreducible representation (of infinite dimensions) of #

are the states In), or e*/2H (x), n = 0,1,2,... where
H,(x) is the Hermite polynomlal of degree n.
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Consider another realization of the generators of the
same algebra JC given by

X"=a,
9
X =—
ra’ (3.3)
and
Xt =al
= —,
do

where « is an arbitrary complex variable. This realiza-
tion was used by Fockl2 and Bargmannl3 and it was
also suggested by the author's previous work? dealing
with the problem of expressing a general Hamiltonian
equation in terms of the coherent states. The corres-
ponding Lie group associated with the above realiza~
tion (3, 3) of the generators of ¥ will be called H’ which
must, of course, be isomorphic to 4.

It is well known that the algebra JCis a contraction4 .14
of the algebra G. However, in all previous work,4 the
contraction is discussed in terms of the contraction of
the group O(3) into the group H. Here let us consider
the contraction in terms of the contraction from the
group SU(2) into the group H’. Let us assume that the
limits, as § — @, of the following operators

s*/(28)V2, §/(28)V2, and 8%/(2S) (3.4)
exist. Consider the function

f=27 cpv2SEyK (3.5)

K

Let

o= M/§ ’ (3- 6)
where

£ = v/(28)V2, 3.7

Then we obtain, using the substitutions given by (2. 3) for
the spin operators (replacing z by v and £ by u), as
S —>w,

1 d Gl 2

R S AP R 3.
@ o’ T " -9
(z_s;W W 5a;f = (29)V2vlyf = of, (3.9)

and
1 1 i__ _a_ =l _i. ——a-- :i. .
2SZ<V3V “a) 2(1 zsaaa>f 3. (3.10)

The function f given by (3. 5) can be seen to reduce to
the Bloch coherent states |u) if we let v = 1 and

(29)!

1/2
k= 1 1S,K)  (3.11)
(1 + [p2)s |KY2S — K)!

for any given S, In the limit S — ©,f becomes the
Glauber coherent states |«) given by

la) = e 1?2 ey P (3.12)

? (n)1/2

if we let ¢, be given by (3.11),» = 1 and

|, n) = |n), (3.13)

o
T . (3.14)
(28)V2
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We see from Egs. (3. 8)—(3. 10) that, in contracting the
SU(2) group into the group H', we have the following
transformations:

st 1 ? 3
= vV——=> X = 3.15
29vz2  (25)V2 g da’ (3.19)
5 1 X 3.16
— — +: .
(29)V2 ~ (25)V2 Y % (3.16)
and
Sz 1 1 8 a 1
— =Sl y— — —_— |- 3, 3. 17
28 2§ 2< v ”a;;) ¢ ( )

We also see that the Bloch coherent states |u) — the
Glauber coherent states {a), and that the Galuber coher-
ent states |@) can be viewed as certain linear combina-
tions of the basis functions corresponding to the infinite-
dimensional irreducible representation of the group H’
which are given by a%,2 =0,1,2,....

It was shown in Ref. 7 that if the Hamiltonian equation

H(a%,a)|E) = E|E) (3.18)
is represented by
(o
H <z, a—g)f(Z) = Ef(z), (3.19)
the corresponding eigenfunctions f(z) are given by
(3.20)

fz) =23¢,2n.

It is now clear to us that (3. 20) simply states that the
eigenfunctions in (3.19) can be expanded as some linear
combinations of the basis functions corresponding to the
infinite—dimensional irreducible representation of the
group H', in the same way as that if the boson operators
in (3, 18) are represented by the Schrédinger represen-
tation at = (p + ix)/v2 and a = (p — ix)/+2, the corres-
ponding eigenfunctions can be expanded in terms of the
Hermite polynomials (with the Gaussian factors) which
are the basis functions for the infinite-dimensional
irreducible representation for the group H.

4. SPECIAL FUNCTIONS AND COHERENT STATES

It is well known that the Hermite polynomials and the
associated Legendre polynomials turned up in physics
in the study of the problems of harmonic oscillators and
the angular momentum (spin), respectively. It is also
known that the theory of Lie algebras provides a unified
view of the theory of not only the Hermite and the
Legendre polynomials but also of various other special
functions in mathematical physics.15 It is clear from
the preceding sections, however, that the above men-
tioned special functions would arise only if certain par-
ticular realizations of the generators of the algebras
were used. The realizations which give rise to the Her-
mite and the Legendre polynomials are “physical” in
the sense that the variables x,y, and 2z are physical
quantities. On the other hand, the realizations given by
(2. 3) and (3. 3) corresponding to the groups SU(2) and
H'’ involve complex variables which do not have any
direct physical interpretation. However, the resulting
“gpecial functions” { 25-KzK K == 0, 1,...,2S,and a ¥,
K=0,1,...,have the distinct advantage of being simple,
so simple that one would not call them special functions.
If we call the space spanned by the basis functions (spe-
cial functions) of the d-dimensional representation of a
group G, say, by $@(G), then a Bloch coherent state may



1177 F. T. Hioe: Coherent states and Lie algebras

be viewed as a vector in §@S*D(0(3)) or as a vector in
§@s+1)(§U(2)). Similarly, a Glauber coherent state may
be viewed as a vector in $® (H) or as a vector in

8§ (H'), However, many of the useful properties of the
coherent states can be better understood from the
second point of view, as was made clear in the preced-
ing sections. The use of coherent states in place of the
traditionally used basis functions might be compared
with the situation in which it is more convenient to do
the angular momentum problems by considering the
group SU(2) rather than the group O(3) because, among
other things, the basis functions for SU(2) are easier to
manipulate than the basis functions for O(3).

5. SUMMARY

The main results of this paper can be briefly summar-
ized by the following chart:

Algebra S contraction algebra X
reahzatlon reahzatlon realization realization
(2.2) (2.3) (3.2) (3.3)

lsomorphlc\ isomorphic

group 0(3) «=> group SU(2) group H<— group H’

|

spherlcal (2S-Kz K Hermite kK K=0,1,...
harmonics _ polynomials
YS06,0),m= S-0»2 pak=01,..
—-8,...,8

Bloch Glauber

coherent states coherent states

The direct connection of the Bloch coherent states

with the basis functions for the irreducible representa-
tions of the SU(2) group and the relation of the SU(2)
group with the algebra § through realization (2. 3) were
explicitly made in the text, and also for the correspond-
ing case of the Glauber coherent states. We have also
pointed out that the distinction between using the groups
SU(2) and O(3) concerns the comparative advantages and
disadvantages of handling the basis functions for the
irreducible representations of the respective groups.
All this had not been noted or clearly stated by the pre-~
vious authors.4:16 In fact, some authors? retain the
angular parameters 6 and ¢ in the application of the
Bloch coherent states which somewhat confuses if not
actually defeats the purpose of using these states, for
any advantage of using the coherent states rather than
the traditionally used basis functions is gained through
expressing every function and every relation of interest

J. Math, Phys,, Vol. 15, No, 8, August 1974

177

in terms of the two complex variables constituting the
basis functions for the irreducible representations of
SU(2). The reader is refered to Ref, 7 for some interest~
ing applications of this concept.
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In an attempt to use Born reciprocity theory as a possible scheme for explaining elementary particles
we calculate all the invariants of this theory. It turned out that all the invariants are functions of the
operator (x?+p?). Thus there is only one independent invariant which characterizes this theory.

1. INTRODUCTION

In an attempt to explain elementary particles, Born
and his collaborators!.2.3.4 ysed the principle of re-
ciprocity as a postulate. This principle states that the
laws of nature are symmetrical with regard to space-
time and momentum—energy. Mathematically, the prin-
ciple asserts that the laws of nature are invariant under
the following transformations

x“__)ipuv pu—_)q:xu‘ (1)

Indeed the canonical equations of classical mechanics

oH i oH

i ’

=— i=1,2,3)
ap; g ox; (

j‘i
are invariant under transformation (1). These equations
also hold in operator form of quantum mechanics. The
commutations relations(8 = ¢ = 1)

(k=0,1,2,3)

Xuby —Dy¥y = 18y

as well as the component of angular momentum
m,, = xppy — x,,p“

exhibit the same invariance.

These examples suggested strongly to Born the prin-
ciple of reciprocity. In his paper, (1949) Born! assumed
that the masses of elementary particles are the roots of
a self reciprocal function f{ p) where self reciprocity is
expressed by saying that f{x) is its own Fourier trans-
form, i.e.,

fix) = (@n)y V2 [ fpyeivzdp.

Furthermore, he showed that every self reciprocal func-
tion is an eigenfunction of a reciprocally invariant
operator and vice versa;i.e.,

S(x, P P) = sf(p)
where
S(xy p) = S(i b, ¥ x)’

To find f{ ) Born chose the simplest reciprocally and
relativistically invariant operator, namely

G = x2 + p2, (2)

Shin3 in a different approach to elementary particles in-
terpreted the eigenvalues of G as the masses of ele-
mentary particles and got a linear mass formula which
closely predicted some of the masses of elementary par-
ticles.

As can be seen from the work of Shin,® the operator
G commutes with all reciprocally invariant operators
and hence is an invariant of reciprocity theory, Thus
it would be interesting to see if there exist any other in-
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dependent invariants of this theory, i.e., operators com-
muting with all reciprocally invariant operators.

In Sec. 2 we review the reciprocally invariant opera-
tors and their algebriac structure and in Sec. 3 we cal-
culate the invariants of reciprocity theory.

2. RECIPROCALLY INVARIANT OPERATOR

The principle of reciprocity restricts the number of
reciprocally invariant operators considerably. Shin®
considered all bilinear operators in %, and b, and found
that only 16 of these in addition to the metric tensor g,,
of Minkowski space are reciprocally invariant. Further-
more, all higher order reciprocally invariant operators
can be constructed from these. The 16 reciprocally in-
variant operators are

Gpuzcup =X, xv+pupu, (3)

mpu:’_mup=xppu_xupu! 4)
and

Epv = i[xp,p,,]. (5)

Since Eq. (5) is trivial it will not be considered any
further. G,, and m,, have the following commutations
relations:

[mpll’ mpo] == i[gupmuo + ppMoy — EucMpy — gucmpp]!(
[mum Gpo] == 2.[gqupa + gquup - g;lpGuo - gquvpL (7)

[Guw GpO] == i[gupmou T &My~ &upMyo — gvomup]°

8
We take the following linear combination

1"“" = aGuu + ﬁmw
and demand the closure of I i.e.,
[T, T]~T.
Using the commutations relations (6), (7), and (8), we
find
[1"”, Iy l=— ig, (a2 + B2)m, + ig, (a? + B2)m
+ gy pli(aZ — B2)ym,, — 2i0pG, ]
— gy lila? — g2)m,, — 2iafG,,].

Thus the closure will be satisfied provided

(a2 +B2)=0, i{a2—p82)=p4, and - 2iaBf=o0.
These have the solutions:
a ==}, B =i/2.
Taking + % for a we find
Copyright © 1974 by the American Institute of Physics 1178
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[ruu’rpo] =guprno”guorpw (9) rg,rgrg, raareyrtyx’ and ]_"aBI‘B)’Py&]_"éa’
where . ) we can construct the four Casimir operators c,, ¢,,
L, =3(G,, +im,). (10) ¢3,and ¢, which commute with all reciprocally invariant
. . operators.
The commutations relations (9) are those of U(1, 3)
algebra. Since I';, are given by linear combinations of ) L. .
reciprocally invariant operators, all 16 independent The first Casimir operator ¢, is:
components of I',, are also reciprocally invariant. . . L
G,, and m, , are given in terms of I',, simply as €y = It = 3G,¢ = 3G = 3(x2 + p2). (11)
Gu=T,, + Ty, Thus as we asserted in the introduction the operator G
, r commutes with all reciprocally invariant operators.
my, = Z(F'u# — l“')'
Thus all other reciprocally invariant operators can be The second Casimir operatoy ¢, is:
constructed from I' , and hence belong to the envelop-
ing algebra of U(1, 3). ¢y =TTt = %G, G —mtvm,,).

3. THE INVARIANTS OF RECIPROCITY

Since all higher order reciprocally invariant opera-
tors belong to the enveloping algebra of U(1, 3), it G G — mtvm = G2 — 12. (12)
follows that the Casimir operators of U{1, 3) form a wy Ve
basic set of invariants for reciprocity theory. All other
invariants are functions of the Casimir operators.
Hence the problem of invariants is reduced to finding the c, = XG2 — 12). (13)
Casimir operators of U(1, 3) in the special representa- 2
tion (10) of the generators L,y

There are four Casimir operators, since U(1,3) is a
group of rank 4, From expressions like i The third Casimir operator ¢ is:

Using Eqs..(3) and (4) we find the following relation:

Therefore

Hence ¢, depend entirely on G.

GG BG, + {(G*m,,GB + m*PG,,GBx + GoPG . mB )
8
cazl"qu‘"PI"pu =%< b o PET o p8 [ o

— (Gap 8 ap 8 B )y—i 8 )
(G*Pm,gmB  + maPG, ,m8 + mePm ,GB )— im*Pm, mb

Using the symmetry properties of G,, and m, ,, we find [ . . . .
that the second term in the above expression reduces to Adding all the terms in c3, we finally find

(GaPm, G  + maPG,,GB  + GG, mb ) ¢; = 3[G3 + 3G2 — 15G — 48]. (15)

= YG2PG,gmB , + [G*, m, 3]G ).  Thus the third Casimir operator is given entirely in

By elementary algebra we find the following generali- terms of G.

zation of Eq. (12) The fourth Casimiv operator: The fourth casimir
operator is more complicated and the calculations are

GG,y = me,mVy + GGy + dimy — 3g%. (14)  lengthy. Here we find a need to generalize Eqs. (12) and
Using the commutations relations, Eqs. (12) and (14), we (14) further.. By elementary algebra we find the follow-
find that the above term reduces to ing generalization:
i(G"‘pmpaGBa + mapcpacﬂu + GapGpsmBa) GG, — GGH, — m Ym, + mmi

= 3G? + imaumuﬁmﬂa_ 48. = i(gl“’mpa + g”amui’ + gpam“u + gpﬂm"a)
v
Similarly, the third term reduces to T 88t 8,080 (16)

Equations (12) and (14) are produced by repeated con-

—(GPm ,ymB  + maPG, amb  + miPm, G ) tractions over one and two of the indices, respectively,

- %Gmaﬂmﬂ"‘; in Eq.(16). ¢, is given by
also the first term becomes ¢y = Il TPl .
GoPG,B8Gyx+ %Gmaﬂmﬁa + G3 — 15G. Using Egs.(12) and (14) and the commutations relations,
I ¢4 becomes
1 [G¥m, mt + G% — 18G2 — 16m, ,mPk + 6G3 — 96G + 36
Cy, = —
17 16 — (G, ,m? ,mP°G I + G, mY,GP mot + my ,G"Pm, GO + muyG"PGpomON))

With the aid of Eqgs. (12), (14), (16) and the commutations !

relations the last term in ¢, reduces to Now by straightforward calculations which involve

— (G, ,m¥ ;mPG } + G, ,mP ,GP mo several hundred terms we find that the m's satisfy the

following equation:
+m, ,G"Pm, G + m, ,G'PG, moH)
= 12G2 + 16m, ;mes — 192 — dm, mrrmeom 4m, mirmeom

[¢]
+dm, m% +2m, m¥m, mo — GZm*Bm, . = 2m, m*¥m, mo + 4m, mor, (17)
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Adding all the terms and using Eq. (17), ¢, finally re-
duces to

¢, = 1[G + 6G3 — 6G2 + 96G — 156]. (18)
Thus we see that ¢, is again given entirely in term of G.

4. CONCLUSIONS

The invariants of reciprocity theory are functions of
the Casimir operators of the group U(1, 3) in the special
representation (10) of its generators. It turned out that
all the Casimir operators are polynomials in the opera-
tor G of Bornl and Shin.5 Thus the reciprocity theory is
characterized by one invariant and hence insufficient at
the present for the explanations of the invariants occur-
ring in physics, namely: the mass, charge, spin, hyper-
charge, baryon numbers, lepton numbers, etc.

One may extend the principle of reciprocity by adopt-
ing the group U(1, 3) as the symmetry group of ele-
mentary particles. In that case a more general repre-
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sentation whose invariants are independent of each other
might prove useful for the classifications of elementary
particles.
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Behavior of distribution functions in the thermodynamic

limit
William Klein*

National Bureau of Standards, Washington, D.C. 20234
(Received 27 July 1973)

Ruelle has proven that the solutions of the Kirkwood-Salsburg equation for a finite volume A
become, in the limit as A — e, the solutions to the Kirkwood-Salsburg equation for an infinite

volume, i.e.,

lim, , .0 ~p +lim,  _e(A), lim, , _e(A)~ 0.

The form of € is not obtained. We show that for the first order contribution to the solution of the
Kirkwood-Salsburg equations obtained via a perturbation scheme developed in an earlier paper that

e(A) < limy,_, e ¥R,

where &’, is a positive real constant which can be specified and R is the minimum distance from

the container walls to the particles of the system.

I. INTRODUCTION

Equilibrium thermodynamics can be rigorously
obtained from statistical mechanics, but only in the
thermodynamic limit., Experiments, of course, are
always done in finite volumes, An obvious question is:
What do the formulae of statistical mechanics, in the
limit of infinite volume, say about finite volume experi-
ments ? The answer is that if the volume is large enough
and the measurements to be performed are taken far
enough from the walls of the container that the differ-
ence between experiment (finite volume) and theory
(infinite volume) is negligible.

There are several objections to the above which can
be characterized by the following questions. What is
“large enough” and “far enough” ? Is there a “large
enough” or “far enough” in the coexistence region? Is
there long-range order in the crystalline phase which
transmits the effect of the walls over infinite distances?
Is this long~range effect of the walls also felt at the
critical point ?

These questions are quite difficult to answer rigor-
ously. This paper is a first step in employing a method
of solution developed by the author! to try to answer,
rigorously, some of the above questions. In this first
paper we will treat the effect of the walls in the region
of very low activity.

In a previous paper! referred to as (I) the author has
proven that the Kirkwood-Salsburg? equation (K-S)

p =z + zPKp,

where
[0,(x,)
p =
_pN({xN}ZJ
and zPK is defined by
p' = zPKp

p S | ntl
py) = anzi Py ot ex,0q) jljz Ji59%
N
Pulend) = Pyz IL (1 + 7)oy 10y - o) + (I 1)
(-]
1 N+n
Z o ol g T )
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can be solved for potentials with a hard core and a
finite range. The solution is obtained by decomposing
the operator zPK into an unperturbed part PK,

ZPIQ) = p,,

’ ot 1 ntl
pilxy) =2 Z_} mfpn(xz...x,”l) 10 f,;dx,
n=1 ""° j=2

N o
’ 1
pN({xN}) = Z‘PN I:I (1 +.f;]) E _ pr+n_1(x2-..xN+n)
j=2 n=1 n!
N
® j+11~;l+1 iy %%
and a perturbation
PK'p = p’ s
p{({xl}) = 0’ ]
pylfryl)= Py _Hz (1 + 7, )Ppey (%0« o %),
j=

expanding o in a power series in the perturbation para-
meter €

p= %} €rg, (L. 2)
and inserting the series into
p =2z + zPKp + zePK'p,
Equating powers of € gives the recursion relations

o = 2 + 2PK,¢y,
¢y=2PK'¢py_; + 2PK 0.

The operator P is.a modification to the K-S equation
defined as

(I.3)

—

1 0 0 0 0...
0 1 0 0 0...
P= ,
0 0 PByx,) 0 0...
10 0 0 Py(xy 3, %0 4y X3 4) 0...

where Py(x,...xy) is a projection operator which is 0 if
any of the particles 2,..N overlap their hard cores and
one otherwise.

It was proven in (I) that Egs. (I. 3) have unique solu-
tions and that (I. 2) converges uniformly for € = 1 and

lz] <[eBB’eC(B)] 1,

Copyright © 1974 by the American Institute of Physics 1181
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where B’ is a positive constant such that
N
Py JL(1+f;) < es2" N,

C(B) = f lfij' dxij,
and
fij = e'ﬁ¢(xij)~ 1.

Ruelle3 has shown that the solution of the K-S equation,

derived from an iterative approach, has the property that
Lim p, = p + Lim €(a): Lim €(2) > 0,

where A is the volume of a finite box, p, is the distribu-

tion function vector for the box and €(A) is a function

which depends on the size of A through A which Lim,

implies A — ®©, The form of the function €(A) is not

specified. In this paper we will begin to employ the new

method of solution developed in (I) to specify the form

of the function €(A).

It was shown in (I) that the first nonzero contribution,
generated by the recursion relations (I. 3), to each of
the distribution functions could be obtained by solving
the set of equations.

pslx)=z2+2 fpl(xz)flzdxz,
N
pusfry)) = 2 ]'132 (1 + i) PylPy-1 (g0« e )
+ [ Ousne1s Fan - Xy w1 %ne 1)y
which was called the strip operator (S-O) hierarchy.
As the solution to the S-O hierarchy is a good approxi-
mation to the exact hierarchy solution for low 2z it is of
some interest to examine the S-O solutions for infor-
mation which might be mirrored in the solution of the
exact hierarchy. It is also necessary to obtain this

result as it is an integral part of the more general
considerations,

We will prove that for
|z]| < [eBB'C(B)e] 1

the solutions p,,({xy}) of the S-O hierarchy for finite
volumes

plSA(xl) = x(A)[z + 2z fplsA(xz)fmdxz],
N
pNSA({xN}) = zx(A) jI}z (1 +fij)PN[pN—ISA(x2' .o Xy)
+ prSA(xAHl’xZ' XS, w1 %]

tend in the limit as A > ® as

Lim pys ({xy) = pasad) + 0(e™**%) x (@)%,
where R is the minimum distance between the container
walls and the cluster of particles {x,}(assumed to be
large) and ke, is the imaginary part of %, the root with
the smallest positive imaginary part of

1— zf(k) =0,
and yx (A) is the characteristic function of the volume A,

Il. LARGE R BEHAVIOR FOR o, (x/)

The thermodynamic3 limit of the system is to be taken
in the following way.
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I
A
1L Ry :“2 Ry 1
ﬁ-— T *’
t i
I feo
U B

Fig. 1.

R,,R,,R;,R, —» © and R — ©, where R is the minimum
distance between the two volumes. The set of particles
{x,} which is the set whose correlation function p,({x,})
is being considered is restricted to volume 1. By defi-
nition the average particle density remains constant in
the limiting process.

The proof of the postulated limiting property will
proceed by induction,

First we will prove that
Lim pys () P s(xy) + O(explit, R))
Proof: (We will drop the 1S subscripts in the proof)
PpEs) = x (M2 + 2 [ ppxg) fyd%,).
Dividing both sides of the above equation by x (A) yields
pix) = 2[L + [p(x5) fyd%5),
PAE) = Py(;)/ x (A)
p(x;) can be written as
PA%;) = ppxy) o + PA(%)) 1,

where py(x,), is nonzero only if particle 1 is outside the
volume A (1the volume A is the larger box marked II in
Fig.1) and pj(x;), is nonzero only if particle I is inside
A. By definition

PAEy) o = By (I 1)

Therefore
pj’\(xl)0 + pA(xl)1 =z+ 2 pr(xz)flzdxz-

Taking the Fourier transform of both sides with respect
to x, gives

Py(R) (1 — 2f(R)) = 26(k) ~ py(k)q.

Dividing by (1 — zf()) and taking the inverse transform
yields
paxy) 1 = [2/(1 — 2flN] — [ ppg)o Fllxy — x,1) dxy,
(L. 2)

where

F(lx, — x,0) = [e*52[1 — 2 (k)] 2 dk.
Since

lz] < (e82*1C(B))2
and

vk, real, f(k) = [f(x)ei*=xdx < [ | f(x)|ax = C(B)
clearly

1—2f(k) >0 vk real.
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From (I) it is clear that
z2/(1 — zf(0))

is the solution to the infinite volume 8-O hierarchy
equation for pl(xl). The properties of

Lim S oplxg)g Flay — x5) dx,y
must be examined.

First we will rewrite F(x; — x,) as

F(x, — Xy) = 0(xy5) + F'(x;,),

where
[e* ™z i1+ k) ]dk
1 — zf(k)
= 0(ey,) + [ 2LEL gt g

1— zf(k)
=0(xy5) + F'(%5,).

(1. 3)

Inserting (II. 3) into (II. 2) gives
ppx)r = [2/(1 — 2F(0))] — Py — [ PAx)oF" (2, — % 5)dx2

since x; can be chosen at will and we are interested in
the configurations in which x; is in A

pjl\(xl) 0=0,

p,(x;) is a bounded function (by assumption). In the space
of bounded functions

z pr(xZ)flzde

is a bounded operator. Consequently pA(xl)0 is also
bounded.

In (I) two theorems were proven that will be useful
here. The first is that
F'x) = f—————zf(]i) eik*x gk
1~ zf(k)
is a bounded function of x for all x real, The second is
that for |x| greater than the range of the potential
gikalx]

Fi(lxl) =Alx]) + 2 Ays (IL. 4)

|x

where the fact that F’(x) depends only on |x| has been
made explicit and

Z

a x|

egikalxl

o

converges uniformly in the required range of |x|. We

will now prove that

15 oo o

is also bounded.
For the values of |z]| considered,

f Zf(k) eik' xlzdk
1+ zf(k)

2flxy,) + 22 ff(x1 — X3)f(xy — x5)dx,
+ 28 [l — x)flg — X,) flxy — s)dxzdng + .o

F'(|x5])

I

= §1zﬂ(f*)", (IL 5)

J. Math. Phys., Vol. 15, No. 8, August 1974

1183

where (f*)? is the nth convolution of the f's and (f*) = 1.
The term by term integration is justified by the uniform
bounded convergence of the series.4

Clearly,
33 en(r= 3 lzln (171%)n
n=1 n =1
so that
S|Fre|an, =T fan, s e
=2 Izl (c@)".
Since "
lz] < [eBE"1C(B)] 1
and
S 1 ln . _lzlC(B)
nZ:)l lz]»(C(B)* = =120
it follows that
, ___lzlc®) 7
J1F'(x)]ax < @ (I.7)

and the boundedness of the integral is proven. We are
now in a position to examine

. Z
;\J_}gl p!\(xl)l = =

1270 Lim J ppl ) oF "y — %)y

(IL. 8)

Since py(xy) is 0 if x, is not outside A (i.e., Aj; in
Fig. 1) and we demand that x; is in A; then

[, —x,] =R

over the entire range of integration. Using the uniform
convergence of the integral in (II. 8) to interchange
limit and integral we increase A in the prescribed
manner until

R>2,

where
A = range of potential.
At this point we have

eikalxlzl
F'(x) —x,) = flx; — x5) + 25 "
o %15
eikalx12|
= _—_ o
a xlz

It k&o is the imaginary part of the root with the smallest
imaginary (positive) part then

F,(lx]_z !) = exp(ikéolxlz |F”) ( ‘x]_ — Xy l),

where f”(|% — x,|) is a bounded function. Therefore if
sup |p,(x;)y| < A
fo’ A\ 1lo

and
sup |F"(|% —x,])| <B,
X .xz

V¥
then

S o) oF b, — x,)dx, < 4nAB fR x2exp(ik, x)dx
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which goes to 0 as

exp(ik(;oR)
in the limit as

R — 0,

Il. LARGE R BEHAVIOR FOR pys( xp )

In this section we will prove that the solution to an
arbitrary S~O equation has the postulated property.
Proceeding with the proof by induction we assume that

Pn-1, ({1t = Pw-1s (Fey-1} ) + G- 1),
where

{xN_l}’ = {xz. . .XN}
and

Lim G\({xy-1}") — Olexp(ik; R)C(B) ¥

if {x,_,}’ are restricted to A;. We have

pA(fxy]) = 2x (A) j132 (1 +fij)PN[pA({xN—1}’)
+ [ Pplegeys oo} Vy yer@¥gen]-

The subscripts have been dropped for the sake of
simplicity and the order N of the function can be inferred
from the variable dependence.

Therefore,
pA('{xN}) = (”‘)}vl(p ({xN— 1}) Z j:ﬁZ 1+ fij)X (A))

+ 01C,(fry- 1Pz 1T (1+7,)x(A) (L 1)
i=2

where
N

©,p({xy D) = Pyt — Pryia) 1132 1+ JAwa
® Pyl*ye1s {xN-l} VdZy.y

From (]) it is clear that ©°1 exists and is bounded for
the range of 2z considered. Therefore, the second term
on the right-hand side of (IIl, 1) will clearly approach
0 in the same manner as G, ({xy_,}’), or faster, when
{xy} is restricted to A; and A; and A > x, We turn our
attention therefore to the term

N
¢A({xN}) = efv]‘(zf)({xbpl )].I;IZ (1 +fij)X(A))-

That is we want to investigate the behavior of the solu~
tion of

N
o ,({xyD) = 2x(A)Py o, t+ RIS

+ f ¢A(xN+1’ {xN—l})f(xl - xN+1)de¢ 1]. (IH. 2)
If we divide both sides of Eq. (IIl. 2) by
N
X(A) ].132 (1 +fij)PN
we have
¢/'\({x1v}) = ZP({xN—l}’)
+z f¢A(xN+1’ {xN~1}')f(x1 - xN+1)de+1: (IH' 3)
where
)
P p—L

x(A)jljz (1 +f;;)Py
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Multiplying both sides of (IIL. 3) by (C(8))-¥ and defining
$A({xN}) = ¢,y N/(C(B) Y,

we have

61’\({%‘N}) = ZD({xN-l}’)(C(B))'N
+z f@\(xmp {xN-l}')f(xl = X)Wy (ML 4)

From (I) it is clear that ¢,, ¢,, and p({xy_,})(C(B))-¥ are
bounded by numbers independent of N. ¢, can be decom-
posed into a number of functions with disjoint support.

EA({xN}) = 6,;0({351\1}0) + EEK({xN}O)
+ 5’1\0({9‘1\/ }1) + E/,\I({xN}ll)
+ B oy By d) + G4 G ey d). (L 5)

The subscripts within the parentheses (with one ex-
ception) refer to whether the subscripted variables are
inside or outside of A. The underlined subscripts in
(IIL. 5) refer to whether particle 1 is within the potential
range of at least one of the particles in {xN_l}’. For ex-
ample, if particle one was not within the potential range
of one of the particles {x,_,}’ then

$/'\I({x1v}) =0

independent of the positions of the {xN} particles rela-
tive to A. The one exception mentioned above is
@1 ({x,} o) which is O if any of the particles in {x,}, is
outside A. ¢,({*,}) has a similar decomposition,

Oalfewh) = 6y (Bohy) + @n (Boadp)- (111 6)
Clearly
&5 (Beatd = Ba (endy)- (IIL. 7)

Taking the Fourier transform of both sides of (IIl. 4)
with respect to x; and employing Eqgs. (IIl, 5), (IIL. 6), and
(IT1. 7) one obtains after some algebraic manipulation and
taking the inverse Fourier transform,

3, (ead) = = J Py — 2y )[ @) gy » g1 o)
- E)’Al(xzvqp {ey- 1) + B Gy gs Bon-1 0D
+ 751'\‘,("1\“10, Pty + ?E/'\o(xzvﬂo o110 ]
X dxy.y + fFl(xl — Xpye1) $A1(x1v+11’ fen-at)dxy.

+ a(o(gy-n L) (IIL 8)
1 — z£(0)
As discussed in sec.II,
F(x, —x3) = 0(x; —x3) + F'(x; —x3). (111. 9)

Employing (IIl. 9) and restricting particles {xN} to A
gives

$Ao({xN}1) + 6/’\1({’51\1}1) =— fFl(x]_ - xN+1)
. [aAI(quI, fen-1tp) + Ej’\l(xzvuor foy-a 4D
+ $A0(XN—10, {xN-l}I,) - gAI(xN”'I’ {xN-],}f)](de»f]_)

plfry.q})
1-— zf(o) ’

If we multiply both sides of (IIL. 10) by a function A
which equals 1 if particle 1 is within the potential range

+ 2(C(B) ¥ (IML. 10)



1185 William Klein: Behavior of distribution functions

of at least one of the particles {xN_l}' and is 0 other-
wise then

N
& Bl — & JF oy —xpg) (1= TL (L4 1)
® Pp (nen > P11 DMy
=—Aa [F(n — Xy [ B4, Fyer fey-1hy)

Z(C(ﬁ))_NP({xN—l}’)
1 — zf{0) )

5}\0(’51\“10 ’ {xN—l},I)] de+1 +

(1. 11)
We define an operator W such that

Wpy ({xN}) = PN({xzv}) - _[F,(xl - xN+1)(1 _]ﬁz (1 +fN+1’ ]))
x pN(xN+1: {xN—-l} I) de+1-

From equation (IL. 7) it is clear that for the range of 2z
considered, Whas a bounded inverse.

Employing the uniform convergence of all the inte-
grals in (III. 11) we have

2(CEB) Y p({xy-1})
1 — zf(0)

+a [diy, Lim F'(x; — Xy {OA ey > By br)

+ $Ao(xzv+10’ fe-1 D1

From (I) it can be seen that the first term on the r.h.s.
of (ITI. 12) is the solution of the infinite volume S-O
equation for (C(8))"V ¢; ({xN}). The remaining terms can,
by considerations identical to those of Sec, II, be shown
to damp in the proposed manner. Each time a S-O equa-
tion is solved the residue of the infinite volume limiting
procedure contains an additional term. The question re-
mains whether the residue remains finite for R small
and still damps in the proposed manner for R large in
the limit as N, the order of the S-O solution, becomes
infinite, That this is in fact the case can be seen by
noting that each term that is added is of the form

Rim $f’\1 = Wi[Hima

(111 12)

Ty +yTy = 'y'TN,

where y is a bounded operator and T is a function of
such a form that (C(B))-¥T,, is bounded for all N. From
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equation IIL, 1 it can be seen that the Nth S—O distribu-
tion function has a damped term which is bounded by

é\l) zeBB’ nn
#-1\1 —zeBB'C(B)) ’

where

(I1. 13)

N
i @ <o o
and

[ ort I < (1 — zeBB” C(R)) 1.
For the range of z considered

zeBB’

— <1
1 — zeBB' C(B)
and (III. 13) converges in the limit as» —, This con-
cludes the proof'of the form of the residue of the infi-
nite volume limiting procedure of the S-O distributions.

RESULTS AND CONCLUSIONS

Although the form of the residue of the infinite volume
limiting procedure was derived for an approximate
hierachy it is clear that this form should be a good
approximation for very small z.

As was argued in (I) and mentioned in the introduction
of this paper, the solution of the entire hierarchy, via
the perturbation expansion, involves solving equations
identical to those of the S-O hierarchy except for the
inhomogeneous term. The methods, therefore, employed
in this paper, and their results, are those tools which are
needed to generalize this result to perturbation solutions
of the exact hierarchy.
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Proof of Zwanzig’s rule of “planar” graphs
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A rigorous proof is given of Zwanzig’s conjecture that only planar graphs contribute to the virial
coefficients of discreet-orientation models for a fluid of long thin rods. The proof makes use of
relations between connected graphs and “trees”—the simplest type of connected graphs.

1. INTRODUCTION

Zwanzig?! has introduced a simple model-a system of
long rectangular parallelepipeds allowed to point in only
three mutually perpendicular directions-for the study
of the liquid crystal phase transition in a gas of long
thin rods. (This first order transition was first predic-
ted by Onsager2). Within this model, it is feasible to
calculate, well beyond the second virial approximation,
Onsager's series for the Helmholtz free energy of a gas
of long rods.2 The virial coefficients in this series are
given by the formulal.3

3
B(ny,ng,ny) = —V—H(IT!)f(Enf)dSrl. Ly (V=2 ),
' (1

where 2 I1f is a sum of products of Mayer f functions
taken over all irreducible graphs with n; molecules
pointing in direction 7,/ = 1,2, 3. The number of virial
coefficients that need to be computed was greatly re-
duced by Zwanzig by means of the conjecture that only
“planar” graphs make nonvanishing contributions to the
integral (1/V) f2J I1f in the limit

[ >  [2d = const (2)

(I = length, d X d = square cross section of parallel-
epipeds). The planar graphs are those in which all the
molecular long axes are parallel to the same plane.
[Therefore, the only nonvanishing virial coefficients
are of the form B(n, n,, 0)].

In this article we give a rigorous proof of Zwanzig's
conjecture; i.e., it is shown that any nonplanar, irreduc-
ible graph G of N points N = 3, has a vanishing integral
in the limit (2):

['nigf=0

G = nonplanar, irreducible graph.

[in limit (2)],
(3)

(The prime means integration over only N — 1 mole-
cules.) The proof, although presented for Zwanzig's case,
will be seen to apply to any model with a finite number
of allowed directions for the molecular long axes.4 To
our knowledge, (3) has not been proven before (see also
Sec. 4).

Further work along the lines of Zwanzig has been
done by Runnels and Colvin.5

2. PRELIMINARIES AND DEFINITIONS

For the sake of clarity, we adopt, to some extent, the
mathematical style of presentation. Thus, we have defi-
nitions, theorems, etc.

The concepts of graph, connected graph and irreduc-
ible graph are assumed known.é

Our proof in the next section, although quite simple,
makes use of the existence of a certain type of graphs—
which we call “trees”—-and some elementary theorems
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about these graphs. The following definitions introduce
the idea of a tree and several related concepts needed
to understand Theorems Al and A2 of the Appendix. We
use capitals to denote graphs and sets in general and
lower case letters, or numerals, to denote points of a
graph. Recall that a graph is a set {a,} U {aja o} of
points a; and lines (or “bonds”) a;a, joining some pairs
of points.

Definition 1: We say there is a path P = P(a,y,a,) =
18y, Ayasq, . .. am_lam}, connecting points ¢, and a,, of
a graph G, if a,a;,; isabond of G,for i =1,2,..., m— 1,
and all the points q; are different.

Definition 2: A tree, T, is a connected graph such
that any point of T is connected to a point o0, of T, by a
unique path. The point o is called the origin of T (see
Fig.1).

Definition 3: We say a graph G can be reduced to
the graph G’ if: (i) G’ and G have the same set of points;
(ii) set of bonds of G’ & set of bonds of G.

Definition 4: A mixed graph is a graph whose bonds
are divided into several types or “colors”.

Definition 5: Let G be a mixed graph and M be a
maximal set of points of G connected by bonds of color
x (regardless of bonds of other colors). Then the con-
nected subgraph consisting of M and the bonds of color
x is called an island of type x.

Definition 6: A terminal point of a graph is a point
with one and only one attached bond.

It may be useful to point out that when we form a new
graph by removing a point P from a graph, it is, of
course, implied that all bonds attached to P are also
removed. On the other hand, when a bond is removed
from a graph its end points need not; unless otherwise
stated, it is understood that the end points are not
removed.

We give now a few simple theorems which are helpful
in clarifying the concept of a tree. In particular, Theorem
5 shows why trees are useful to us.

Theovem 1: Any point of a tree serves equally
well as origin of the tree.

O

4

FIG.1l. Example of a tree. The point “0” is the chosen origin.
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FIG.2. Diagram for the proof of Theorem 1.

Pyoof: Let 04 be the given origin of a nontrivial
tree T (i.e., T contains more than one point). Pick some
other point 0, of T as candidate for origin of 7. We
show that there exists a unique path from o, to any
point a (#0,) of T.

By assumption, there exist unique paths P(0,, 0,) and
P(0,,a). Let P(oy,0) = P(0o,,a) N P(04,0,5) [b = 0y, 01
b =0, are allowed; if b = 0, then P(0,, b) is the empty
set d)}. Then P(o,,0,) = P(04,b) U P(b,0,) and P(o,, a) =
P(o4,b) U P(b, a), where P(b, a) is a path from b to a
(see Fig.2). Therefore, P(o,, a) = P(0o,, b) U P(b, a) is
a path from o, to a. This path is unique. For, suppose
there exists a P'(0,, a) # P(0,, a). Then, by an argument
similar to the above, it follows there exists a P'(0, a) =
P(0,, a), contradicting the fact that T is a tree with
origin 0.

Theorem 2: (Composition of trees): (a) Let 7'y, T,
be two trees. Then the connected composite graph T,
obtained by identifying any given pair of points of T,
and T, is a tree; (b) Let T; be a nontrivial tree and pick
an arbitrary point a of T;. Suppose a (the “linkage”
point) is bonded to points b,, i =1,2,...,p (and no
others). Let 1 =7 = p. Then the subgraph T, con-
taining g, and all the points of T; connected to a through
the bonds ab;, :=1,2,...,7,is a tree. Similarly, the
subgraph T, containing ¢ and the points connected to a
through ab,,i =7 + 1,..., p,1is a tree (if » = p, define
T, = {a}). Note: T3 = Ty U T, in both (a) and (b).

Proof: (a) Let 0, and o, be the points of 7, and T,
that are to be identified. Choose 0; as origin of T,. Then
01 = 0, = 0, is, by Definition 2, and origin for 7.

(b) Choose a as origin of T;. Then, obviously, a is an
origin for both T, and T,.

Theorem 3: Let T be a tree with N points, 1 <N <
o, with chosen origin o. Then T has at least one termin-
al point, £, ¢ # o.

Proof: Consider a sequence of lengthening paths
P(o,a,) = {oay, ayay,* ", a, ja,},n = 1,2, . Because
N > 1, P(o, a,) exists. Now suppose P(o, a,) exists. If
a, is connected to some point b other than g,_,, then

b=a,fori=0,1,...,7n— 1 (for otherwise there would
exist two different paths from o to a,). Therefore, we
can form P(o, a,,,) = {Oal, Tty 8,10y, anaml} (a,.1 = ).

But 7T is finite (N < ®); therefore, there must exist a path
P(o, a,), with m <N — 1, such that 2,, is only connected
to a,,_,. Thus, we can take { = a, (= 0).

Theorem 4: The number of bonds in a tree of N
points is N — 1.

Proof: N = 1 the proposition is obviously true.
Suppose the proposition is true for a tree with N points.
Consider a tree T with N + 1 points, and let o denote
its origin. By Theorem 3, T has a terminal point b with
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unique bond ab. Then, by Theorem 2(b), the subgraph T’
containing all points of 7 other than b is a tree. T’ has
N points and, by the induction hypothesis, N — 1 bonds.
Therefore, T = T' U{p} U{abjhas (N — 1) + 1 = (N + 1)
— 1 bonds. The proof is completed by mathematical
induction.

Theorem 5: Let T be a finite tree (number of points
N < =) with origin 0. Then T can be collapsed down to
the origin o by successive removal of terminal points
(and their single bonds).

Proof: If N = 1, there is nothing to prove. f N > 1,
T has a terminal point (= 0), by Theorem 3. Thus, we
can remove {, (and its single bond) from T to get the
graph T,. By Theorem 2(b), 7, is a tree. T, has N —1
points. If N — 1 > 1, the argument can be repeated to
form T, which has N — 2 points; and so on. The process
ends with T, which has only one point, namely the
origin o.

In the integral of a graph, the integration over a ter-
minal point can be carried out immediately as a single
particle integral | fd3R. Therefore, by Theorem 5 and 4,
the integral of a tree is computed very simply as the
product of N — 1 single particle integrals. Letting a
bond correspond to — f, which is nonnegative and domina-
ted by 1 in the case of repulsive interactions, we can
obtain an upper bound to the integral of a graph by re-
ducing the graph to a tree (see the Appendix). This pro-
cedure is used heavily in the next section.

3. PROOF

Step 1: First we show that any connected graph G
with at least one pair of parallel molecules joined by a
bond has a vanishing integral in the limit (2).

Let molecules 1 and 2 be parallel and joined by bond
12. Let us say that the bond 12 is “red” while all the
other bonds of G are “white”. By the corollary of
Theorem 2 of the Appendix, we can reduce the mixed
graph G to a tree T with the red bond 12 appearing in 7.
Since the number of bonds in T is no greater than the
number of bonds in G, and since — fij =0 or 1for hard
core interactions, we have

0= n(,‘(_fij) = HT(”_fij)- (4)
The single particle integral is given by?

2(1 + d)2d for i and j perpendicular,

f(—fij)d3”i = {8ld2

for i and j parallel. (5)

Therefore, taking molecule 1 as the origin of T, one gets,
in the limit (2) (with N = number of points in G),

S aBry e ddr Ty (— 1) = QRAN2 [ d3r,(~ f,)
< 4(212d)M-1d/ |

—0.

lim (2) (6)

Combining (6) and (4), we have the desired result. It is
sufficient, therefore, to consider graphs G where only
perpendicular molecules are joined by a bond.

Step 2: Let G be a nonplanar, irreducible graph of
N points, N = 3. Pick a triplet of mutually perpendicular
molecules, labeled 0, 1, and 2, say, and connected by
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bonds 01, 12 (see Fig. 3). (It is easy to see that G must
contain such a triplet. For, consider molecules a and b,
joined to each other by bond ab and, to a third molecule,
3, perpendicular to both, by path P = {ab, ,..,x3}. Such
molecules, a, b, 3 and path P exist because G is non-
planar and connected. Further, we can suppose 3 is the
first molecule perpendicular to both 2 and b that is
encountered along P-otherwige take a shorter P. Then
molecule 3 and the two molecules preceeding it in P
form a connected triplet of mutually perpendicular
molecules-remember only perpendicular molecules are
joined by a bond). Because ( is irreducible, there exists
a path P’ = {23,34, ..., (M — 1)M, MO}, from 2 to 0,
different from the path P = {21, 10} Let us take the
bonds 01, 12,23, ...,(M — 1)M as “red” and all the
remaining bonds of G as “white” (see Fig. 3). By the
corollary of Theorem 2 of the Appendix, G can be re~
duced to a tree T which includes all of the “red” bonds.

The integral of T, however, is not a useful upper
bound for the integral of G. A better bound is obtained
by inserting back the bond M0 into T to give the graph
T'. We can integrate off the points of T', except those
in the closed path {01, 12,..., (M — 1) M, Mo} in the
same fashion as for T:

Jnasr 0 (1) = J7 tasr 1y, = fiy)

7
={2(] + d)24¥-m-1p, ™
where
_ M
Le=J T 8% = fo) faa) = fuo)- )
i=
The Mayer f function for Zwanzig's model can be
written
""fij=By(xi"xj)ep(yi'_yj)eq(zi"z}'); (9
where
L lel <s,
8 =
() {0, fel>s,

and 7, f, ¢ depend on the orientations of molecules ¢ and
7, e.g.,if i and j are both parallel to the X axis then

r = I, p = g = d. With this notation, 7, becomes a pro-
duct of integrals in the x, y, and z variables:

= [ de,G_é(fg — & 00— 100, (5 H)e B, o)
x J 1 a0 ,00 300,01~ 32)
x st(yz"— y3)‘ b eﬁmi»l(yM - yO)

M
X _f H dz0 4020 — 2100 (3, — 23)

X6, (zz — Zz). . qu( (10)
Here L = (I + d)/2 and, for each i,two of 7, p;,q; are
equal to L and one is equal to d (since only perpendicu-

lar molecules are joined by a bond).

An upper bound for [, may be obtained by replacing
the integrand of each factor in (10) by a tree; we do this
by dropping in each factor the least restrictive of the
two (one-dimensional) bonds attached to molecule 1
{these are the underlined bonds in (10)]. Because
molecule 1 is “doubly—restricted,” i.e., restricted to
an interval of 24 in fwo directions by the combined action
of its neighbors, the integration over r, gives a factor
(2d)22L:

M
L= (2d)22L [ 1Jd3r (~f,3)" * "(—fyo)= (BLAZ)BL2A)M-1, an
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FIG.3. The subset of red bonds in the nonplanar graph G (see Sec, 3,
Step 2).

Combining (11) and (7), and recalling L = (I + d)/2,
gives

0= [N N, f,) = (8L2d)¥-28Ld2
= (8L2d)¥14d/L

e 0},
lim (2) (12)

which is the desired final result.

4, COMMENTS

The above proof can be adapted to the case where the
molecules have more than three (but finitely many)
allowed directions.? The single particle integral, Eq (5),
is given—in the limit (2)~by (2/2d) sind ., where 8
the angle between the long axes of molecules i anc{ ].
This is again zero for molecules / and j parallel. Mole~
cules 0, 1, and 2 of the proof (see Fig. 3) are now, in
general, a nonplanar, obligue triplet. The Mayer f func-
tions for a given triplet can be written in the form (9)
with the coordinates x,, y,, z; referred to oblique axes
parallel to the three molecular directions. The volume
elements dV, contain, when expressed in terms of dx,
dy,, dz, a constant factor depending on the angles
between the oblique axes. The main thing is, that after
removal of the three least restrictive one-dimensional
bonds attached to molecule 1 in

I, = const x [’ (1 dx dy dz 8 (xg — x4)8 x4 — x5}

91,(3’0 - )’I)BL(f)’l - yz)
zz)(”‘ fzg)' *

X ed(zo"‘zl)BL{z1 '("'fMO):

The integral over r, is proportional to Ld2. Therefore,
we again get [, = (L2d)Md/L and the result (12) for non-
planar graphs G.

After completing the above work we found the article
by Runnels and Colvin, reference 5, which contains an
argument to show that the integral of a non-planar
graph vanishes in the limit (2). We wish to note that
their argument contains much of the basic geometry of
the problem, but does not quite constitute a rigorous
proof. They did not have a method for estimating upper
bounds of integrals of graphs and their argument makes
no use of the fact that one is dealing with irreducible
graphs. It is easy to see, however, that the result (3) can
only be asserted in general for graphs G that are ir-
reducible [e.g., if T is a tree of N points, then j' [l
dsr [ (—f) = (8L2d)Y "1, regardless of whether the
graph is planar or not, provided that bonds join only
perpendicular molecules],



1189 A. Wulf: Proof of Zwanzig's rule

ACKNOWLEDGMENTS

I am grateful to Dr. Baez Duarte of the Mathematics
Department of IVIC for suggesting the proof by induction
of Theorem A1l of the Appendix.

APPENDIX

Theorem Al: Any finite connected graph can be
reduced to a tree.

Proof: Let Gy denote an arbitrary connected graph
of N points. The theorem is obviously true for N = 1, 2.
Suppose that the proposition is true for N. Now con-
sider a Gy, ,, and pick a € Gy, ; by removing a and all
its bonds ab, i = 1, 2...p,from Gy,; we obtain a graph
Gy. (Since Gy, is connected, p = 1). By assumption,
Gy can be reduced toa tree Ty. Let Ty,; =Ty U
{a,b,} U{ab,}. Ty., contains all the points of G,
(obvious) and is a tree (by Theorem 2(a) in the text).
Also, bonds of Ty,; < bonds of Gy, , (since bonds of
T, S bonds of Gy). Therefore, G, ; can be reduced to
the tree Ty.,. The theorem follows by induction.

Notation: given a connected graph G, the symbol GT
denotes any tree to which G can be reduced (by Theorem
Al, GT exists).

Theorem A2: Let G be a finite, mixed graph with
white and red bonds. Suppose G contains red islands
I, i=1,2...,L. Then G can be reduced to a tree T
which contains subtrees If, i=1,2,..., L.

Proof: We prove the theorem by mathematical
induction on L. -

Case L = 1

Let G; € G be the graph obtained from G by removing
all points of I; G; contains the points of G which have
only white bonds attached. If G, = ¢, then I; contains
all the points of G and T = IT satisfies the theorem.

Suppose G; = ¢. Then

M
G, = 'U1 KK, N Kj = ¢),
i=
where the K, are finite, connected graphs with white
bonds. Let {a}} be the set of points of I, which have,
in G, white bonds attached. Because G is connected, we
can select from {a’} a subset {a,} %, such that a; is
joined to a point k; € K, by the bond a;k;. Some of the
points a; may be the same. Using Theorem Al, we know
I, K; can be reduced to trees I{, K} By repeated appli-
cation of Theorem 2(a) in the text, noting %2, € K

1=M<x
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a, € I{ and that {a,, k,} U {a;k;} is a tree, it follows
M
T=HKu [u KT U{a, k}U {a,.k,.}]
i=1

is a tree. (Also, the fact I; N K; = ¢, has been used.)

Obviously, T contains all the points of G (since p € G
means p € I; or p € G,) and, bonds of 7 & bonds of G;
i.e., we have shown that G can be reduced to the tree T
containing I7.

Case of general L

Suppose the proposition is true for L. Let G be a
mixed graph with L + 1 red islands ;. Because G-is
connected, we can find a pair of islands, say 7, and I,,,,
such that they are connected by a path (of white bonds)
P = P(a,b) = {ac,, ¢,¢,, ..., b} where only the end-
points @ € I, and b € I, belong to an island. Now let
us, momentarily, include the bonds of P among the red
bonds. Then

Jy=L, Ul u{c}uP

is a single red island. Therefore, by hypothesis, G can
be reduced to a tree T containing subtrees 1{, 1§, ...,
IZ 4, J%. Obviously, JZ contains all the points ¢; and all
the bonds of P (otherwise J% would not be connected).
By application of Theorem 2(b) in the text, to linkage
points a and b, it follows that J contains subtrees I,
IZ,, and {c;} U P

JI=HE UL, Ul{ctrl uPl(c, =ac,., =0).

Therefore, G has been reduced to a tree T containing
subtrees [, IZ, ..., I, and I{,,. Mathematical induction
completes the proof of the theorem.

Corollary: If I, is already a tree, then all the bonds
of I; appear in T.

Proof: By Definition 2 it is immediate that the
removal of any bond from a tree results in a disconnec-~
ted graph. Therefore, a tree cannot be reduced further,
i.e., If=I,if I, is a tree. Hence, /; appears in T.
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All space-times that admit a covariantly constant, test, electromagnetic field are constructed. All
solutions to the Einstein~Maxwell equations with constant electromagnetic field are given.

1. INTRODUCTION

Honig, Schiicking, and Vishveshwara recently gave an
elegant discussion! of the motion of a charged test
particle in any space-time (M, g) with a covariantly
constant (hence source-free) electromagnetic field F.
But they did not address the question: Which (M, g) ad-
mit such an F, even a test field F? This note answers
this question. The argument will be familiar to mathe-
maticians, but physicists may find it novel. For simpli-
city, we will confine the work to some local neighbor-
hood in (M, g).

2. HOLONOMY OF SPACE-TIME

Choose any point p € M in space-time. Fix, once and
for all, a simply connected neighborhood U of p. Paral-
lelly carry an orthonormal tetrad O » around any closed
path in U beginning and ending at p, yielding some new
tetrad O': O’ = AC »» Where A is some homogeneous
Lorentz %ransformatlon depending only on the choice of
path. The set of all such A at p for all possible paths
forms Cartan's (local) kolonomy group?.3.4 H(p). H(p)
is a subgroup of the homogeneous Lorentz group L; H(p)
is in fact independent of p € U. Roughly, the higher the
symmetry of (M, g), the smaller H(p) is.

Let T be any geometric-object field on (M, g) for
which covariant differentiation V is defined. Can there
exist in U a covariantly constant T, VT = 0? If so, T
can be uniquely constructed by giving its value T(p)
at one point p € U, and then carrying T parallelly all
over U along paths in U. This construction must be
path- independent; equivalently, T(p) must be left in-
variant at p when it is carried parallelly around any
closed path beginning and ending at p. That is, T(p)
must be invariant under the action of H(p):

Lemma (see e.g., Schouten?): (M,g) (locally) ad-
mits a covariantly constant, test, field T iff there exists
T(p) at any point p € M, invariant under the holonomy
group H(p).

3. CONSTANT, TEST, ELECTROMAGNETIC FIELD

The differential problem, “solve VF = 0,” is thus
reduced to an algebraic problem (Cartan's favorite
trick!): Choose a point p; find an electromagnetic field
tensor F(p) = 0 such that its invariance group G[F(p)],

GIF(9)] =] A LI AF(p) = F(p)f,

contains the holonomy group: H(p) € G[F(p)] < L.

Choose a favored observer at p with tetrad O (ez,
ez e5,e; 2) so that the tetrad components F %‘( b)
reduce to one of two canonical forms5: “F(p) null” or
“F(p) nonnull.”

(A) F(p) null: Fpy = — Fap = Fys =— Far = A=const,
other components vamsh G[F(p)j( is generated by the
two null rotations® which leave invariant the null direc-
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tion defined bv k = e» + e;. Define the spinor? o 4(p) by
0A(p)oA(p) = kA4ithen G[oA(p)] = G[F(p)]. Therefore
(by lemma) (M, g) must admit a covariantly constant
spinor field 04 (equivalently, a covariantly constant,
complex, null bivector field F + ¢*F). By a result of
Ehlers -and Kundt,8 it is necessary and sufficient that

in some local coordinates

g = 2K(u,x,y)du2 + 2dudv + dx2 + dyZ2, (1a)
and
F = 21244y ~ dx. (1b)

(B) F(p) nonnull: Fp =— Fap = A cosf = const.,
Fis=—F53=A smB = const., other components vamsh.
fo‘(p) is the direct product of the one-parameter
group of boosts in the (fz) plane with the commuting
one-parameter group of rotations in the (xy) plane. It
is a fundamental result3 that if the tangent space T,
reducible under H{p),then (M, g) is correspondmgly
reducible into the direct product of (pseudo-) Riemanni-
an manifolds of lower dimension. Here, 7T, reduces to
the ({z) and (xy) planes under H(p),so M,g) = M ,g,)
® (M,g_), where (M ,g. ) is a Lorentzian 2- manifold and
(M ,g)isa Riemannian 2- manifold. The vector fields

¢+ and e lie entirely in (M,,g ); es and e; lie entirely
1n M. ,g3 In some coordinates,

g=¢g, teg, (2a)
where

g, =g+ab(t’z)dx adxb, x¢= (t)z): (Zb)

g = g—;’j(xuv)dx idxj, xt = (x’y); (20)
and
F = A cosf(— g,)1/2dt ~ dz + A sinB(g.)1/2dx ~ dy. (2d)

Equations (1) and (2) give all space-times (M, g), and
all test fields F, that solve VF = 0.

4. ELECTROVAC SOLUTIONS

Now impose the Einstein-Maxwell equations for a
nontest F, to find all solutions with covariantly constant
F. The resulting electrovac space-times are well
known.

(A) F null: The Einstein-Maxwell equations for Eqgs.
(1) read

(a?; + ag)K(u’x’y) =— 442, (3)

The general solution K is a linear superposition,
K=K, +K,,,, where K, is the particular solution,

Ko, =—A2(x2 + y2),
and Kgrav is any homogeneous solution,
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(92 + 32)K, ., (u,x,y) = 0.

K, represents the transverse, “monopole, ” always
focusing gravitational disturbance due to F; this dis-
turbance is homogeneous for local observers (despite
the dependence of K onx and y). K, represents an
arbitrary “plane-fronted gravitational wave with parallel
rays” 8 (“pp wave”). So the electrovac space-time

given by Eqgs. (1) and (3) describes an arbitrary, gravi-
tational pp wave traversing a region of constant, null F,
such that the wave direction is everywhere parallel to
the Poynting vector.

(B) F nonnull: The Einstein-Maxwell questions for
Eqs. (2) imply that (M ,,g.) is a two-dimensional anti-
deSitter space-time? of radius 4-1, and that (M_,g_) is
a 2-sphere of radius A1, This solution is the “Bertotti-
Robinson magnetic universe ”’; for discussions see
Bertotti, 10 Robinson,1! and Lindquist,12 and Exercise
32.1 of Misner, Thorne, and Wheeler.13
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Relationships are developed which describe exactly the degeneracy associated with nearest neighbor
pairs of occupied sites (1 —1), mixed sites (0— 1), and vacant sites (0—0) for dumbbells distributed
on a one-dimensional lattice space. The first moments of these statistics are calculated, thereby
permitting an evaluation of the error inherent in the use of the Bragg-Williams approximation for

this situation.

Il. INTRODUCTION

A statistical mechanical treatment of adsorption,
elasticity, alloys, magnetism, and other cooperative
phenomena which involve the nearest neighbor approxi-
mation, i.e., in which the total interaction energy £, is
written

E, =ny1Vi1 T 201V01 T 260V 00 1)

(where n,,,7,,,and n,, are the number of occupied,
mixed, and vacant nearest neighbor pairs respectively
and V4,V and V4 are the related potential energies
of interaction), requires knowledge of the degeneracy
associated with each type of nearest neighbor pair.

For simple particles, each of which occupies a single
lattice site, the question of nearest neighbor pair de-
generacy for a one-dimensional lattice space has been
considered in a previous paper.! The purpose of the
present paper is to extend these previously reported
results to situations in which dumbbells (particles which
occupy two adjacent sites) are distributed on a one-
dimensional lattice space. The treatment of the adsorp-
tion of homonuclear, diatomic molecules involving
nearest neighbor interaction represents one application
of the statistics to be developed herein. Obviously, the
subscripts 0 and 1 could refer to electronic spin or
chemical species as well as occupation.

If one neglects the end compartments of the lattice
space, the numbers n,,n,,, and #,, are related by

29 = 2nqq + 0y, (2)
2N — 29) = 2n4y + ngq, (3)

where ¢ is the number of dumbbells and N is the number
sites of which the lattice space is composed.

Equations (2) and (3) may be derived on the basis of the
following reasoning (see Fig.1). If a line is drawn from
each occupied site to its nearest neighbor (see Fig.1A),
there will be 4¢ lines. The total number of lines can
also be determined by noting that between the two parts
of a dumbbell there are two lines, between occupied
nearest neighbor pairs there are two lines, and between
mixed nearest neighbor pairs there is one line. Thus

4g =29 + 2ny; + 1y,

which is given in Eq. (2).

Next draw a line from every empty site to each of its
nearest neighbors (see Fig.1B);there will be 2(N — 2¢)
lines. Of these, two lines will be between each vacant
nearest neighbor pair and one line will be between a
mixed nearest neighbor pair. Hence Eq. (3).
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Thus from Eqs. (2) and (3) any of the numbers 7,
1431 OF Ry, can be determined approximately in terms
of another number, the number of dumbbells, and the
number of lattice sites.

Il. OCCUPIED NEAREST NEIGHBOR DEGENERACY

In this Section we will calculate A[n,,| ¢, N}, the num-
ber of ways of arranging ¢ indistinguishable dumbbells
on a one-dimensional lattice space of N equivalent com-
partments in such a way as to create exactly »,, occu-
pied nearest neighbor pairs.

It has been shown? that A[g, N], the total number of
independent arrangements arising when ¢ indistinguish-
able dumbbells are arranged in all possible ways on a
one-dimensional lattice space of N equivalent sites, is

given by
—q
). 4)
q

If we consider the subset of the A(g, N) arrangements
which contains only those arrangements in which exactly
n,, occupied nearest neighbor pairs occur, then we find
that the selected arrangements always contain g — »n,
“units” (see Fig.2). This arises because there are

g — 1 separations between the ¢ dumbbells. Cf these,
n,, separations are between occupied nearest neighbor
pairs, so that g — 1 — n,, separations are not between
nearest neighbor pairs. Thus there are ¢ — #,, “units.”
Such “units” consist of one or more pairs of occupied
sites together with a single vacancy (if one is needed)
to isolate a “unit” from other dumbbells and/or other
vacancies. Thus the number of separating vacancies

is one less than the number of “units.” For purposes

of the following argument we will consider initially
each of these “units” to be identical, regardless of the
number of particles incorporated in it or whether or
not it is terminated by a vacancy.

Alg,N| =(

There are N — 2g vacancies but not all of these are
permutable, i.e., not all of the N — 2¢ vacancies can be

yal

| Tofofofol Jofof [ Jotfof [otolotel

B

1 T Tofoloto] Tofo] T Jofof Jofo[ofel |

FIG.1(A). Figure used in deriving Eq.(1). A line is drawn from each
occupied site to each of its nearest neighbor sites. (B) Figure ulti-
lized in deriving Eq. (2). A line is drawn from each vacant site to each
of its nearest neighbor sites.

Copyright © 1974 by the American Institute of Physics 1192
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Gctotolo [ W)oto] olotolol [70totoll 27

[Fo L Welotolotolol plel A ctotolo
okl i otololotolotolo Yok Jeto)

FIG.2. ¢ =7 indistinguishable dumbbells are arranged on a one-
dimensional lattice space of N = 24 equivalent sites to yield exactly
ny, = 3 occupied nearest neighbor pairs (represented by crosses).
Regardless of the arrangements there are ¢ — 7,7 = 4 “units” (un-
shaded). These units can be permuted with N— 3¢ + n,, = 7 vacancies
(shaded). There are (Y!) independent ways of arranging the “units”
and the permutable vacancies. This figure shows three possible
arrangements in which the indistinguishable “units” are composed of
all the possible groupings of occupied nearest neighbor pairs, that is,
the nearest neighbor pairs are in (1) different “units”, (2) one in one
“unit” and two in another, and (3) all nearest neighbor pairs are in the
same “unit.”

FIG.3. The seven dumbbells illustrated at the top of Fig. 2 have six
separations between them. Of the six separations,n,, = 3 are bet-
ween occupied nearest neighbor pairs, (short horizontal lines) and 3
are not {jagged lines). Figure 3 represents the arrangement shown
at the top of Fig.2. There are (§) ways of arranging the separations
between the seven dumbbells with the constraint that three of the
separations are between nearest neighbor pairs.

EEASEZE

[ Actolofol ool Tofol folof fofolofo} fool
[Helolofof tofolofof fololofol] folofZ ofe]

FIG.4. Eight indistinguishable dumbbells are arranged on a one-
dimensional lattice space of N = 24 equivalent sites to yield ny; =9
mixed nearest neighbor pairs (represented by crosses). Regardless
of the arrangement there are [(n,; — 1)/ 2] = 4 permutable “units”
(unshaded)and N — 29 — 1 —[(#y;, — 1)/2]=3 permutable vacancies
(shaded). Thus there are () ways of arranging the “units” with the
permutable vacancies.

interchanged to form additional independent arrange-
ments. Because one of the “units’ on an end does not
need a vacancy to isolate it, there are ¢ —n;; — 1
vacancies which must be utilized to separate the ¢ — n 4
“units.” Thus the number of indistinguishable, permut-
able vacancies is N—2¢ — (g —n,;;, — 1) =N— 3¢ +
nyy + 1.

Consequently, the total number of individual objects
is just the sum of the number of “units” and the num-
ber of permutable vacancies, i.e., (g —n,;) + (N—3¢q +
nyy +1) =N — 2g + 1. Now the number of ways of
arranging N — 2¢ + 1 things of which ¢ — n,, are one
kind (indistinguishable) and N — 3¢ + n,,; + 1 are
another (indistinguishable) is the binomial coefficient

N—2¢+1 N—2¢ +1
q—nq, =<N—3q+n11+1>‘
We have assumed that all the “units” are identical.

Clearly this is not correct. To remove this constraint
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and to ascertain A[n,, | g, N], we must determine the
number of ways the dumbbells can be arranged to form
the ¢ — n,, “units.” There are g — 1 separations bet-
ween the ¢ dumbbells of which the “units” are com-
posed (see Fig.3);ny, of these separations constitute
nearest neighbor pairs and ¢ — n,, — 1 separations do
not involve nearest neighbor pairs. There are

711 g—1—mnyy
ways of arranging the ¢ — 1 separations where n,, of
the separations are between nearest neighbor pairs,

A[n11 fq, N] is thus given by the product of the num-
ber of possible arrangements of the “units” and the
number of possible ways in which the “units” can be
constituted, i.e.,

A[nlllq,N]=<q—1> <N—2q+1>. 5)

11 q—"ny,

If Alny,|q,N]is summed over all values of z, ,,
[0 = nyy = g — 1] the result,by Vandermonde theorem3
is (M) [see Eq. (4)].

1. MIXED NEAREST NEIGHBOR DEGENERACY

Here we are concerned with nearest neighbor pairs,
one of which is occupied and one of which is vacant., An
approximate solution for the degeneracy of mixed
nearest neighbors when simple particles are involved
was determined by Ising.4 To determine Afny, | g, N,
we must consider two situations: when n,, is odd and
when it is even.

1. n,, odd

When n,, is odd, one and only one end compartment
is occupied (see Fig.4). If the occupied end compart-
ment is on the right-hand side, we construct “units”
consisting of a single dumbbell or contiguous group of
dumbbells and the adjacent vacancy (if one is needed)
just to the left to isolate the “unit” from other dumb-
bells and vacancies. Initially we consider these “units”
to be indistinguishable, one from the other, regardless
of their composition or configuration. We observe that
there are always [(z,; — 1)/2] of these permutable
“units.”

This arises because one of the 7n,; mixed nearest
neighbor pairs is associated with the dumbbell on the end
of the array. Two nearest neighbor pairs are then invol-
ved in each permutable unit. Thus there are [(n,, — 1)/2]
“units.” These indistinguishable, permutable “units”’
may be permuted with the indistinguishable, permutable
vacancies to form independent arrangements.

There are N — 2g vacancies, but not all of them can
be permuted with “units” to form independent arrange-
ments. The number of vacancies which are required
to form the “units” is (n01 — 1)/2. Thus there are
N — 29 — [(nyy — 1)/2] — 1 indistinguishable permutable
vacancies because one vacancy is required at the end
of the array for a total of N — 29 — [(nyy — 1)/2] — 1 +
(ng; — 1)/2 = N — 2g — 1 objects. These can be arrang-
ed in

N—2¢—1 N—-2¢—-1
<(n01— 1‘)/2>= (N— 29 —1— {(ngy — 1)/2]>

independent ways.

The “units” are not, of course, indistinguishable; the
dumbbells may be arranged in various ways to form
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“units” consisting of a range of numbers of dumbbells,
subject only to the constraint that there be z,; mixed
nearest neighbor pairs. To determine the number of
ways ¢ indistinguishable dumbbells may be arranged to
form [(n,, — 1)/2] “units,” we consider the ¢ — 1 se-
parations between the ¢ dumbbells (see Fig.5). [(ny, —
1)/2] of these are the separations of the dumbbells by
two mixed nearest neighbor pairsandg — 1 — [(ry; —
1)/ 2] separate adjacent dumbbells. These separations
may be arranged in (%(_nlol-l)/Zl) ways. This is just the
number of ways ¢ indistinguishable dumbbells can be
arranged to form [(n,; — 1)/2] “units.”

Consequently, if we require the compartment on the
right end of the array to be occupied while the end com-~
partment on the left is vacant then there are (f:fl“l'ﬁ /2)
(2’;;}_1) /2) independent arrangements possible. Of course,
with equal probability the end compartment on the left
could have been occupied while the end compartment on

the right could have been empty, so that in general if
is odd we obtair

N—2¢—1\ /¢g—1
A[}’l()llq?n] =2 ((nOI - 1)/2> ((n()l - 1)/2>

2. n,, even

(ng1 odd)
(6)

If n,, is even, then in any single arrangement one of
two situations exist:

(a) Both end compartments are vacant (see Fig. 8), or
{b) both end compartments are occupied (see Fig. 7).

If there are n,, mixed nearest neighbor pairs and if
both end compartments are vacant, then there are al-
ways [n4,/2] “units,” each of which consists of a dumb-
bell or a contiguous group of dumbbells together with a
vacancy (if one is needed) to isolate the “unit” from
other “units.” Regardless of their composition, we
initially regard these units as identical, indistinguish-
able entities which can be permuted with some of the
vacancies,

Not all of the N — 2¢g vacancies are permutable, i.e.,
they cannot all be positioned indiscriminately to form
new arrangements. Because one and only one of the
end units requires a vacancy to isolate it from the
interior units, only [(zy; — 2)/2] of the vacancies are
required to form mixed nearest neighbor pairs. Further-
more, two additional vacancies, one at either end, are
not permutable. Thus there are N — 2¢ — [(ny; — 2)/2] —
2 = N — 2q — [#4,/2] — 1 permutable vacancies or a
total of [ny,/2] + N— 2¢ — [r4,/2] —1=N—2g—1
permutable objects. These can be arranged in

<N—2q——1> N—2¢-—1
o/ 2 =<N—2q~1— [n01/2]>

independent ways.

Clearly, the “units,” contrary to our initial assump-
tion, are not identical. There are (‘(7,:0 /2y-1) Ways of

arranging the ¢ dumbbells in the [7y,/ 2] units. This

can be demonstrated by the following reasoning. There
are g — 1 lines which can symbolize the separation of
the ¢ dumbbells (see Fig.8). Of these lines, [(#y, — 2)/2]
represent separations of the dumbbells by two mixed
nearest pairs and g—1—[{ny; — 2)/2] lines separate ad-~
jacent dumbbells, These ¢ — 1 lines can be arranged in
(‘[’('nm/z)_l]) independent ways. This represents the num-

ber of ways the ¢ dumbbells can be arranged to form
(20 1/ 2] “units” when both end compartments are empty.
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FIG.5. Figure 5 considers the particular arrangement shown in the
top arrangement in Fig,4. There are ¢ — 1 = 7 separations between
the eight dumbbells. Of these separations [(n;, — 1)/2] = 4 are separa-
tions between vacant and occupied sites, i.e., between mixed nearest
neighbor pairs (short horizontal lines) and g — 1 — [(ry, — 1)/2]=3
are separations between two dumbbells (jagged lines). Thus there are
(g) ways in which the seven separations may be arranged to form the
four “units.”

[ fofolofot fofot fofoofo[ofot 774 otolo1ol ]

FIG. 6. Eight indistinguishable dumbbells are arranged in such a way
that both end sites are empty and that there are eight mixed nearest
neighbor pairs. There are [n01/2] = 4 “units” (unshaded) and N — 2¢ —
[rg1/2] — 1 = 3 permutable vacancies (shaded).

ellolel [lel [l leloll VATl Aok

FIG.7. Eight indistinguishable dumbbells are arranged in such a way
that both end compartments are occupied and that 1y, = 8. There are
[(rg1/2) — 1] = 3 permutable “units” (unshaded) and 4 permutable
vacancies (shaded).

T

FIG.8. This figure represents the situation illustrated in Fig. 6.
There are seven separations between the eight dumbbells; [14,/2) = 3
separations involving mixed nearest neighbor pairs (short horizontal
lines) andg — 1 — [n01/ 2] = 4 are separations between dumbbells

(jagged lines).

FIG.9. This figure represents the situation illustrated in Fig.7.

Of the seven separations between the eight dumbbells 4 (short hori-
zontal lines) are separations involving mixed nearest neighbor pairs
andg—1— n01/2 = 3 are separations between dumbbells (jagged
lines).

Thus

(N— 2q~1> <q— 1

g/ 2 (ng/2)—1

represents the number of ways g particles can be ar-
ranged to form exactly #,; mixed nearest neighbor pairs

under the constraint that both end compartments are
vacant.

If situation (b) exists, in which both end compart-
ments are occupied, then there are [(4,/2) — 1] per-
mutable “units”” each composed of a dumbbell or group
of dumbbells and a vacancy to isolate a “unit” from adja-
cent “units” (see Fig.7). There are N—2¢—1—[(ng,/2)
— 1] permutable vacancies or a total of N ~ 2¢ — 1 ob-
jects which can be 1permutecl. These objects can be
arranged in ((‘Z'z/qz')_l) ways.

01

There are g — 1 lines symbolizing the separation of
the ¢ dumbbells (see Fig.9); of these lines, [,/ 2],
constitute separation by two mixed nearest neighbor
pairs and ¢ — 1 — [n,,/2] are separations between
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adjacent dumbbells. Thus the number of ways that q
indistinguishable dumbbells can be arranged among the
“units” and the dumbbell groups on the end is (:;l/z).
Consequently, when both end compartments are occu-
pied, the ¢ dumbbells can be arranged in (1(\;?13_21)—1)(:3/2
ways to form exactly n,,; mixed nearest neighbor pairs.

Alng, | g, N], the total number of independent arrange-
ments which contain exactly #»,; mixed nearest neighbor
pairs (when n,, is even),is then the sum of those
arrangements in which both end compartments are
empty and in which both end compartments are occu-
pied, is given by

Alngy g, N]
N At
T \ngy/2 (1 /2) — 1) \(ny/2) — 1/ \ngy,/2

g | e [ A
h "o1 (n01/2) = 1/ \(n51/2) — 1
(ngy even) (1)

The normalization for Az, | ¢, N] can be shown to be

N —
% Alnoy | 4,N] = ( ">, ®
7oy q

where A[n,, | ¢, N] is given alternately by Eqs. (6) and (7)
as the sum proceeds over all values of ;.

IV. VACANT NEAREST NEIGHBOR DEGENERACY

We now calculate A{z,,| g, N], the number of indepen-
dent ways of arranging ¢ indistinguishable dumbbells on
a one-dimensional lattice space consisting of N equiva-
lent sites in such a way as to create exactly n,, pairs
of vacant nearest neighbors,

([Llofoll_f TofollA F Tofo][ Toto|[ § [ofolkd 1

[[Tofo][ 3 f TololB[ ¥ ToTol F Tofo][ [ofd[]

eAe] t 4 4 Jotol#dd] + [ofd]| [ofo]l [ofo]l Toto]

(L Lofoll Totolies]] ¥ } ¥ | Tolo]| [ofo]| [ofo] ]

FIG.10. Seven indistinguishable dumbbells are arranged on a one-
dimensional lattice space of N = 24 equivalent sites to yield four
vacant nearest neighbor pairs (represented by crosses). Regardless
of the arrangement there are N — 2g — g0 = 6 “units”” (unshaded).
These “units” are permuted with g — (N — 2¢ — nye—1) =3¢~ N+
Ngo + 1 = 2 dumbbells (shaded). There are (§) = 28 independent ways
of arranging the “units” and the permutable dumbbells. This figure
shows four possible arrangements in which the indistinguishable
“units” are composed of all the possible groupings of vacant nearest
neighbor pairs.

FIG.11. Figure 11 deals with the top arrangement shown in Fig. 10.
The ten vacancies illustrated in Fig, 10 have N — 2¢ — 1 = 9 separa-
tions between them. Of the nine separations, gy = 4 are between
vacant nearest neighbor pairs (short horizontal lines) and 5 are not
(jagged lines). There are () = 126 ways of arranging the separations
between the vacancies to form six “units, ”

J. Math. Phys., Vol. 15, No. 8, August 1974

1195

Any arrangement of ¢ indistinguishable dumbbells on
a one~dimensional lattice space contains N — 2q — oo
“units” (See Fig.10). These “units” consist of a group
of one or more contiguous vacant sites and a dumbbell
(occupying two adjacent lattice sites) if one is needed
to isolate the group of vacancies from other vacancies
and/or other dumbbells. We initially consider these
“units” to be indistinguishable one from another, regard-
less of their composition or configuration. Thus the
number of dumbbells necessary to separate the “units”
is N — 29 — ngy — 1, or one less than the number of
“units. ”

There are g indistinguishable dumbbells; however,
not all of these can be permuted to form additional
independent arrangements; some of the dumbbells must
be employed to separate a “unit” from the rest of the
array. Because N — 29 — n,, — 1 dumbbells are re-
quired to isolate the “units,” there are g — (N — 29 —
ng0— 1) =3¢ + nyy— N + 1 indistinguishable permut-
able dumbbells remaining to be permuted with the
“units.” Consequently, there are always g + 1 objects
to be permuted, N — 2¢ — n4, “units” and 3g + nyy —
N + 1 permutable dumbbells. These objects can be
arranged in

<q+1 > <q+1 >
N — 29 —ngy, 3q+n00—N+1

independent ways.

The “units” are initially considered to be indistin-
guishable; in reality, however, vacaricies can be moved
from one “unit” to another to form new arrangements.
To determine A[n,| ¢, N], we must ascertain the num-
ber of independent ways that “units” can be constituted,
subject to the constraint that the number of “units”
does not change.

We note that there are N — 2¢ vacancies with N — 2¢ —
1 separations between them (see Fig. 11). Of these se-
parations, n,, are indistinguishable from each other and
separate nearest neighbor pairs of vacancies, and N —
29 — 1 — n,, separate pairs of vacant nearest neighbors.
These separations may be permuted in

(N——Zq—l) <N—2q—1 )
oo - N—29—1—mngy,
independent ways.

Alngol g, N] is then determined to be the product of
the number of independent ways the “units” can be
arranged and the number of independent ways in which
the “units” may be constructed. Thus

qg+1 N—2g—1
Alngol g, N] =< > < > ©)

N—29 —mny %oo

is the desire quantity.

Alng,lq,N]is summed over all values of 7, [0 =
ngo = N — 29 — 1] the result from the Vandermonde
Theorem3 is (N;‘I), in accordance with Eq. (4).

V. THE FIRST MOMENT

With the degeneracy expressions for nearest neighbor
pairs, Eq. (5), Eq. (6) or Eq. (7) and Eq. (8), it is possible
to calculate the moment of these statistics and thereby
determine the nature and magnitude of the error intro-
duced by the Bragg-Williams approximation.
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First to determine (n,,) as a function of coverage, 9,
where lim(2¢/N)= 6, we proceed as follows: From
Eq. (5)"

g-1

nuZZO”nA["u'qu] N—gq—2\/N—g\?
= =(N—q—1)( >< > .
q q— 2 q
EOA[nll l gq,N] (10)

St

Then the ensemble average density of occupied nearest
neighbor pairs is

}:g((nn)/N) =62/2(2 — ). (11)
Similar calculations for 7, and 4, yield

lim({ny,)/N) = 26[1 — 6]/ (2 — 6) (12)
and N-0

Lim((nog)/N) = 2(1 = 6)%/(2 - 0). (13)

Thus for dumbbells, on a one-dimensional lattice space,
the relationship

Knyo)(nig) = (ng1)? (14)
describes the “reaction”
2(01) 2 (11) + (00). (15)

Equation (10) may also be interpreted in terms of the
concept of the “range” or order.5 g, the short-range
order, is defined as

c=@n)/N—-1 (—1=a0=1). (16)
Then
o=202/(2—86)—1. am
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Because L, the long range order, is defined as

L=4g/N—-1=20—1 (—1=L=1), (18)
the relation between the short range order and the long
range order can be shown to be

o=(L+1)2/3—-L)—1. (19)

Equation (16) may be compared to the Bragg-Williams
approximation, &

Opw =3(L +1)2 -1 (20)

and thereby permit an estimate of the magnitude of error
introduced through the use of the Bragg-Williams ap-
proximation. The Bragg-Williams approximation is only
valid at L ~ 1,i.e.,,when 6 =~ 1,

It should also be noted from Eq. (11), that the value
of 6 which maximizes (n,,)/N is

Onax = 2 — V2 =~ 0.586 (21)

and the value of (n,,)/N at §

max 18

(no1)/N = 2[3 — 2V2] = 0.344 . (22)
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Explicit and easily computable formulas for the physical quantum numbers /3, ¥, and §;, and also
two additional quantum numbers for all states spanning an arbitrary irreducible representation

of S U(6) are obtained by using Gel'fand-pattern technique. This result is accomplished by
establishing a correspondence between the 3 diagonal S U(3)®S U(2) generators + 2 “quark-spin”
generators, and the 5 “canonical” generators H, — H s, the eigenvalues of which are given by the
Gel'fand patterns of S U(6) in the ordinary way. The S U(3)Q.S U(2)C S U(6) content of the S U(6)
representations taken as examples is displayed explicitly. The possibility of doing this suggests that
Gel’'fand patterns may be useful eyen in a nonmaximal decomposition, although the patterns are
intrinsically linked to the “canonical” chain of decomposition: S U(n) > U, (1)S U(n —1)

O U ()QU,(1)®S U(n —2)D - etc. The procedure developed in the case of S U(6) is generalized to
the twofold nonmaximal decomposition of S U(mn) > SU(m)QS U(n).

. INTRODUCTION

The Gelfand pattern techniquel.2.3 establishes an ele-
gant solution to the problem of uniquely constructing an
orthonormal basis of the irreducible representations
(IR) of (S)U(n). The labeling of states within an IR is
based on the “canonical” decomposition SU(r) 2 U(1) ®
SU@n — 1) D U4(1) ® Uy(1l) ® SU(n — 2)... etc. In the
case of SU(6) the physical decomposition chain is, how-
ever, SU(6) O SU(3) ® SU(2), and this is the reason why
the “pattern method” has been thought of as nonapplic-
able in the study of the physical SU(6) symmetry.4 The
usual prescription for reading off the quantum numbers
from the Gelfand pattern of SU(6) does not reveal any-
thing of physical interest. The Gelfand patterns, how-
ever, contain a maximal amount of information, and
furnish the eigenvalues of 20 diagonal operators, 5 of
which are the Casimir5.6 invariants of SU(6). Of the
remaining 15 operators, 5 are just the diagonal genrera-
tors of SU(6), and the 10 others may be chosen? as the
Casimir invariants of the subgroups in the “canonical”
chain of decomposition. The eigenvalues of the Casimir
invariants of the SU(m) subgroup are polynomials [deg
LEQ(m) GEQ(2)] of the entries in the mth row of the
Gelfand pattern. These entries themselves constitute
an equivalent set of classifying numbers, and the pos-
sibility of constructing other sets are clearly conceiv-
able. The present paper will give indications that in
the case of SU(6), the 3 Casimir invariants of the sub-
groups in the decomposition SU(3) ® SU(2) [2 for SU(3),
1 for SU(2)] may be part of another set. The additional
information contained in the Gelfand patterns might be
exploited to solve the technical questions involved in the
nonmaximal decomposition of SU(6) generally, and par-
ticularly in the one of physical significance. After the
completion of this work, by a communication of M.
Hamermesh, the author was made aware of some papers
that have previously escaped his attention. J.D. Louck, 8

Biedenharn, Louck and Giovannini, ¢ J. D. Louck, 19 and
Brody, Moshinsky, and Reneroll have published papers
on tensor operators and generalized Wigner coefficients
of (S)U(n) which mathematically represent a wide gen-
eralization of some of the aspects of the present paper,
but in other respects the present paper is concerned
with problems that are essentially different from those
of Refs.8~11. References 8 and 9 are concerned with
the coupling of two IR's of the same group U(n) and the
reduction of the direct product involved into the direct
sum of IR's of U(n) once again. In order to obtain the
generalized Wigner coefficients, the embedding of U(n) ®
U(n) C U(n2) is taken into consideration. The nice and
very general results cannot be compared directly to the
results of the present paper, because it is concerned
with the SU(6) content of the direct product of two
different groups, namely SU(3) and SU(2).

T.A.Brody et.al.11 take into consideration the IR's of
SU(n) as part of U(nr) 2 U(n) ® U(r),r = n— 1,and
introduce the concept of “auxiliary Wigner coefficients.”
Taking n = 3, = 3 — 1 = 2, the SU(6) case may be
handled within the framework of Ref. 11, but the examples
given in the paper are just SU(3) and SU(4), not SU(6).
Furthermore, T.A. Brody ef.al. also are primarily con-
cerned with the Wigner coefficients of the reduction of
direct products of the IR's of SU(xn) into direct sums of
IR's of the same group. J.D. Louckl1® gives an excellent
survey of the theory of tensor operators in the unitary
groups, using Gelfand patterns throughout his paper and
thus recommending this elegant scheme for wider use.

The present paper is primarily concerned with a
group of paramount physical importance, namely SU(6)
[SU(6) is now enjoying a re-birth] and gives results
that are immediately applicable. The generalization of
the procedure to SU(mn ) 2 SU(m) ® SU(n) puts no re-
straint on m and n (cf.Ref. 11: Unr) O U(n) ® U(r), with
the restraint v =z#n — 1).

Il. CORRESPONDENCE BETWEEN THE “QUARK-SPIN” GENERATORS AND THE GENERATORS H,-H;

The Gelfand pattern of SU(86) is:
6th row:

Mie Mae M3e
5th row: mys My s Mmag
4th row: my, My,
3rd row: myq my 4
2nd row: my,
1st row: myq

1197 Journal of Mathematical Physics, Vol. 15, No. 8, August 1974

Mye Mg mee = 0
Mys mss

M34 My (1)
M33

Mag

Copyright © 1974 by the American Institute of Physics 1197



1198 Alf E. Strand: Gel'fand-pattern technique

where 1, 1 = My, ; (“in betweenness rule”).
When the dﬁagona'f generators in the defining (quark)
representation are taken to be the set

7hy =% diag (1,— 1,0,0,0,0), (@)
hy = 5‘1”5 diag (1,1,— 2,0, 0,0), (3)
(&) ;13:-3-%2 diag (1,1,1,— 3,0, 0), (4)
iy 221‘3 diag (1,1, 1, 1,— 4,0), (5)
s = —-—I——dlag(lllll 5), (6)

and these are generalized to the diagonal generators
H,-Hg in a general IR {proceeding for example by the
Schwmger12 boson-operator realization for all the gen-
erators [35 in the case of SU(G)}} the eigenvalues of the
diagonal generators are simply the difference between

the average of two adjacent rows in the Gelfand-patternis:

i+l

20 Mg (7

H—*M—mz—_)r
Z+1j:1

i 3.7

These numbers, however, do not reveal the desired
physical information.14 This situation is remedied by
considering the generators of SU(3) ® SU(2), three of
which are diagonal, namely i, = F, ® 1,Y = (2/v3)F ®
1,and 8; = 1 ® 8,, when the eight generators of SU(3)
are denoted F,, F,, ..., Fg, and those of SU(2) are S,,

S, and S;. The 8 + 3 generators of SU(3) ® SU/(2) are
extended by the 24 “quark-spin” generators Q,;=F S,
giving a set of 35 generators for the SU(6). Two “quark-—
spin” generators are diagonal, those are Q;; and Qg..
We now choose the Gell-Mann matrices!5 as the generators
of SU(3) in the defining representation, and the Pauli
matrices analogously for the SU(2). The resulting dia-
gonal SU(6) generators are:

(1, =1} diag (1,1,— 1,— 1,0,0), (8)
\v:é—diag (1,1,1,1,—2,—2,), (9)
(B) < 8, = 5 diag (1,— 1, 1,—1,1,— 1), (10)

Q33 = F383 = é dla-g (1’"‘ 11 15”‘ 19 0, O)s (11)

2 - :
\T/EQSS =YS, = ¢ diag (1,— 1,1,—1,—2,2). (12)
[the whole set of SU(6) generators developed from the
SU(3) ® SU{2) and quark-spin generators will be de-
noted the a-set and their explicit representation in the
6 dimensional matrices just defined will be denoted the
a-representation hereafter.] A solution of the relevant
set of 25 linear equations now establishes the corres-
pondence between the sets (A) and (B) of generators
through the transformation

(1, =2H, + Hy), (13)

Y= 4(H, + Hy), (14)

(CK Sy =H,—H, + 2Hy — H,) + 3H,, (15)

Q35 = .; (H + Hy) — H, (16)

/3 (1 20} (17)
\QSSZ?{E(HJ_—H2+2H3+4H4)~ st (
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[The same notation is used for the SU(3) ® SU(2) rele~
vant generators both in the defining representation and
after generalization to the general IR of SU(6).]

A check confirms the linear independence of the set
defined in (C) given the linear independence of H 1~ Hs.

i, EXPLICIT FORMULAS FOR THE PHYSICAL
QUANTUM NUMBERS /;, ¥, AND S,. TWO
ADDITIONAL QUANTUM NUMBERS

The correspondence (C) now makes Eq. (7) applicable
in calculating the physical quantum numbers /;, Y, S,,
interpreted as the third component of isospin, the hyper-
charge, and the third component of the intrinsic (angular
momentum) spin, respectively, of the states (particles)
spanning the IR of SU(6). One also gets two additional
quantum numbers, which in some cases [i.e., in the
defining (quark) representation] turns out to be just
proportional to the products [,5, and YSg of the physi-
cal quantum numbers just defined. In other cases, the
physical interpretation of the additional quantum num-
bers is not that clear, but frequently they may serve
the purpose of lifting a degeneracy of I,, ¥, and $, within
an IR. Using Eq. (7), one gets these formulas for the
“new” quantum numbers
I

— 1 ,
G = Mg+ Myy —5{Mmyy + Mg, + Mgy + m44), (18)

Y= gy + My, + Mgy + myy
2 . ,
— 5 (myg t Myg + Mg+ My + Mg + 0), (19)

Sy =myq — (mlz + mzz) + Mg+ My, + Mg,
— (Mg Mgy Mgy My ) Mgt g,
+ Mayx + Mg + Mgy

— g (myg + Mg + Mgy + myg + Mg + 0), (20)

(myg + myq + Mmaa))
+ gy + My, + Mgy +omy,). (21)

Qa3 = 3(myy —

2 ) ,
%‘Q&S = 5{myy — (myp + myy) + myg + myy
1 P
+ Myq t §(m14 + Mgyt Mg, + oMy,
— 2myg + Mgy + Mgy + oy + '”55)

+ oMy T Mgt Mgy + Myt Mgy 0}. (22)

Inspecting Eq.(20), we note that the spin of the particles
is integer whenever the sum of the entries m g — myg
is even, and half-{odd) integer when this sum is odd.
The entries m g — mygs (Mg = 0) determine the IR of
SU(6). We thus directly see whether the particles of an
IR are bosons or fermions whenever the IR of SU(6)

is specified.

From Eq.(19), we see that within an IR, the hyper-
charge is determined by the 4th row in the Gelfand
pattern, and Eq. (18) reveals the dependence of the 2nd
and the 4th row only for I;. In fact, if one makes the
identification

MYy = Myg T Mg, (23)
4
miy + My, = El m o, (24)
6
Mg+ Mgy + 0= Zl m  (mgg =0), (25)

one may establish a SU(3) Gelfand pattern
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’ !
mis mg 4 0

miz My2 (26)

7
miya

where the formulas (18) and (19) in terms of the primed
entries just represent the ordinary way of reading off
the quantum numbers I; and Y from the SU(3) Gelfand
pattern (286).

In the case of some low lying IR's of SU(6), the three
quantum numbers I3, Y, and S, display the SU(3) ® SU(2)
decomposition right away. In general, one has to use the
a-set of generators expressed in terms of the £,
operators of Ref. 1, 2 and establish the Casimir invar-
iants (C, and C5) and S2, respectively, of the SU(3) and
SU(2) subgroups in the decomp051t10n SU(6) 2 SU(3) ®
SU(2) and also the invariant 72 of the isospin [SU(2)]
subgroup of SU(3).

IV. APPLICATION TO SOME IMPORTANT SU(6)
REPRESENTATIONS

(a) The defining (quark) representation is specified
by myg = 1, Mg = Myg = Myg = Mgg = Mgg = 0.

There are six possible Gelfand patterns, describing
six orthonormal states | 1) — | 6):

100000 100000

10000 10000
1000 1000
100 -|1, 100 —12,
10 10

1 0

100000 100000

10000 10000
1000 1000
100 —13), 000 -4,
00 00

0 0

100000 100000

10000 00000
0000 0000

0 00 -5, 0 00 -6,
00 00

0 0

Using formulas (18)—(22) one gets the following quantum
numbers (notation: |y, I, ¥, S5, @35, (Z/J_)Qsa) the last
five symbols representing the eigenvalues of the diagon-

al a-set generators, v, representing all other quantum
numbers):

|1>: I?’1,+%a+é—7v+%va%!é—>’

12) = lvg, + 5,4 5., — 3,.— 3,— %),
13) = lyg,— 35, +5,,+5,,— 3, + 8,
[9) = ly,,— 5+ 5,— 5, + 5,— &)
[5) = |y5.0,— %, +%,,0,—3),
16) = lv4,0,— %, ,—5,,0,+ 3.
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By inspection, we may sort out the SU(3) ® SU(2) de-
composition, namely 6 = (3, 3).

These results are well known of course, and we don't
bother to plot the two SU(3) weight diagrams of S; =
+ 3 and S5 = — §, respectively.

{(b) The representation conjugate to the quark-repre-
sentation is described by m 5 = Mmgyg = Mg = Myg =
mgg = 1, mgg = 0. Here also we get six Gelfand pat-
terns and the formulas (18)—(22) give the following
states described by their quantum numbers:

|i> = |')-’1707%a7%7707—%>7
I§> = I;’z,oa %77—%) 05%)9

13) = lyg— 5 — 5,5, — 4,8,
19 = lyp— 5 —5,— 5,4~ &)
18) = 175, 5,— 5,5 5, 4 )

18) = 176, 5, — 5,,— 5,,— 4, — &)

The quantum numbers I, Y, S; themselves immediately
give the SU(3) ® SU(2) decomposition.

(¢) The 56~dimensional representation is described
by mqg = 3, Myg = My = Myg = Mg = Mg = 0.
Starting with

1) 30 0 0 0 0
30000
3000

we enumerate the states corresponding to the Gelfand
patterns from |1) to |56). The “key” is given in the
Appendix and also the quantum numbers calculated by
using formulas (18)-(22). By inspecting, one gets the
followmg SU(3) Welght diagrams for states all having
Sy =+ 3 and S, =—3:

Y Y
hoy 18 {is) I 120 18 [ 1D (a
[ ®'7T @ o [ ] T @ [
126> l2{ay 12} {5y lals) 38y
? I3 2 ? ? 2 '3
|33> 139 Isay | 52>
ot e o1 e
2 (35) 24 156)

Six more states are nondegenerate and may be plotted
as follows:

116y |2) 119) )
- [ ] L ) 1+ ®

<@l50)> B

——

Let us plot all the candidates to the vacant places in
SU(3) weight diagrams:
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19> Y 16) 115> M 17> APPENDIX
® 11 L ] ® 1 ®
J19 Iy () bz} Enumeration of states corresponding to the Gelfand
i patterns of 56:
29 |anfes) 122) \ 30 Ja0)|28) ) [23) \
v > 3 v o 3
141y R OYRS IO D )3 0 0 0 0 0
1 PR Y 30000
48> 46 ) | 53) I51) 3 0 00
Knowledge of the IR's of SU(3) now gives uniquely the 300
decomposition: 30
56 = (10, 3/2) & (8,1/2). 3
The problem of how to single out the individual states
requires the additional tools mentioned earlier in [2), |3), and |4) are produced by lowering m, 4 in steps
Sec. III. of one. Then
V. GENERALIZATION TO A TWOFOLD, NONMAXIMAL
DECOMPOSITION OF SU(mn) = SU(m) ® SU(n) [5—3 0 0 0 0O
There are (m2 — 1) + (n2 — 1) traceless generators 3000 0
of SU(m) ® SU(n). These are extended by the (m2 — 1)
(n2 — 1) “product” generators, furnishing (m2 — 1)n2 + 3000
n2 —1 = (m-n)2 — 1 traceless generators which maybe 30 0
taken asthe a-set generators of SU(mmn). Given explicit
matrix representations of thegenerators in the defining re- 2 0

presentations of SU(m) and SU(x) [this may be, for example,
those connected with the Gelfand patterns for SU(m)

and SU(n), respectively], the a-set generators of SU(mn)
may be expressed by the H, —H ,,_, and the E;; gen- |6) and |7) follow by reducing m,, in steps of one.
erators. This establishes the link to the Gelfand pat-

terns of SU(mn).

VI. CONCLUDING REMARKS

2

8>3 0 0 0 0 O

Adaption of Gelfand patterns to the physically impor- 30000
tant case of SU(6) D SU(3)® SU(2) opens possibilities in 300 0
several directions. One is the use of tensor opera-
tors3:9.10.13 ip a “dynamic” theory, involving both SU(6) 300
symmetry-conserving and symmetry-breaking inter- 10
actions. The theoretical predictions might then be com-
pared with experiment.16 1
ACKNOWLEDGMENT

This work has been supported in part by the Norwegian | 9) follows by reducing m,, to zero.
Research Council for General Science and Humanities
(NAVF). | 10) follows by setting both my; and m, to zero.

TABLE I. The eigenvalues of the diagonal a-set generators for the 56 representation of SU(6), calculated from the Gelfand patterns using the
formulas (18)—(22).

Stateno. I3 ¥V S; Qi3 (2/\/3)Q83 Stateno. I3 Y S; @44 (2/‘/3)st Stateno. I; Y S; Q4 (2/~/3)Q83
1 1 3 L 20 31 - FR— 39 0o 0 0 5
2 1 i L 21 10 L 0 40 0 0 —3 -} 3
3 1 = - — 22 10 0 —3 41 -1 0 —1 5
4 1 — -5 - 23 10 -~} -5 -3 42 0 0 — 5 3
5 1 i 24 0 0 0 0 43 0 0 -3 0 0
6 1 — : 25 0 0 B 44 -1 0 —-% 0 i
7 ) QR G S 26 -1 0 —L 0 45 -1 0 — L 0
8 -1 —4 27 00 P 46 L1 i #
9 i 3 28 00 -3 0 -3 47 e S 2 Ml
10 - 1 —5 29 -1 0 0 -3 48 51 —i &
11 1 B 30 -1 0 -5 Lt =3 49 T i —§
12 QR G — 31 11 S i -3 50 0 —2 0 —3
13 1 -5 - - 32 i1 P e 51 L1 — i 2
14 41 3 H 33 -1 3 -5 = 52 L1 5 3
15 -3 1 -1 -3 —3 34 —5—1 | 53 — —1 -5 —3 5
16 ! —i 8 35 0—2 > 0 -1 54 e e 3
17 -t 1 - 2 36 10 B 3 55 0 -2 — 0 3
18 41 4 i - 37 10 -1 o0 5 56 0 -2 -5 0 1
19 -5 1 - i —s 38 10 -3 -} ]
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11)->3 0 0 0 0 O
30000
3000
2 00
2 0
2
The states |12) = | 16) now follow just as the states
{6) — | 10) are produced starting with |5).
117Y—>3 0 0 0 0 O
30000
3000
100
10
1 .
and |18), [19), and | 20) follow by setting m, to zero,
then also m,, and finally all three entries, m,,, M ,,,
and m, , equal to zero.
[2)—»3 0 0 0 0 O
30000
2 000
2 00
2 0
2
The procedure which started in passing from |11) -
|12) is now repeated, giving the sequence |22) — |30).
[3) >3 0 0 0 0 O
30000
1000

132) — | 35) are produced by putting the 1's to 0 starting
with m,.
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[36)>3 0 0 0 0 0O
2 0000
2000
2 00

2 0
2

Proceeding as from | 21) to |35), one gets the sequence
|37) — 150).

150)>3 0 0 0 0 0 {51) >3 0 0 0 0 O

2 0000 10000
0000O0 1000
000 100
00 10
0 . 1

|52) — |56) are produced by putting the 1's to zero,
again starting with m,,.

1. M. Gel'fand and M. L. Zetlin, Doklady Akad. Nauk SSSR 71, 825

(1950).

’G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963).

L. C. Biedenharn, IC/67/52 IAEA Report, 1967.

4L. C. Biedenharn, CERN Report 6541, 1965.

SH. Casimir, Proc. Koninkl, Akad. Amsterdam 34, 844 (1931).

SH. Casimir and B. L. van der Waerden, Math. Ann. 111, 1 (1935).

L. C. Biedenharn, J. Math. Phys. 4, 436 (1963).

8J. D. Louck, J. Math. Phys. 6, 1786 (1965).

°L. C. Biedenharn, J. D. Louck, and A. Giovannini, J. Math. Phys. 8,

691 (1967).

1°]. D. Louck, Am. J. Phys. 38, 1 (1970).

''T. A. Brody, M. Moshinsky, and I. Renero, J. Math. Phys. 6, 1540
(1965).

2] Schwinger, ‘‘On Angular Momentum,” Technical Information
Services, Oak Ridge, Tennessee, Report W-23091, No. NYO-3071
(1952).

13Gee Ref. 1, and G. E. Baird and L. C. Biedenharn, J. Math. Phys. §,
1725 (1964).

1*Alf E. Strand, “Unitere Symmetrigrupper i elementarpartikkelfysikk.
Gelfand-pattern teknikk,” University of Trondheim Lic. techn.,
thesis, 1969 (unpublished).

'SM. Gell-Mann, Caltech Report CTSL-20 (1961) and Phys. Rev. 125,
1067 (1962).

'¢D, Faiman and D. E. Plane, Nucl. Phys. B 50, 379 (1972).



Some observations on the operator H= —(1/2)d?/dx?

+m’x*/2+g/x* *
F. Zirilli

Scuola Normale Superiore, Pisa, Italy

(Received 9 July 1973; final revised manuscript received 12 November 1973)

In the present work we study the differential operator H = —(1/2)d */dx >+ m *x /24 g/x *. This
operator known as the Hamiltonian of the quantal oscillator has been a matter of study since the
beginning of quantum mechanics. Recently, it has become again actual after the paper of Calogero
where the correspondent N body problem (developed in many works) is studied. Parisi

and the author have used H as Hamiltonian, studying the anomalous dimensions in one-dimensional
quantum field theory. Finally, Klauder, using H as a simple degree of freedom example, has

studied some qualitative features of quantum theories with singular interaction potentials. In the
following work we are going to study H, showing that H is equivalent to “half an harmonic

oscillator” for the odd and even eigenspaces separately.

It is well known1™5 that from the formal differential
operator H is possible to construct a self-adjoint opera-
tor A acting in L2(R), that is bounded below if g = —
1/8.8 An intuitive argument for this condition on g is the
following:

Using the Heisenberg uncertainty principle

(AR)Z(Bp)Z =1 (h=1)

and considering a wave function finite in some small
region of radius v, about the origin and equal to zero
outside this region, the mean value of the kinetic energy
in this state is of the order of 1/872 and the mean value
of the potential energy is of the order of g/72.

Then the Hamiltonian is bounded below only if the sum:
1/8v% + g/7% (1)
is bounded below when 7, — 0; that is: g = — 3.
Now assuming g = — 3, the eigenvalue problem
By = >u (2)
has the following solutions:

A, =m(2n + a+ 1),

u,(x) = C,(mx2) (22+1)/4

(3)
exp(— mx2/2)Lg(mx2),
where ¢, are normalization constants,a = ; V1 + 8g,n

is a nonnegative integer, and L¢(mx2) are the generalized
Laguerre polynomials.?

It is easy to verify that if g = 0.also, then

v, (x) = 0(x)u,(x) — 0(— x)u, (x)
are eigenfunctions of the problem (2) with the same
eigenvalue where 8(x) is the usual 6 function.

So that u,, v, are a complete orthonormal system of L2.

We consider the operator
L 42
e

m2x2

H b
2

that is the Hamiltonian of the harmonic oscillator, the
eigenvalue problem for H, has the following solutions8:

A, =mn + 5,
, mx?
V, = i, (mx) exp <* Tx>
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where H,{mx) are the Hermite- Tchebycheff polynomials.

We note that the ¢, are a complete orthonormal set
for L2(R). If we consider the operator A restricted over
the space generated by its eigenfunctions {«,} and the
operator H, restricted over the space generated by
{2}, we can show there is a real number § such that
H, and A + pI are unitarily equivalent.

In fact, let H, and A + BI be as defined above, then there
is a unitary operator W and a real number 8 such that

WHoW*= 8 + BI.

We define W: y,, — u,, W is obviously an unitary map
from the Hilbert space generated by {¥ ,,} to the
Hilbert space generated by {u,}. We have

[WHoW*— (B + BDu, ={m(2n+5)—m@n+a + 1 + B)hu,, .

If B =— (a+ 3) this expression is equal to zero and we
are done.

We note that if g > 0 also H + I restricted to the sub~
spaces generated by v, is unitarily equivalent to an
“half harmonic oscillator” so that H is the direct sum of
two “half harmonic oscillators.”
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For compact topological groups (discrete or continuous) a basis of the group algebra is defined
which consists of irreducible tensors only. This tensor basis is generally discussed and compared with

similar constructions for finite groups and SU(2).

1. INTRODUCTION

The object of this paper is the definition of a special
orthogonal basis of @(G), the group algebra of a com-
pact group §. The basis is adapted to the decomposition
of the semisimple algebra G(G) into simple constituents
(and thus to all irreducible representations of G) being
the union of bases of the simple algebras. (We call a
basis with this property convenient; otherwise, incon-
venient). Furthermore, this basis is adapted to a group
of automorphisms of @(§) homomorphic to § because its
elements transform under these automorphisms accord-
ing to unitary irreducible matrix representations
(unirreps) of G. (We denote orthogonal bases with this
property tensor bases).

Tensor bases were proposed by several authors: for

finite groups (inconvenient ones) by Gamba, Killingbeck,2

and de Vries;3 for SU(2) (essentially the ohe given here)
by Racah4 and Corio.5

Tensor bases can be of physical interest because they
define in the carrier space of an irreducible unitary
representation of § a set of irreducible tensor operators
complete with respect to all operators defined in this
Hilbert space and, if the basis is convenient, even ortho-
normalized in a certain way. These operators are there-
fore especially suited for operator equivalences.6.7

For every finite-dimensional unitary representation
of G orthonormalized sets of irreducible tensor opera-
tors exist which are complete with respect to all opera-
tors of this carrier space. But in case of a reducible
representation some of these operators certainly do
not represent elements of @(G). It is therefore tempting
to extend this reducible representation of § to an ir-
reducible unitary representation of a larger compact
group G’ =2 G. In this case the complete set of tensor
operators (with respect to G) can be considered to re-
present (part of) a tensor basis of @(§’). An example
of a group extension leading to tensor operators with
transformation properties impossible for an element
of @(G) was given by de Vries.8

In case the representation of G is infinite-dimensional
a similar procedure would require a non compact group
G’. We do not deal with this problem. If the representa-
tion of G is infinite- dimensional, we consider only the
bounded operators representing elements of G(§) and
unbounded ones intimately connected with them (genera-
tors, etc.).

The basic definitions and some general conclusions
are given in Sec. 2. In Sec. 2A the definition of the group
algebra @(G) is outlined. In Sec.2B a group of auto-
morphisms of @(G) is introduced as the “tensor repre-
sentation” of G, Two theorems stating necessary and
sufficient conditions for irreducible representations to
be contained in the tensor representation are proven
in Sec.2C. Cur tensor basis is defined in Sec.2D. There
is also discussed what is needed to construct, for a
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given unitary representation of G, the set of operators
representing the tensor basis. Section 2E deals with
group extensions leading to complete sets of irreducible
tensor operators.

The general results of Sec. 2 are specialized for
finite groups in Sec.3. In Sec.3A a formula is derived
for the number of times (zero included) a given ir-
reducible representation appears in the tensor repre-
sentation. In Sec. 3B some special results for double
point groups are mentioned. In Sec.3C our tensor basis
is compared with the one used up to now exclusively
for finite groups. In Sec. 3D group extensions are re-
considered for finite groups.

Section 4 deals with the consequence following from
the results of Sec. 2 for SU(n), especially in case z = 2.
In Sec. 4A modifications possible for Lie groups (Lie
algebra instead of the group, universal enveloping alge-
bra instead of the group algebra) are mentioned. In
Sec. 4B necessary and sufficient conditions for an ir-
reducible representation to appear in the tensor repre-
sentation of SU(n) are stated. Finally the tensor basis
of G(SU(2)) is explicitly given in terms of operators
representing elements of the group and/or the Lie alge-
bra.

2. GENERAL THEORY
A. The group algebra @ (G)

The definition of the group algebra @(G) of a compact
group G and its properties are extensively dealt with in
mathematical textbooks.?:10 Similar treatments exist
for finite groups1.12 and SU(2) 13 also in the physical
literature. In the following we therefore accentuate only
the propositions not to be found there stating the other
facts in a less formal way.

If a group is compact an invariant integral
M[f] = M [fx)] = M [ f(yx2)]

exists for all complex-valued continuous functions de-
fined on §. We assume it to be normalized (M[1] = 1).
The set of these functions forms a linear space. It is
a unitary space if the scalar product is defined by

for ally,z € § (2.1)

(f,8)1 =M [f*(x)glx)] 2.2)

Completion gives the Hilbert space L2(G) of complex
valued squave-integrable functions on G.

In L2(G) a group W) of unitary operators y is de-
fined by

&) =fly ), yeGye UG),feL29). (2.3)

U(G) = G and the mapping G — U(G) is called the regular
representation of G.

Copyright © 1974 by the American Institute of Physics 1203
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By

(fyag)y =M, [alk)Xf,x8),]

a bounded linear operator is defined for every a € L2(G).
The set

a(g) ={a:a e L2(9)}

is a Hilbert space isometric to L2(3) if the scalar pro-
duct in @(G) is defined by

(a,b)5 =(a,b),

for all f,g € L2(g) 2.4)

(2.5)

(2.6)

@(Q) is a symmetric ring if the product ab is defined

by the successive action of the operators and the involu-
tion as the mapping a— a*,a* being the adjoint operator.
In the following the term group algebra is used for the
symmetric Hilbert ring @(G).

Every representation x = U(x) of G by unitary opera-
tors U(x) in a Hilbert space ¥ can be extended by

(W, B@)@) % =M, [alcXy,Ulx)¢)yx] for all y,@c 3 a.m
to a representation a— B(a) of G(G) which is symmetric
[B(a*) = B*(a)]. Although the extension of a unitary
representation of § to a symmetric one of @(G) is always
possible in principle, it is practicable only if the follow-
ing condition is satisfied:

Condition 1: The group elements are parametrized
by a set of real variables and the invariant integral
is expressed as a sum and/or integral over these para-
meters.

To point out the connection (2. 7) between representa-
tions of § and G(§) which may be traced back to Eq.
(2.4), we introduce instead of the definition (2. 4) the
shorter symbolic notation

a =M [a(x)x]

for the elements of @(§). Equations in which this nota-
tion is used have always to be understood in the sense
of Eq. (2.4).

From Egs. (2.1)-(2.4) follows

(2.8)

(2.9)

The mappings a— ya therefore define a representation
of G isomorphic to the regular one.

ya =M [a(y 1x)x]

B. The tensor representation of G
We introduce a second representation of G by

Definition 1: The tensor representation of G is the
homomorphism y = (a— yay!);y € §;y € WS);
a,yay !l € a(§).

Using Eqs. (2.1), (2. 6), and (2. 2), it is easily verified
that

yay ! =M [a(y lxy)x] (2.10)
is an element of @(G) if a € @(§), and that the mapping
a— yayl defines a unitary operator in the Hilbert space
@(S). [This unitary operator for which we do not intro-
duce a new symbol must not be confused with the one
defined by Eq. (2.9)]. Since the mapping a— yay?! is
also an automorphism of the symmetric ring @(G) it is
an automorphism of the Hilbert ring G(G).
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Because of Eq. (2. 10) an element of the center

381 =1{2:2 € §;xz =zx for allx € G} (2.11)

induces the identical transformation a— a, but the re-
verse is also true (see the following section).

C. Units

@.(Q) is a semisimple algebra decomposing into a
direct orthogonal sum of finite-dimensional, symmetric,
and simple algebras @ «(§):

@) =2 @ A%G), &«G) simple and symmetric,

(2.12)
dimension of @ 4§) =#n2 < » (2.13)
Equation (2, 12) implies a unique decomposition
a=),a% a%c @¥G), (2.14)
o

of all elements into pairwise annihilating and ortho-
gonal components:
a#=f8=>ab8=0 and (a%bf), =0. (2.15)

If an irreducible unitary representation of G is ex-

tended to a symmetrie (irreducible) representation of

@(G), then the ring of operators representing the ele-

ments of @(G) is isomorphic to one of the subrings

@ «G). Therefore,

A ={a} = index set of equivalence classes of
unirreps of G, (2.16)

n = dimension of the unirrep D, (2.17)
Every simple algebra @ «§) is isomorphic to the algebra
of n X n_ matrices. This implies the existence of a
basis {eg:ef, € @(S); 0 € A;5,k =0,...,n, — 1} the
elements of which sometimes,14 and in the following
called units, satisfy

ey =eg (2.18)
eﬁee?m = 0,504,850 (2.19)
1
a=)(e3,a), -—ey forallac G(), (2. 20)
ajk ny
yegs, = Zl)ij(y)eﬁ for all y € U(G). (2.21)

Equation (2. 20) implies that the basis is orthogonal, and
that the elements eg are normalized to »1/2., Equation
(2.21) shows that tﬁe regular representation of § decom-
poses into a direct sum of irreducible representations
appearing with multiplicities equal to their dimensions.

The set {e;‘k} is an example for a basis of @(§) which
is the union of bases of the subalgebras @ «G). Any such
basis has two convenient properties:

(1) Its (nonvanishing) elements remain linearly indepen-
dent in every representation.

(2) They may be defined by successively defining bases
of the finite-dimensional subspaces @ ().

We accentuate these properties by
Definition 2: A basis of @(G) is convenient if it is

the union of bases of the subalgebras @ (§); otherwise
it is inconvenient.
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A basis of a subalgebra @ %(3) can also be obtained
via a matrix representation a® = M«(a2), If {M «@):
i=1,...,n2} is a set of #2 linearly independent n Xz
matrices, then the set {ag = Ek Mg(ex:i=1,..., 02}

7

constitutes a basis of @%G). Because of

(a,b%, = n traceM *+(a*)M %b) (2.22)
[following from Eq. (2. 20) and the bilinearity of the
scalar product] this basis can be orthonormalized even
without detailed knowledge of the invariant integration.
The operators B(a) onto which the elements a¥ are
mapped are completely determined by the matrices

M «(7) if in ¥, the carrier space of the unitary repre-
sentation of §, a basis {¢ w_,} is known the elements of
which transform according to unirreps of G. If such a
basis is not known it has to be constructed or what
amounts to the same the operators B(eﬁa) have to be
won from the unitary operators U(y).

Because of

ef, =M,[n D3Fx)x] (2.23)
such a construction presupposes a knowledge of

A

Dar):x € gae A5,k =0,1,...,n,— 1}
(2.24)

a complete set of unirreps of §

To make the construction of the operators B(eg)
practicable, the following condition must be fulfiﬁed.

Condition 2: All matrix elements Dg(x) € A have
to be given as known functions of the real parameters
mentioned in Condition 1.

From Eqgs. (2.10), (2. 23), and (2. 21), follows

yesyt = T Dy (y)es, (2. 25)

From this results

Theorvem 1: The tensor representation of G is a
faithful representation of G/ 3[§].

Proof: yayl = a for all a € @(§) is equivalent to
yesy ! = eg, for all 0,7, k. This implies Dg(y)Dgi(y) =
6,,6,,x Which is only possible if Dy) = w E*, | wyl =1,
Ea=n, X r 1-matrix. Therefore,D"'(y)lS“(,x) =
Dox)D>(y) for all x € G. Since this holds for all unir-
reps, the same relation is true for the regular repre-
sentation. But the latter is faithful; hence y € 3[G].

Theorem 1 comprises a necessary condition for an
irreducible representation of type B to be contained in
the tensor representation: The subduced representation
D8 2[G]15 has to be the identical representation. Theo-
rem 1 does not imply that the tensor representation
necessarily contains all irreducible representations of
s/ 3{G] but only sufficiently many to make the representa-
tion faithful. Note however the following sufficient con-
dition:

Theorem 2: I G has a faithful unirrep D« then
every irreducible representation of g/ 3[S] is contained
in the tensor representation.

Proof: A similar argumentation as in the proof of

Theorem 1 shows that the Kronecker product
Dax Do* (~ Da* X Do) is a faithful finite- dimensional
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representation of §/ {[9] if D« is a faithful unirrep of G.
From this it follows16 that the 2z-fold Kronecker pro-
ducts DeX Da*X ... X Dax Do* (n = 1,2, --) contain
all unirreps of §/z[G]. Therefore, only elements have to
be found which transform according to these Kronecker
products. But this is done by the elements of G(G) cor-
responding to the n-fold products Dg!l",‘,l(x)D g‘;kz(x)- e

D]s':‘;,n(x) € L2(9) as can be seen from Eq. (2.10)

D. The tensor basis

Like every other unitary representation of G the ten-
sor representation decomposes into a direct sum of
finite-dimensional irreducible representations. As the
decomposition of the regular representation is clearly
visible if the units are taken as basis of G(G), the de-
composition of the tensor representation can be made
obvious by the choice of a suitable basis.

Definition 3:_A set {z,,: z,,(= 0) € G(§); 8 € A;
7 =0,...,n, — 1} is an irreducible tensorial set (TS),
its elements are the components, and B is the fype of the
ITS, if for all y € U(G)
Dée A,

¥2,,5 ! = 22 D8 (y)z,,, (2. 26)

8§
Invariants are ITS's of type f = 0 [DO(y) =1 for all
y €G]

Theorems 1 and 2 can be restated as conditions for
the types of ITS's.

Definition 4: A tensor basis is an orthogonal basis
of @(G) the elements of which are components of ITS's.

Definition 5: Coupling coefficients [ajfl| vyr] are
complex numbers satisfying

Dg(y)D8x(y) = 2 [ajfl| vyr DY ()[akBm| vysT*
vyrs

,§ [ajBll vyr [* D4y )Do5(y)[akBm | wes] = 6,,0,eD%s(¥)
jklm

2,
for Do, D8, DYec A andally € G. (2.27)
The indices
v,w:O,l,...,magy—l (2.28)

m .5 = multiplicity of DY in D> X D Bx
distinguish unirreps occuring more than once. If
m 5= 1, which always holds for simply reducible
groups,17 vy = w = 0 can be omitted.

Theorem 3: Every set {[ajak| vpr]: a,Be A;
j,k=0,...,n,—Lv=0 Lr=0,...,
ng — 1} of coupling coefficients defines uniquely a con-
venient tensor basis the elements belonging to @ ¥G)
being normalized to #1/2; and vice versa.

yeee M 55—

Corollary: ITS's of type B exist if and only if
m g > 1 for some a € A.

Proof: (a) Assume the coupling coefficients to be
given and set

25, = 2 [0jak| vBrles; (2.29)
J
then z%; € @«(G).
— *
efi = 2 [ajok| vBr] 2, (2.30)
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is the inverse transformation of (2. 29), as follows from
Eqs. (2.27),y = 1-element of §. Since the z's are ob-~
tained from the e's by a unitary transformation, they are
like these orthonormalized and a basis of @(G). The re-
quired transformation properties (2.26) follow from
Eqgs. (2. 29), (2. 25), (2. 30), and (2. 27).

(b) Assume the tensor basis to be given. Its elements
must permit a labelling by @ (convenient basis), gr
(components of ITS's), and an index » if @ %(§) contains
more than one linearly independent ITS of type 8. Fur-
thermore, the elements have to be orthogonal (Definition
4) and normalized like the e's (Theorem 3). This im-
plies that unitary transformations like (2.29) and (2. 30)
exist. That the expansion coefficients appearing there
satisfy Eqgs. (2. 27) is a consequence of the transforma-
tion properties (2.25) and (2. 26) of the e's and the z's.

(c) The corollary follows from the completeness of the
basis (2.29).

Both aspects of Theorem 3 may be of practical inter-
est.

Condition 3: The coupling coefficients [ajok| vfr]
are tabulated or calculable by means of algorithms.

If Condition 3 is satisfied, the linear combinations (2. 29)
can be calculated at least successively. If also Con-
ditions 1 and 2 are fulfilled, all bounded operators z%,,
[B(z%,)] may be expressed as “linear combinations” of
the unitary operators x [U(x)]. A better estimation of
Condition 3 may be gained noting that the coupling co-
efficients [ajBi| vyr] are related to the usual Clebsch-

Gordan (CG) coefficients18 (ajgl| vyr) by

[agBl| vyr] = 27 (@3Bl | vyr)Uty, (2.31)
the unitary n, X n, matrix U® being defined by
DB8*(y) = USDB(y)UB+, DB, DF c A, (2.32)

The only thing that can be said about the coupling co-
efficients without further knowledge of the group refers
to the identical representation (8 = 0,7 =s = 0):

maso = L

_ (2.33)
[ajak] 000] = n}/2w 5, |w,l=1.
Equation (2. 33) shows that every subalgebra G %(§) con-
tains just one linearly independent invariant.

The second part of Theorem 3 is of interest if a con-
venient tensor basis is constructed successively by
means of matrix representations M «(z%,,) (cf.Sec. 2.C).
The postulated transformation properties of the ma-
trices follow from Eq. (2. 26) by substituting y— D «(y),
Zg, > M%(zg,). It is of advantage to satisfy them first
because matrices transforming differently (8r = g'»’)
are already orthogonal with respect to the scalar pro-
duct defined on the right side of Eq. (2.22). The ele-
ments of the matrices so constructed are then coupling
coefficients because of Theorem 3, If the matrices U«
are known, the CG coefficients (@jak| v8¥) are obtained
as “by-product” of such a construction.

E. Tensor operators

It follows from Eqs. (2.10), (2.7), (2.1), and (2. 26)
that

U(y)B(z,,)U(y71) = Zs)D‘zr(y)B(zﬂs)- (2.34)
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As was to be expected, ITS's are represented by {ensor
operators.19 If the carrier space JC of a unitary repre-
sentation is irreducible, then the algebra of its opera-
tors is isomorphic to one of the algebras @ «(G). In this
case the operators B(zg,,) offer a complete set of ortho-
normalized irreducible tensor operators. If X is redu-
cible, then irreducible tensor operators which are not
linear combinations of the operators B(z%,,) always
exist. Nevertheless, even then complete sets of ortho-
normalized tensor operators exist if the representation
is finite- dimensional.

Theorem 4: (a) Every finite-dimensional unitary
representation of a compact group G can be extended to
an irreducible representation of a compact group §’' D G.

(b) There exist tensor bases of @(§’) represented in
this irreducible representation of §’ by operators which
are irreducible tensor operators not only with respect
to §’ but also to §.

Proof: (a) The n-dimensional Hilbert space engen-
ders an irreducible representation of §’ = U(x). [This
does not exclude that 3¢ may also be irreducible for
proper (compact) subgroups §’ C U(n).]

(b) Choose a set A’ of unirreps of §’ for which the sub-
duced representations D’ | § are direct sums of unirreps
D e A,

Theorem 4 may be satisfying from an esthetic point
of view. However, a group §’ will be of more than aca-
demic interest only if it has a rather simple multiplica-
tion law and/or admits physical interpretation. If one
is only interested in a complete set of orthonormalized
tensor operators, this can be obtained far easier by a
direct construction.

(Hint: Choose a basis {¢,,,;} for which

U(y)‘l/waj = Zk)D%(y)\Pwar (2.35)
Define operators £, ,sq BY

Ewaj.lﬂ'a'j’ww"oc"j" = GW'w"éa’a“éj'j"WWtXi' (2.36)
The set of operators

Z wew'atopy = E,; [@ja’i’| vBY 1B oy iorats (2.37)

is then the desired one. Since their matrix elements in
the symmetry adapted basis (2.35) are just the coupling
coefficients defined by Egs. (2. 27), the operators (2. 37)
are quite similar to the Wigner operators introduced by
Biedenharn,29)

3. FINITE GROUPS

A. Total multiplicity

For finite groups (with discrete topology) @(G) is
| G]-dimensional. This allows to strengthen the Corol-
lary of Theorem 3.

Theovem 5: For finite G the number of linearly
independent ITS's of type B is

my=Tmge =2 x5 (3.1)
o ¢
Pyoof:
le, |
Mmoas = 2 Tol XEx3*x8, (3.2)
M
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le,l
161

The first part of Eq. (3. 1) was proved by de Vries3
under the restriction @ = . The extremely useful form
as a sum of primitive characters was given by Gambal
without proof.

In Egs. (3.1)-(3.3)
{IJ'}={071:"" A

and € is a class of conjugate elements.

XEXET =8,y (3.3)

| — 1} = class parameter 3.4)

B. Special results and explicit constructions

As an example for the application of the Theorems
1 and 2 we note

Theorem 6: In the group algebra @(§*) of a non-
Abelian double point group §* ITS's of type B exist if
an only if D8 is a unirrep of the adjoint point group §.

Proof: (a) If: Every double point group §* being a
finite subgroup of SU(2) is defined by a faithful two-
dimensional representation.21 If this is reducible §*

is Abelian; if not, Theorem 2 applies and 3[$*] = 3[SU(2)].

But §*/ z[SU(2)] =
(b) Only if: Theorem 1.

To express the elements of the tensor basis as linear
combinations of the elements x raises no difficulties.
Condition 1 is always satisfied for finite groups by a
parametrization with¢ = 0,...,

M(f] = (1/|9|)Zi)f(x ).

For finite groups appearing in physical problems
numerous tables22 exist so that for a certain group
only small calculations are necessary to satisfy also
Conditions 2 and 3. Examples of tensor bases for the
double point groups O* and T* constructed according to
Eq. (2. 29) were given by Bliimelhuber and Miihl.23

(3.5)

C. Another tensor basis

These exist infinitely many tensor bases definable
in different ways. In this section our definition (2. 29)
is compared with the one used up to now exclusively for
finite groups.

Its definition is based on the following facts:
U(g) © a(9),

<X’Y>2 =| 816,‘3,-

if G is finite, (3.6)

(3.7)

If the group elements are labelled by the class para-
meter (3.4) and by

{V}:{O,l’..., @u|—1}::

then, as was noted by Gamba,1 the mappings a— yay?!
induce permutations x, X, ,+~ By choosing a basis
{XOO;XIO" !xl |e |- 1’x20"' )xz ;(‘3 |- 1,-. }Gamba
obtained a decompos1t1on of the tensor representation
into a direct sum of | € ,|-dimensional permutation re-
presentations. These so-called class representations
may be reducible. By decomposing all of them into
irreducible constituents a tensor basis can be defined.
It suggests itself to achieve the decomposition by pro-
jecting the irreducible representations out of the class

in-class parameters, (3.8)
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representations.24 But if an irreducible representation
is contained more than once in a class representation,
then immediately the question arises: How are the pro-
jection operators and the elements of @(G) onto which
they act to be chosen so that the ITS's resulting from
the projection are orthogonal ? This problem was solved
essentially by de Vries3 and completely by Gilmore25
(and independently by the authors). Before giving this
solution we explain the notation used therein.

The | A| groups

3u ={x:ix e G5 %% 0 =xu0x}

= centralizer of x (3.9)
of order
Lz, 0=181/1¢€,l (3.10)
are special subgroups of G. For their unirreps we
introduce the symbols
A, ={a} = index set of equivalence classes
of unirreps of z,, (3.11)
e, = dimension of the unirrep D %¢, (3.12)
Dgg:o(x) =1 foralxe z,. (3.13)

Beside the unirreps D* & A we need equivalent unirgeps
De«(t) of § which subduce direct sums of unirreps D ¢

of Zu

Dali)(x) = Wald*Dea(x)Walk), (3.14)
[Woc(u)]-l - Woc(p)+, (3.15)
D)y 3, = direct sum of unirreps D of 3, (3.18)
Mqq, = multiplicity of D inDal z, (3.17)
{v(aa) o jrachia, €A ,m, u#O;
U(aap)—oyla--"m - ’]p 0,1,. a “1}
= row index of D alk), (3.18)
Theorem 7: The set {z! soyars B=0,...,|Al—1;
BeA;r =0,... ,ne—1v(303—o ,mﬂo—l}ofele—
ments
zH = W8
v(B0O)Br v(BaZ);a . ”, v%th )ccp M
X m 2imgDEEY o 5 . v 60y00(V IRy (3.19)

constitutes an inconvenient tensor basis, where the ele-
ments (3. 19) are normalized to (nB[ Zu h/z,

Proof: (a) The elements (3.19) are components of
ITS's: Substitute yx = X in'yz,z0)a,¥ ! and use the re-
presentation properties of D8{)(x) and Eqs. (3. 14), (3. 15).

(b) The elements (3.19) are orthogonal and normalized
to (ng! ER [y1/2; They are orthogonal in u because of
K BrOY'y ,e@ and Eq. (3.7). In calculating (z& s:y5r, 1
‘z‘, (80)87) 29 take into account Eq. (3.7), the equivalence

XX 0%~

po¥ 1 =yx 0y <> x7ly € g,

(3.20)
the multiplication properties, the orthogonality rela-
tions, 26 and the special form (3.16) of the unirreps
D& and Egs. (3. 10), (3.15).
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(c) There are | § | different elements (3. 19): For fixed
upr there exist

le,l
Mo = o] 2 xB(y,) (3.21)
g YuEzu
and therefore because of Eq. (3. 3) altogether
2ymgony =2 1¢,01 =18l (3.22)
W 1

different elements.

(d) Inconvenience: Convenience implies the invariants
to be multiples of the elements z§,, [see remark fol-
lowing Eq. (2. 33)]. But

1
Zhoo = 2 Xy, = 20 XFw 2280, (3.23)
le,l o

The tensor basis (3. 19) has several disadvantages
compared to the one proposed by us [Eq. (2.29)]:

(1) The defining equations (3.19) make sense only for
finite groups. (If class and in-class parameters27 are
known, it is possible also for continuous groups to de-
fine something similar to Gamba's class representa-
tions if one considers functions defined on the in-class
parameters and square-integrable with respect to them.
But these representations cannot be constituents of the
tensor representation,)

(2) The basis is inconvenient. Therefore, if its ele-
ments are represented by operators, linear dependences
not existing within @(G) appear in general.

10 0 0 g(l)
0 v 0 . 0 00
00 2. 0

A= ct s B =
000 yn-1 (l’g

v = primitive nth root of 1

(b) Irreducibility: A and B generate a unirrep of a sub-
group of order n3.28 Therefore the whole set of ma-
trices generated by A, B, and the P(x)'s, is a unirrep

of §’, faithful per definition.

(c) Definition and structure of G1: G is the subgroup of
§’ represented in this #-dimensional representation by
diagonal matrices. As is shown below [see (e)] all dia-
gonal elements are powers of v. Therefore, §] may be
identified with a subgroup of the n-fold direct product
€,®-.-® € represented in this n-dimensional repre-
sentation by the diagonal matrices with elements D,, =
vh ki, =1,...,n.

(d) Definition and structure of §4: G} is the subgroup of
G’ represented in this #-dimensional representation by
permutation matrices generated by the matrices B and
P(x),x € G. Since every such permutation matrix de-
tines a permutation of n objects G, may be identified
with a subgroup of $,.

(e) Structure of §': If a permutation matrix P is multi-
plied by a power of A the resulting matrix X has the
same structure as P,i.e., X and P have zeros and non-
vanishing matrix elements on the same places. The
only difference is that the elements different from zero
are 1's for P and powers of v for X. The product X,X,
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(3) In most cases the construction of this basis en-
tails calculational efforts not worthwhile in view of its
application. Because to give the z's as linear combina-
tions of the x's one has not only to determine the | A|
subgroups z, but also all the matrices W8(#), What is
of interest in applications are the matrix elements of
the corresponding operators in symmetry adapted
bases (Wigner-Eckart theorem). But there appear auto-
matically CG coefficients (or, depending on the defini-
tion of the reduced matrix element, coupling coefficients)
and therefore these have to be calculated also in this
case now at the latest.

D. Group extensions

As mentioned in Sec. 2E, it may be of interest to ex-
tend a reducible representation of § to an irreducible
one of §’ (O G). The desired simplicity of the multipli-
cation law suggests to look primarily for finite exten-
sions if G is finite. Such ones exist if the suppositions
of Theorem 4 (a) are somewhat limited.

Theovem 8: Every n-dimensional permutation
representation of a finite group § can be extended to an
irreducible unitary representation of a finite group
G’ 2 G, where §’= G/ & G4 (semidirect product), §1
€,®---® ¢, (n-fold direct product of the cyclic group
of order #),§; © 8, (symmetric group of order n!).

Proof: (a) Definition of §’: Define §’ by the matrix
group generated by the permutation matrices P(x),
x € G, and the matrices

0 0

1 0

0 0
s (3.24)

0 .o 1

0 .o 0
(3. 25)

of twomatrices X, and X, having the structure of P, and P,,
respectively, has the structure of P,P,. Therefore,
every matrix X representing an element of §’ has the
structure of a permutation matrix P, representing an
element of G, (C §’'). Py is uniquely determined by X

and thus also the diagonal matrix XP;! = D, repre-
senting an element of G}. Hence everyx’ € §' has a
unique decomposition x* = x%xj,x] € §j,x5 € G5, G

is a normal subgroup since PDP-1 is diagonal if D is a
diagonal and P a permutation matrix.

In his thesis2? de Vries raised the question how to
extend a finite group § to a finite group §’ so that for all
a € A elements of G(§’) can be found which transform
according to D2 under the automorphisms correspond-
ing to G.

Corollary: All types a € A of irreducible repre-
sentations of a finite group G can be realized within the
group algebra of a finite extension §’ with | §’| <

[GlIsH gt

Proof: (a) Choose as permutation representation
the regular matrix representation (basis {x}). Theorem
8 shows that this | G |-dimensional representation can be
extended to a unirrep of a group §’ with | §’j < | glIs!|g[.
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(b) The | § |-dimensional unirrep D1’ ¢ A’ may be chosen
to be of such a form that D1’ | G is a direct sum of unir-
reps D> € A [cf.Sec. 2E, Theorem 4 (b)]. The units rela-
ted to D1’ are then the elements el’ w € QY(G),a,a’

B ot
€ A;j’k = 0; cea sy — lyjl’k' = O,a.]..?]n

(c) For every a c A the subalgebra G1/(5’) contains
elements transforming according to D« because of [cf.
Eq. (2. 25)]

af

y G
DYk, arjnid) = 0 4o O DY),

yelis ooV ! = ? Doy(v)elin oo (3.26)

4. COMPACT LIE GROUPS
A. The universal enveloping algebra

If G is a compact z-dimensional Lie group, the results
of Sec. 2 may be slightly modified. The modifications
arise from considering the Lie algebra instead of the
group and embedding the group algebra in the universal
enveloping algebra. We introduce these concepts only
to such an extent that our considerations can be related
to similar results of other authors.

For a compact n-dimensional Lie group it is possible
to express the elements y € U(G) as
(4.1)

y(nly ety 77") = eXp[Z(n111 +o. + nnlr)]’

where the n's are real parameters and the 1's, the
generators, are self-adjoint operators in L2(G). The
real n-dimensional vector space spanned by the genera-
tors may be identified with the Lie algebra £(G) if the
Lie bracket is defined by the commutator. Since the
generators are unbounded operators their domain of
definition are only subsets of L2(G). The functions

D ].O;a*(x) belong to the domains of all generators:

LDg) = 23 CHOPRA), i =1,2,...,m

A={cgt):i=1,...,macA;j,k=0,1,...,n,— 1}
= a complete set of symmetric [C ) = C*+(7)]

irreducible matrix representations of £(G). (4.3)
A and A are related by
Doy, -+ +,m,) = expli[n,CH1) + - -+ + n,CHD)]}.  (4.4)

Because of Egs. (4.1) and (4. 4) a second definition of an
ITS equivalent to the first one is obtained if Eq. (2. 26)
is replaced by
1, 2g,] = 22 C8,()zs, CPB € A. (4.5)
s

Further modifications are suggested by the following
reasoning: The elements a € @(Q) are “linear combina-
tions” of the elements x € U(§) and these in turn power
series in the elements 1, € £(5). Therefore it must be
possible to express also the elements of @(§) as power
series in the generators. But considering polynomials
in the generators and their linear combinations, one
embeds @(§) in a somewhat more general construction:
the universal enveloping algebra30.31 §(3). As was al-
ready done for the Lie algebra £(§) we identify &(5)
with a set of operators in L2(§). Every operator p € 8(G)
leaves a subspace irreducible with respect to @(§) in-
variant and defines there an operator belonging to @(g).
For this we write symbolically
pe 8(9),p%c &(©).

p=2 p% (4.6)
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Like G(G) the algebra &(S) is an associative ring and
a linear space. It also admits a group of automorphisms
isomorphic to G/3[G] which is known as the adjoint
group.31 It is therefore possible to extend the definition
of ITS's substituting the condition z,, € a(9) by z,, <
&(S). But every such ITS in §(Q) defines by Eq. (f.6)
elements of @(G) which are ITS's of the same type be-
cause of Eq. (2.15). From there it follows together with
Theorem 3 (Sec. 2D) that also polynomials in the gene-
rators, being components of ITS's (“multipole opera-
tors”29), can be used to define coupling or CG-coeffi-
cients, The best known example are the generators
themselves which are usually chosen to be components
of ITS's,32

B. Special results and explicit constructions

Theovem 9: In the group algebra G(SU(n)) ITS's of
type B exist if and only if D8 is contained in a Kronecker
product D X --- x D* of n, D's and n, D*'s with n; = n,
modulo n, where D is the n-dimensional unirrep used to
define SU(n).

Proof: (a) Cnly if: D? must be a unirrep of
SU(n)/ 3[SU(n)] (Theorem 1). z[SU(n)] = z, is a cyclic
group of order n, represented in D by matrices gva:
i=1,...,n, v=primitive nthroot of 1, £ =n x n
1-matrix. The necessary and sufficient condition for a
Kronecker product of #; D's and n, D*'s to be a repre-
sentation of SU(n)/ 3, is therefore n; =n, modulo n.

(b) If: The above mentioned Kronecker products con-
tain all unirreps of SU(n)/ 3, since these are also unir-
reps of SU(n) and every such one is contained in a Kro-
necker product D X :-- X D*, Since D is faithful, there
must be ITS's for every unirrep of SU(z)/ 3, (Theorem 2).

Note that in Theorem 9 @(SU(n)) may be replaced by
&(SU(n)) because of Eq. (4.6).

Theorem 9 says in particular that in @(SU(2)) ITS's
of type j = integer (duality = 033) exist, and only these.
This is also seen if the tensor basis (2.29) is construct-
ed explicitly. Since SU(2) is multiplicity-free
dyigds S 1), the elements of a convenient tensor basis

are determined up to phase factors already by their
transformation properties and normalization. If unir-
reps are chosen the elements DJ,  .(x) of which are ex-
pressed by Wigner's formula34 as polynomials in the
matrix elements D1/2(x), then Condition 3 is satisfied
because the matrices U/ (j = j) and the CG- coefficients
(jmjm’|JM) are then known35:

2l = E' [jmjm’ | IM1ei, .
mm

=2i2m(im +Mj— mlJM)el
m

";n+ M, m"*

4.7

Since the coupling coefficients are the matrix elements
of the z's in a symmetry adapted basis, Eq. (4. 7) may be
interpreted as a definition of a tensor basis by means of
irreducible matrix representations. This, however, was
already done a long time ago by Racah4 who was also
interested in the inverse transformation of (4.7) since
he needed the e's for the construction of higher-dimen-
sional Lie algebras.

To introduce parameters, it suffices to parametrize
D1/2(x), possible in several ways. The Eulerian anglesl0
aBy are best known; equally useful are the class-para-
meter ¢ (“angle of rotation”) and the in-class para-
meters &, ¢ (“axis of rotation”).27.36 The matrix ele-
ments of D1/2(x) are then linear combinations of ex-
ponential functions of the parameters and fulfill there-
fore Condition 2. Condition 1 is also satisfied because of
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1 27 L 47
M{f]= 1= [, de [ singdp [ dvfte(apy)
4n
=_1 f (1— costb)dq)f sing d&_f dofix(dse).
16772 0 (4 8)
Therefore, for instance,
e =41 (%4 [ sing dg f dyD3* (0 By)x(aBy).
1672 -0

(4.9)

There exist, however, other expressions for the units
exploiting the fact that SU(2) is a Lie group. If we use
the symbols J, for the generators, one of these reads

M=o,
) (jxm)!(GFm— MNL/2 P (o)
e it = Y

(GFm)l(G£m + M)! Pit,,(m)
(4.10)
J,=dy 2 id,, Iy =dJ5 (4.11)
=M
Plin(t) = (¢t —m)t TI_(¢ % n), (4.12)
ej:Z;e.;nm=2. f sing ds
81r
X f de f " do sink¢ sin(j + L)ex(ds).  (4.13)

To obtain Eq. (4. 10), we used the usual matrix repre-
sentations M7(J;) 37 and the fact that

Plinllo) | %

P]t Bz & = S (4.14)

3 e, .
m=t(oM+1) YJMmm m'm',
The coefficients y3%,,, ,» are chosen in such a way that
the contributions of the powers J% cancel out for n >

2j — M if the expressions
€ym = [P0V Ph, (4.15)

are inserted into Eq. (4.14). From Egs. (4.7) and (4.10)
follows

(m)]ed

M=z 0,
20, = JMRRLT )€, (4.16)
) = 25 82m(Gm £ M j—m| JM)
Gxm)l(jFm— M)!) 172 P.ﬁ'},m(t) w1
GFm)(Gtm +M)! P, m)
@44, is a polynomial of degree J. For
(2 + 1)1(2j —J)1\ /2
i = JI(— 1)i~7
Zhy =1V <(2j +dJ+ 1)!(J!)2> » @18)
(I, Zhy] = [0 FM)J = M + 1)]V/ 228, ., (4.19)

[cf. Eq. (4.5)], and the commutation relations of the
J.'s imply

[/, polynomial in J, of degree ]

= polynomial in J, of degree n. (4. 20)
The polynomials J¥QJ74,(J,) appearing in Eq. (4.16)

coincide (up to phase factors) with those obtained by

Corio.5 He used matrix representations J, > MJ(J,)

and orthonormalized the (2j + 1)2 hnearly 1ndependent

matrices {MI(J2J5): 7 = 0,...,2%;s =0,...,2 — 7}

As a further possibility we finally note that the units
may be introduced in Eq. (4. 7) also in the form
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o .= (& + D! (G +m)! (G +m)\/2 1T

mm' T (24)] G—m)l(Gj—m)! (25 +1+7)!
X Jri-myr+i-m' (4 21)

given by Shapiro38 and clearly reflecting the embedding
Q(SU(2)) C &(SU(2)).

In principle Conditions 1-3 are also satisfied for
SU(3). However, to obtain similar expressions as for
SU(2), first the different definitions scattered in the
literature have to be fitted together. We do not deal
with this question here but limit ourselves to the con-
sequences of Theorem 9: In G(SU(3)) exist ITS's of type
(p,q) if and only if p = g modulo 3 (triality = 0).33
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On analytic nonlocal potentials. Il. Analyticity of the S
matrix, for fixed I, its representations, and a dispersion

relation for fixed #

Te Hai Yao*

Department of Physics and Astronomy, University College, London WCI, England
(Received 31 January 1973)

For a class of analytic short-ranged nonlocal potentials, we study the analyticity of the S matrix in
the k plane, for fixed /, using Fredholm method for the Lippman-Schwinger equation for the
partial scattering solution, and contour deformation in the analytic continuation of the .S matrix,
thereby extending a representation of the § matrix in terms of Fredholm determinants. We also
obtain a representation of the S matrix in terms of Jost functions, for / = 0. For a subclass of this
class of potentials, we obtain a dispersion relation for the full scattering amplitude, for fixed ¢ in the
range 0 > ¢ > — 4y?, where y is some parameter of the potential, using summation of the partial
amplitude expansion of the full amplitude. Analyticity properties of the partial scattering solution,
for all [, and of the regular and Jost solutions, for I = 0, are also discussed.

1. INTRODUCTION

In a previous article! we proposed a class of analytic
short-ranged nonlocal potentials V(x,x’) defined by the
following conditions (A):

(Al) V(x,x’) is real, V{x,x') = V(x', x).
(A2) V(x,x’) is rotationally invariant:

Vix,x') = V(x,x’, cosv),

x=|x[>0, x=|x'|>0, 1=cosvz—1,

where v is the angle between x and x’.

(A3) Wix, x, cosy) = (e77%/x2) V(x, x’, cosv)(e v*"/x'%),
y > 0,% >az o,

where I7(x,x’, cosv) is holomorphic in x and x’, in

Rex > 0, Rex’ > 0,for 1 = cosy = — 1, and continuous

in all three variables in Rex > 0, Rex’ >0,

1>cosyv=—1,and

|V(x,x" cosv) | <const, Rex >0, Rex' >0, 1 =cosy=1l.
We obtained a forward dispersion relation for poten-

tials satisfying these conditions.

Here we first study the analyticity of the S matrix in
the k plane, for fixed 7, arriving at the holomorphy of the
S matrix in the whole &k plane cut from ¢y to {% and
from — iy to — i, which we shall call II, perhaps with
the exception of poles at the nonreal zeroes of A,(k),
where A (k) is the Fredholm determinant of a certain
integral operator. We extend the domain of validity of
a representation of the S matrix in terms of Fredholm
determinants introduced by Bertero et al.2 to II. The
scattering solution y/, (k; x), for fixed /, is shown to be
holomorphic in 2 and x, for # in I and Re x > 0, perhaps
with the exception of poles in II at the zeroes of A,(%).

We then show that, for @« = ,and V(x, x’, cosv) a
double Laplace transform of a suitable spectral function,
the partial amplitude expansion of the full amplitude,
valid for 2 > 0 and cosé in an ellipse with foci —1,+ 1,
where 6 is the scattering angle, can be summed for % in
II, and ¢ in the range 0 > ¢ > — 442, where ¢ is the square
of the momentum transfer, and that the resulting full
amplitude is holomorphic in II, perhaps with the excep-
tion of poles at the nonreal zeroes of A,(k), where [ is
arbitrary, for 0 = { > 4,2 if we assume that A;(k = 0) =
0 for all /. We obtain a dispersion relation for the full
amplitude, in the energy variable, for 0 = { > — 42,
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Finally, for I = 0, we study the regular solution ¢(k; x),
the Jost solutions f:(k; x), and the Jost functions £(k),
for % in Il and Rex > 0, and obtain a representation
of the S matrix in terms of the Jost functions, for poten-
tials satisfying Conditions (A). The Jost functions are
meromorphic in II, and the regular solutions and the
Jost solutions are holomorphic in % and x, for & in II
and Re x > 0, perhaps with the exception of poles in II.

For I # 0, we may similarly define the regular solution,
the Jost solutions, and the Jost functions, and obtain a
representation of the S matrix in terms of the Jost func-
tions, for potentials satisfying Conditions (A), if the Ith
partial potential V,(x, x’} vanishes sufficiently rapidly
as x and/or x’ approach zero.

We remark that the results obtained in Ref. 1 and this
article for potentials satisfying Conditions (A1)-(A3)
can be immediately generalized in the case of potentials
satisfying Conditions (A1), (A2), and the following Condi-
tions (A3’):

e Yx(x + a)m
X o

e v (x! + g)m
x'o

$>az=0,

Vix,x cosy) = V(x,x', cosv)

’

y>0, a>0, mz=0 (A3")

>

where I7(x, x’, cosy) satisfies the same conditions as in (A3).

We also remark that an unsubtracted dispersion rela-
tion holds for the full scattering amplitude, for 0 = £ >
— 42, for potentials satisfying Conditions (A1), (A2), and
(A3"), with m integral, @ = 3, and V(x, x’, cosv) belonging
to the double Laplace Transform class mentioned above.

We note that a local Yukawian potential
Ve = [T dped o), u>0,x>0,

with a continuous and absolutely integrable spectral
function can be expressed as

V(x) = e V(x),
where V(x) is holomorphic in Re x > 0 and satisfies
Rex > 0.

2. THE POTENTIAL, THE KERNEL, THE SCATTERING
SOLUTION, AND THE PARTIAL SCATTERING
AMPLITUDE

For potentials satisfying Conditions (A) the partial
potentials V,(x,x"), defined by

| V(x) | < const,

V,(x,x") = Qmxx") f_+11d cosv V(x, x') F,(cosv)

1211



1212 T. H. Yao: On analytic nonlocal potentials. |1

satisfy the following conditions:
(1) V,(x,x') is real, Vix,x") = V,(x, %),
x>0,x’ >0
V,(x, %) = (e71%/x8) V, (%, x")(e"7%'/x'5),
3 >6=2—1

(2)

where
()
(ii) | V,(x,x)] <

171 (%, x’) is holomorphic in Rex > 0,Rex’ > 0.
const/v2] + 1, Rex > 0,Rex’ > 0.3

In the following, V,(x.x’) is defined for Rex > 0,
Rex’ > 0,in terms of V, (x, x’), by the above relatlon (2).

We introduce the function K (%; x, x’} defined by
K,(k;x,x')

+ (1)
R (kx) lel (kx)) IN <dx

=( 5

i (kx ")jl(kx ")

pl+l ) v, (5", )

(kx)j (k%)) reo has a bounded continuous solution, the scattering solution
"ol ” ) ” ” ’
+ ( Bieik fx dx" [k kex"YHP (kx")] V, (", 7'), given explicitly by the formula ’ ’
) 2.1) w A, (k; %, )
in Imk > —y, Rex > 0, Rex’ > 0,and Vs 2) = (kx)j, (kx) + [ dx' 7 (') §, (k)
° A (k) (2. 5)
K,(k;x,x') =10
when A (k) = 0, where A,(k) and A (k; x, x') are the Fred-
inImk > —y, x=0, Rex’ > 0, i.e., holm determinant and the Fredholm minor of the integral
o operator K, (k) on the space of bounded measurable func-
K)k;x,x") = f dx” G, (k;x,x") V,(x", x"), tions, with kernel K [(k; x,x'),k >0, x > 0, x* > 0,and are
. given by
Gylk; %, x) = [(Rxye,) D ey ) (o )iy (o oy )ik, B0, -
Gilks X, ¥)= [~ 1/(21 + D] (ebha/ 3h,). M) = 22 (= 17/n 1]y, (8), (2.6)
The functions zj,(z), zh ,‘1) (2), and their derivatives satisfy 4, 0k) =1,
the following inequalities, for all z in the first and the _ . .. .
third and for all z = 0 in the second and the last: Asak) = Kolk; 2, %) - K (k5 51, 5,)
=) 00 "
+1 .. dx.++dx
|2j,(2)| < De'lmz! <1 lzll I> ) (2. 2a) f" f° ! " ’
z
I | ] l(k’ n’xl)' l(k, n? ﬂ)
|z0P(2) | < De‘lm‘(—z————) s (2. 2b)
I 1+'Z| - n?l, (2.7)
d : A (ksx,x) = 25 [ Dn/nl]b, (& x,x), (2.8)
ld—(zj,(z)) ‘ < De 'Imz'<%) , (2. 2¢) : n=0 [ 188 ’
z z
| Al’o(k;x;xl)=Kl(k;x’x')’
K,(k;x,x') K, (k;x,%,) K, (k;x,x,)
- - K (k;xy,%") K (k;xy,%x.) K, (k; %y, x,)
A, B x,x') = fo o fo dxy - dx, . . , n=l, (2.9)
K (k’ ,.’x) K (k’ nyx]_)' l(k, nr X )
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a tmaf Lzl \@D
2k (2))| < De 1““( >
'dz( 0 ))| 1+ |z ’

The function K ,(k; x, x’) is holomorphic in &, x,and x’
in Imk > — vy, Rex > 0,and Rex’ > 0,and we find the
following inequalities,for Imk = — (y — €), y 2€ > 0,
x>0, Rex'> 0:

(2. 2d)

where D is a constant for fixed 7.5

[K,(k;%,x") | < N(€) xeW=9% |e-r%'/x'8 || (2. 3a)

|K,(k;%,x') | < N(e) |k 1e G5 [emr='/x% || (2. 3D)

where N(e) depends on ¢ only for fixed .

From Fredholm theory? and the inequality (2. 3a) we
find that, for & > 0, the equation

Y, (k; x) = (kx)j, (kx) + fo‘” dx' K (k; %, x") @ (R; 2"), (2. 4)
x > 0.

This solution y, (k; x) is unique in the space of bounded [
measurable functmns and is seen to belong to C*(0, )
from the following relationship:

Yol; 2) = (k5] ,(kx) + [° dx” G, (k; %, x")

x [, dx' V(a2 gy (ks ), (2.10)
where f * dx V,(x”, x' )¢, (k; ') is holomorphic in x”,
for Rex” > 0

From (2. 10) we also find that y, (k; x) satisfies the
following partial wave integrodifferential equation:

(e

W+ 1) o

2 — 7 ’ ’

e +k = )y(z) = fo dx’ Viy(x,x")y(x'), x(; 0.
J. Math. Phys., Vol. 15, No. 8, August 1974
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Conversely, we may show that any solution of (2. 11) with
absolutely continuous first derivative® and vanishing at
the origin necessarily satisfies (2.10)9 and consequently
is given by (2. 5) if it is bounded and if 4, (k) = 0.

For £ > 0, A,;(k) = 0, the solution (2. 5) has the follow-
ing behavior as x — 0:

WZ(k;x) x_O O(JC), 1= 0,
O(x21Inx), I=1,06=
Y,k %) = ( ’ ’ (2.12)
1> 0{O(x278), I=1,8=0,
Y, (52 = 0(x2®, 1=z 2,
X
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and the following asymptotic behavior:
W, k;0) = sinlkx— (In/2)] + eilks-Gm2)) T, (R),
where

T, (k) = (— 1/F) f dx(kx)],(kx)f dx' Vi (x,x')y,(k; x")

(2.13)
and is the partial scattering amplitude.

Using (2. 2a) to (2. 2d) we have
v (k; x) o 0(1)
hence we have
W (k) Yy (ks %) — W (ks x) Wi (ks )™ — > 0.
We may then show that
T, (k) = "% ® sing, (&), (2. 14)

where 6, (%) is real.1% §,(k) is the phase shift. The
asymptotlc form of ¥, (k; x) then becomes
Y,k =~ e® sinlbx— (tn/2) + 6,(k)]. (2. 15)
X > 00

If we define the S matrix S, (k) as

S,(k) =1+ 2 T,(R), (2. 16)
then we have
S, (k) = 214, (2.17)

Using (2. 5), we have the following explicit form for
T,(R):

T, (k) = TV (k) + [T P (R)/ 2, ()], (2.18)
TM () = 1/k) [ dxlkx) j, (k)
x f0°° dx' V(x, x')(kx'), (kx’),  (2.19)
TO k) = (— 1/k) [ axkn) j, (k%) [ dx' Vx, 2')
X f0°° dx" A, (k; %', x")(kx") §, (x"). (2. 20)

From a result of Ref. 2 for / = 0 and its generalization
to arbitrary I, we have the following representation for
the S matrix:

Sl(k) = Fl(k)/Fl(‘_ k),
where F,(— k) is the Fredholm determinant of L, (%),

L,(k) bemg a Hilbert-Schmidt operator in a certam
H11bert space with kernel

Ly(k;x,x') = fooo dx” V,(x,x") G, (k; x", x').
We have2

Fy— k) =11y (2),

01,1(k) = fooo dx L, (k; x, x),
NE) = 5 @),
Azlo(k) =1, Al_l(k) =0,

J. Math. Phys., Vol. 15, No. 8, August 1974
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A“(k) =
0 n—1 0
0, 5(k) 0 n—2
0, 3(k) 0, 5(k) 0
(= 1)
n! ’
O ak)  0paq(R) 0, o(k) - Op(k) O
n=2
o, 8) = [ L) (x,x)dx, n=2.
Using the relationship
f0°° K, (R)*x,x)dx =0, , n=l,
we find that12
Ak) = Fy(— k), A,(~k) =F(k).
Hence we have
S (k) = A, (—k)/A,R). (2.21)

We shall find in the following section that the zeroes
of a,(k),for k> 0,are finite in number, and that T, (k)
can be extended to a function holomorphic in a neighbor-
hood of the positive real axis of &.

In Secs. 3,4, 5, we shall consider analytic extensions
of A,(k), T,(k),and S, (k), in the % plane, for fixed I. We
shall consider also an analytic extension of ¢, (k; x) in
the k and x planes, for fixed 1.

3. ZEROES OF A, (k) AND BOUND STATES

Using the inequality (2. 3a), we may extend the definitions
(2.7) and (2. 6) of A, (k) and 4, (k) to the region Imk>—y.
We may show that so defined, A (k) is holomorphic in
Imk > — y. Also, from (2. 36) we havels

(&, LB <(1/[k]|#) N(e)» M(e)"n™2, n=>1
M(e) = f0°° dx x(1-8)g-ex,
Imk = — (y—e¢), y2€>0, B =0,
Hence we have
A;(R) - 1, Imkz=—(y—e¢€), y=2€ >0 (3.1)

Ikl = o

for fixed I. Hence the number of zeroes of A, (&), for
fixed /,in Imk > — (y — €), v = € > 0, is finite.

We have

K,(—k*x,x") =K, (k;x,x")*, Imk>—y, x=0, >0,

Hence we obtain:

A —RY) =4a,(k)* Imk>—y. (3.2)
Using the inequality (2. 3a), we may also extend the

definitions (2. 9) and (2. 8) of A, , (k;x,x ') and A, (k; x, x')

to the region Imk > — y,for x = 0, Rex'> 0. We f1nd that

A, (k;x,x'), so defined, is holomorphlc in k and x’ in

Imk > - v, Rex’ > 0,for x = 0, and continuous in x and

x’inx = 0, Rex’ > 0 for Imk > y. Furthermore, we

have
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la, . x, %) |

< x g()"ﬁ)xle—yx’/xlé | N(e)n*1 M) (n + 1)(,,+1)/2’

| A,(k;%,%") | < const - xe(r-9x| gvs' /5|, (3.3)

Imk>—(y—¢), yz2e€>0, x=20, Rex’ >0

The partial scattering amplitude T,(k) may now be de-
fined for |Imk | < y, A, (k) = 0,by

T, (k) = T (R) + [T (k)/ 8, (F)], (3. 4)

where T{1(k) and T 2 (k) are given by (2. 192 and (2. 20),
now extended to lImk | <y. We find that T (2) and
T{?) (k) are holomorphic in | Imk | < y. Hence from the
holomorphy of A;(k) in Imk > — » and the boundedness
of T, (k) for k > O, A, (k) # 0, we find that T,(k) is holo-
morphic in a neighborhood of the positive real axis of %.

We now relate the zeroes of A,(k) in Imk = 0 to solu-
tions y, (k; x) of (2. 11) with absolutely continuous first
derivative satisfying

x, (k520 = 00,

(3. 5)
fooo dx| x,(k;x)12 < 0,

We shall find that any solution , (%;x),% # 0, satisfying

the above condition also satifies:
Xl(k; x) xf() 0(1) s

x; &%) = O(e7r%/x8), (8. 6)

X7 o0

xi(k;x) = Oe7v*/x9).
x>

We suppose that (3. 6) is valid. Since we have
a0 3852 — x, 5 20 065 0*] — x, (ks 0)°

X fow dx’ V,(x,x) x; (k; &) + x,(k; x)

x fow dax’ Vy(x,x) x, (k; x')* = — 2i Imk2 | y, (k; %) |,
we obtain
f dx Xz(k x)* Xl(k x) —x; (5 x) x, (k5 ) *]

— 2 tmk2 [° ax|x, (k2 |2

Hence from (3. 5) and (3. 6) we obtain

Imk2 [ dxly,(k;2) |2 =0

. Imk2 =2Imk-Rek =0, ie.k2isreal,

~Imk =0 or Rek=0. (3.7
We now suppose that A,(k) = 0, Imk = 0. Then the
equation

x; (ks %) = fowdx’Kl(k;x,x’)Xl(k;x’) (3. 8)
has a finite number of bounded measurable solutions.?
For each such bounded solution we may write (3. 8) as
x (ks %) = foo dx" G (k; x, x") f * dx' V,(x"x') x, (B; %),
(3.9
We may demonstrate using (3. 9) that yx,(k; x) belongs
to C*(0, ) and that it satisfies (2. 11). We may also
demonstrate

J. Math. Phys., Vol. 15, No. 8, August 1974
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x=0

O(x)

x;(k;x) = 0(1)

x—0
using (2. 2a) to (2. 24).

We may write (3. 9),for & = 0, in the following form:

1)
EIRED 1009 + 12,
z

xi(k; %) =
with
19(k) = f dx"(kx") 7, (kx") f dx’ v, (x", x') x, (k; X').
We have

X (B x)* X (ks %) —

Hence we may show

Xz (&5 x) x;(k; )* — 0.

x>0

IO (k) =0,
I@R;x) = Ofe7r%/xb),
11(2)'(/3;96) = O(e‘”/xé),

using (2. 2a) to (2. 2d). Hence f dx |y, (k;x)| 2 < © and
(3. 6) holds.

For k = 0, we find immediately that x,(# = 0; x) be-
longs to C°°(O ©) and satisfies (3. 5).

For A, (k) = 0, Imk > 0,again (3. 8) has a finite num-
ber of bounded measurable solutions? which may be
shown to belong to C*(0, ) and to satisfy (2. 11). And
again we may demonstrate that such bounded solutions
satisfy (8. 5) and (3. 6).

We thus find that the zeroes of A, () in Imk > 0 can
only lie on the real axis or the upper imaginary axis,
and placed symmetrically about the origin, from (3. 2).

Suppose now that y, (%; x) has absolutely continuous
first derivative and satisfies (2. 11) and the condition
(3. 5), with Imk > 0. Then we have

| [ ax V(x x)x, (s x| < f dx'| V,(x, x| 2]1/2

f ax'|x,(k; 96)2]1/2 const - (e77%/x3).

Hence, using the condition (3. 5), we find that 16y, (&; x)
must satisfy (3. 9) with

fooo dx(kx)j, (kx) fooo dx’ Vi (x,x")x,(k; x") = 0.

Hence y,(k; x) vanishes exponentially as x - ©. Hence
we may change the order of integrations in (3. 9) and
obtain (3. 8). Consequently A,{k) = 0.7

We may demonstrate that the function y(k;x) =
[x;(k; x)/x]Y,,(0, ¢), where 0 and ¢ are the polar angles
of x and x;{k; %), is any bounded C*(0, ©) solution of
(3. 8), and where k is a zero of A,(k), with Imk = 0,
m=11—1, — I, belongs1? to W2,2 and consequently
are bound state solutions of the system of angular
momentum guantum numbers [ and m. It also follows
from this and the self-adjointness of the Hamiltonian
operator of the system that the zeroes of A, (k) in
Imk = 0 must lie on the real axis or the upper imaginary
axis.

We suppose now that Imk > 0 and that

[4

x(k;x) = El [x;ml®; %)/ %] ¥,,,(6, @)
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is a bound state solution of the system of angular momen-
tum quantum number I, where 6 and ¢ are the polar
angles of x. Then y(k;X) satisfies the following equation:

x(k;x) = (— 1/47) [ ax’ [exp(ik|x — x'|)/x — x'| ]
X fdx" V', x") x(k;x").

Hence using the expansion
exp(ik | x ~x')/|x— x|

o0
= ik 20 @1+ 1) O (kx, )i, (kxy,,) Py (R %),
i=

x=|xli=xx, X =[X|&=xx, |x|=|x],
we find that there is at least one function yx, .(%; x) which
is not identically zero and which satisfies (3. 9) and is a

bounded C*(0, ©) solution of (3. 8). Hence A,(k) = 0.

Further, using a result of Ref. 18, we find that no
zeroes of A, (k) can occur in Imk = 0, for ! sufficiently
large. Hence the total number of zeroes of A,(k), for all
l,in Imk = 0, is finite.

4. ANALYTIC CONTINUATION OF THE PARTIAL
SCATTERING AMPLITUDE

In Sec. 2 we defined the partial scattering amplitude
T,(k),for |Imk | < y, with the exception of nonreal
zeroes of A,(k),by (3. 4). It is holomorphic in this
region. We now consider an analytic continuation of
T,(k), by contour rotation.

We consider, for k = ik, y > k > — vy, the function
hy(k;x) =
We have

© ~ —yx’ i
S ax' 7y (x, %) € (kxn)j,(ox”).
x'6

h,(ik;x) = lim lim f dx’Vl(x x)

€20+ Ro>0

(ucx Y, (Ekx’).

The integrand is holomorphic in x’ in Rex’ > 0. We

may write
fcz_ fca> dx

h,Gk; %) = lim lim (f +
G
X V,0c,%%) (75" /%78) (ikx’) §, (ixx"),

e=>0+ R

(see Fig.1)

where C; and C, are circular arcs of angle w,7/2 > w>
— /2.

Using the bound

’ 1
l (le )] (ZKX ) l DeIK lix’ lcos ¢<__I_’£"i'__>
¢ 1+ [gllx))

for ' = |x’' | et?, w = @ > 0, obtainable from (2. 2a), we
find that
lim dx! V,(x,x') (77" /x'8) (ixx") j , (ikx') = 0,

=0+ "Cy

Lim [ dx V,(x, ) (e v*'/x8) (ixx')j, (ikx’) = 0.

R=oo “Ca
Hence
hy(iK; x) f dlx'| e 7(x, lx le“*’) (e7r1*1e™ /| x| 6 gibw)

(ik [x'Jeiw)j, (i | 2 | eiw),
For y > « > —y, k,(i«;x) is holomorphic in x in
Rex > 0 and is bounded there. Hence we may apply the
same change of contour of integration to the integral

fooo dx(ikx) j, (ikx)(e v /x8) I, (ik; x)
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x! Plane
C: ol
C3
Ly Yo L w
0 € R
FIG. 1.
and obtain
T Mik) = T, Vv (ik),
where
TV (k)

=1 fooodlxleiw(klxleW)jl(k|x|eiw)

X (e y1x1e% /| x |8 gibw) fo‘x’ d| x'|etw V(] x|ew, | x]eiw)
X (e 11*'162 /| x7 |8 giow) (k| 7| eiw) j, (k| x' | €)

is defined in the strip |Imkeiv|< 4 cosw, which is the
strip |Imk|< y cosw rotated through w in the clockwise
direction about the origin (Fig. 2). Further T ®w (k) is
holomorphic in the strip [Imkeiv | <y cosw. Hence we
have continued T l( (k) to a function holomorphic in

| Imkeiv| <y cosw, for every w in the range 7/2 > w >
— m/2,and hence to a function holomorphic in II.

Using the holomorphy of A (k;x,x’) in % and x’, in
Imk > — 4, Rex’ > 0,for x = 0, and the bound (3. 3) we
find that T(2)(k) can be contmued to a function holo-
morphic in 'Imk > — y,cut from # to £, Hence T, (k)
has been continued to a function holomorphic in
Imk > — 5, cut from ¢ y to /%, perhaps with isolated
poles at the nonreal zeroes of A, (k). We have, in this
region of holomorphy

T,(k) = TV (&) + [T{2 (k)/A, (B)], (4.2)
TR = 7 V%Rk), |Imkeiv]|<ycosw, (4 3)
k Plane
R
o
'L*c
iy
7(.t)
_IY
FIG. 2.
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Ti(R) =— 1/k [ 7 d] x| etw(k]x|eiw)j, (k] x |eiw)
x {e77 ule‘“’/| x|8eitw)
X [ dx 7,1 x] €3, ) (e7+/x'9)
X fooo dlx"|etva,(k;x, x| eiv)k |x"|eiv)

x j (klx"|etw), |Imkeiw | <4y cosw. (4. 4)

Similarly, we may use (2. 5) to define a function
¥, (k;x) in {Imk | <y, A,(k) # 0, x = 0, which is holo-
morphic in k in {Imk | <y, A, (k) = 0, for fixed x =0,
and which is a solution of (2.11)19 with the behavior
near the origin x = 0 given by (2. 12), for [Imk | < y,
A, (k) = 0,and to continue it to a function holomorphic
in % in Imk > — v, A,(k) # 0,and cut from ¢y to i,
for fixed x = 0, and having the behavior near the origin
given by (2. 12),for fixed k in Imk > — 9, A, (k) = 0,
and not on the cut. For Imk > y, the function y, {(&; x)
need not be a solution of (2, 11),

.

1216

5. FURTHER ANALYTIC CONTINUATION

The Fredholm determinant A, (k) was defined in Sec.
2 for |Imk [ <y by (2. 6) and is holomorphic there. We
now continue A, (k) to a function holomorphic in the
whole & plane cut from — iy to — i,

We consider 2 = ik, ¥ > k > — y. From the holo-
morphy of K, (k; x,x’) in x and x’ in Rex > 0,Rex’ > 0,
the inequalities (2. 2a) and (2. 2b), and using the method
of contour rotation similar to what we did in Sec. 4,and
also using induction and the relationships

A, (k) = fooo dx A, . (k5 %, x),
A, (ik;x,x") =—n foco dax” Ay 4 (ik; %, x") K, (ik; 2", x7)
+ 4, (i) K, (ix; x, x'),
we may show that A, (i) and A, ,(ik; x, x’) satisfy

A, oK) =1,

N et

- iw
e yix,le

N o0 o« .
Al,n(“{)zfo ...fo d[xll---'dlxnle"“” lx |5ei5w”
1

|xn'6ei5w

A, Gix; | %y leiw, | xy leiw)-« - A, (ik; | xy |eto, | x, |eiw)

X , n=21,
A, Gk | x, ] eiv, | x| eiw) -+ A, (ik; | x, ledo, | x, ] et)
Al'o(ix;x,x’) =K, (ik;x, %), (5.1)
’ - G - iw
] ) . co ) e’ e ylz 1% e ylx,le
8, , (iK%, 2') = fo ...fo dlxy|---dlx,leine pral Ty AL
A, (i x, ') A, (ik;x, | %y | eiw)- -+ A, (ik; x, | x, ] 9
A, (ik; | xy | e, x’)
X . , n=l, x=20, Rex'>0,
A, (ix; | x, | eiv, x') A, G| x, et | x, |etw
where 7/2 > w > — 7/2 and
(i) 2 (ikx) BV (ik2)\ poo (ikx") g, Grxm)\ €% o <(in)]',(in)>
i e N — w2 T b e V., (x7,x 4+ {——
A,(zx,x,x)-( — fo dx Gt o 1 (x7, %) AT
-
) * dx" (i} (xx") BD (ikx")] — Tiax), Rexr>0, Rex >0.
Hence we have
Al’n(ix) = A‘;’,n(ix),
where A} (k) is defined,using (2. 2a) and (2. 2b), in the strip |Imkgeiv| <y cosw, 7/2 > w > —n/2,by
Yol =1
1,0 - ’ . ' e'}"xlle‘w e_','xn'eiw
Inw . .
A(f',,(k)=fo fo dlxy|---dlx,le | x| 8¢ 0w | x,|8eitw
A (B %y | etw, | %y ] eiw)--- A, (k; x| ete, |x,| eiw)
X , n=l, (5.2)

Akl x, | eiv, | xg]eiw) - A (k; x| e, |x, letv)

where A, (k; |x |eiv, |’ | eiv) is given by

J. Math. Phys., Vol. 15, No. 8, August 1974
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Ak lxleiv, | x| eiv)
<kl+1(k|xleiw>h§1’<k|x|ew)>
- ik

(k| x"| i) j, (k] x| €i)) e-vis" 1%
il

fmdlx”l '<

x V,(|x"|etw,| x |etw) + (

| x]8 gitw

(k|x [etw)j, (k] x 1 eiw)>
ki~ ik
% [u: dlx'leiw[kl(k| x”|eiw) h{D (k] x| eiw)]

e—ylx”leiw - )
V,(lx"letw,|x [eiw), (5.3)

| x| 8 eidw

|Imkeiv] < y cosw, /2> w>—7/2,

x>0, [#]>0.

Since A, (k; | x |e?w, | x' |ew) is holomorphic in & in
[Imkeiv | < Y COSw, 11/2 >w>—n/2,for x>0,
|x’ | > 0, we find, using (2. 2a) and (2. 2b), that Ay
holomorphlc in IImkeW | <y cosw. And using

|A,(k; x| ete, [ x']eiv) | <

for [Imkeiv| < y cosw — €, y cosw =
— 7/2,we find that the series

* — n

E (__.1)_ n (%)

x=0 n!
is convergent and the sum is holomorphic in [Imkeiv | <y
cosw. Hence A (k) has been continued to a function holo-
morphic in lImkeWI <y cosw, 7/2> w>—n/2,and
hence to a function holomorph1c in the whole % plane cut
from — 7y to — %, if we use a previous result. We de-
note this function by A, (%) also. For kin [Imkeiv| < y
cosw, 1/2>w > — 11/2 we have

(k) is

const: |x | e!Imke¥ izl
(5.4)

€e>0,1/2>w>
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for fixed I, uniformly in (37/2) — € > argk > —(7/2 — €),
for any fixed € in the range 7/2 > € > 0. Hence from

(2. 21), we find that the S matrix S,(%) is holomorphic in
Ii, perhaps with the exception of isolated poles which are
finite in number in the regions (37/2) — € = arghk = —
((n/2) — €), 1/2>€>0,and |Imk|<y—¢€, y>€>0,
at the nonreal zeroes of A, (k),and that we have the rep-
resentation

S (k) = A, (—R)/Aa,(k), (5. 8)
for & in II.
Using
RV 2% = (— D)ing2)*,  j,=2% = 1)i,)*,
and

V(x*, 5 %) = V(x, x)*,

which follows from Schwartz reflection principle, 20,21
we get

A~ kY) =4, (5.9
Consequently, we have
S, k") =S,(E")1=5,Fk" (5. 10)
From (5. 7), we also have
S (k) ——2 (5.11)
for fixed I, un1form1y in(m/2)—ezw=—(1/2—¢),

/2= € > 0,for w = — arg(z k).

The partial scattering amplitude T, (%) is therefore
continued to a function holomorphic in II, perhaps with
poles at the nonreal zeroes of A (%), via the relationship

S,(k) =1+ 2T, (k). (5. 12)

Using (5. 1), and the bounds (2. 2a) and (2. 2b), and using
contour rotation, we obtain the following representation

© for T,(k) in |Imkeiv| < y cosw, 7/2 > w >—7/2:
ARy = 25 ——— AY (k). (5. 5) PP (2)
er S T,(k) = T D) + [T 2 (R)/a, ()] (5. 13)
Further, using the relation where x| ol
- xle
|A,(k; 1% |eiw, | |eiv) | < _C_OEL’ T V() = _lf dlxle“"(kleew)]l(klxle‘”)—y———
| 2| cos2w [x |6 gidw
. iw
E=0, k==z|kleiv, n/2>w>—1/2 (5.6) xfo dl x| et 7,(lxleiw, | x leiw) I_VIL:;;_
s . x’ eidw
for fixed 7,and (3. 1), we find that x (k) x'letw)i, (k| X |eiw), (5. 14)
ARy ——> 1, 5.7 ad
A 6.7 @@= 5 EW 0, (5. 15)
n= n!
_ _—1 00 . . . ey xletv N e—ylx’lei‘"
Biol) =22 [ dlxlenklxlen) juklxlew) jsToeits o fo alxiet villxlete, I et {oRom
, L%l
x Jo dlxrleiva (b |xletv, x| i) - ,’,,’;  lxle )] 2 leiv),
1 e _ ‘ erixieiv o _ ey (5. 16)
B k)= —— w)j w ’ w ’ wy &
n(®) fo dlx|eie(k|xleiw)j,(k]x]eiv) Y fo dlx'leiw V(lxleiv,|x'|eiv) PIEPTY
had i QN ; e—ylx"leiw o ) ) e‘}’lxllei‘“ e-ylxnlei“’
X nl et ” ” w e e w
L dlxm esuie ] es)j k] x| i) PEp /; J, dlxl--dlx,lein P
Ay lk; |xtleiw, [x7|eiw) A (R |x'|eiw,|xy leiw)- -+ A, (k; |x']eiv, |x,|eiv)
A (& %y |eiw, |x7]eiv)
X s n=1

A (k| x,|etw, |x7] eiw)
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Ak | x,leiw, |x |eiw)
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From (5. 10), (5. 11), and (5. 12), we have

1218

I, perhaps with the exception of isolated poles at the zeroes
of A,(k),and Rex > 0, if we use contour deformation.

T, (- k") =T,(R)%, (5.17) We call this extended function ¥/, (k; x) also. For k in
T, (k) 0 (5. 18) [Imkeiw| <y cosw, 1/2 > w > — 1/2, it has the follow-
s ) ing representation:
for fixed 7, uniformly in #/2 — € = arg(+ k) = — (1/2 —¢), B x) = ; + N el Y LA b
7/2> € > 0. Vil 2) = (kx) ], (kx) A, (k) T, o Ve,
Further, the scattering solution ¥/, (k; x) admits an
extension to a function holomorphic in %k and x, for £ in 4,(k) #0, Rex>0 (5.19)
| with
. N | eTvlEietY .
Veolsn) = [ dlxlerok]xlesw)f, (b arleiw) S22 A (x| x| eiv),
’ 0 lx’léetéw
Vo (x) = [2d | x| eiull |x leiv)j, (k| x|eiv) €2
LT o : | %’ [sgitw
~ylx,letw ~ylx,let? (5. 20)
© cen «© PPN inw & T ... € "
Xfo fO d'xl' dlxn’e lxlléeiéw lxnlﬁeiéw
Aj(k;x, | x| eiw) AS(k;x, | x| eiw) - - AT (s %0 | x| @¥)
Af(k; | xqletw, | a7 |eiv)
X , n=z=1

Ak |x, | etw, |x'|eiv) .

Aj(k; |x,letv, |x, |eiv)

where A§(k; %, |x' | ev), is defined, for |Imkeiv]| <y cosw, [
/2> w>—n/2, Rex > 0, | x'| > 0,by

Aj(R;x, |2 |etw)
_ (km (kx)h,<1>(kx)>f,,

ik 0 kil

o ((kx~)j,(kx~))

e rx"

(kx) ], (kx)>

—r Pl lx i) + ( Wik

x(flj d| x| eiw [ki(k] x"|eiw) RV (k] 2" |eiv)]
e-ylx"lei“’
Ix” l & eiéw
+ fc dx"{ &t (kx") R {1V (kx)} ___e—r:; Vix”, |x |e"“’)>
[ xl’
(5. 21)

V(| x"leiv, | x| eiw)

where C is an arc from x to | x| e?v,and

AS(k;x, x| eiw) =0, x=0. (5. 22)

The function y,(k; x) in the above domain of definition
in the k plane has the behavior near the origin x = 0
given by (2. 12),and for [Imk | >y, x > 0, it need not be
a solution of (2. 11).

We have, for & € 11,

Y, k%)= DLy, (R x0)*,  x=0.

(5. 23)

6. ANALYTICITY OF THE SCATTERING AMPLITUDE
IN THE ¢t PLANE AND A DISPERSION RELATION
FOR FIXED ¢

We here consider a class of potentials satisfying Con-
ditions (A) for @ = %, and also the following condition:

V(x,x’', cosv) = fooo fooo dpdp'e-Bxe-8'x"g(B, B, cosv),

where 0(3, g/, cosv) satisfies
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(i) o(, ', cosv) isreal, o(g, 8, cosv) = o(B’, B, cosv);

(ii) o(B, B’, cosv) is continuous in «© > g > 0,
©>p" > 0,and 1 = cosy = — 1,and in this region

lo(B, 8", cosv) | < Z(8, ),
Z(B,8') = Z(8', B),
o0 = o]

J, J, asap z(8,p) <=,

where Z(8, 8’) is continuous in © >8>0, © > g'> 0.
For such a potential, the partial potentials satisfy

V (%, x') = x1/2e77% V) (x, 5 ) x'1/2 775"

V,(x,x) = fooo fo°° dp dp’e8xe8'%" o0,(B,8’),
where

+1

0,(B,B) = 2m f_l d cosv o(B, B/, cosv)P,(cosv)
and

(i) U;(B, B,) is real, 01(37 ﬁ’) = 0;(6'3 ﬁ);

(it) o,(B,B’) is continuous in © >g >0, © > g’ >0,
and in this region

lo,(8,8) | < const[=(8,B)/V21 + 1].

The partial scattering amplitude T,(k),for & > 0, has
the following form

T,(k) = TAO(k) + [T (B)/2,(R)], (6.1)

where T{1(k) and T{?)(k) are, from (2. 19) and (2. 20),
given by

TO® = 1/k) [ [ dpdso,B,8)
x fow dx(kx)j, (kx) x1/2 o=(y*8)x

x fow dx'(kx') j,(kx') x'1/2 = (y*8) %" (6. 2)
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TR = 1/8) [ [ [ ap ap ap”o,(8,8")
x fooo dxl x’l/z e_(7+BI)x’ pl(k; xl’ﬁn)
X fowdx(kx)jl(kx)x1/2e-(7+ﬂ)x

x [0 dx"(kx")j, (Rx") x71/2 e (185" (6. 3)
where we have used the following relationship22
” o . v . art "
A (R x', x7) = x"1/2 g7yx fo dp”ed"*"p,(k;x', B )’(6. 4)

with p, (k; x’, 8”) continuous in © > x'
for 2> 0, a.ncl22

=0, ©>p">0,

o, ks, 87) | < (DyN2L+T) [7 dpr 2(p',87), (6.5)

where D, is a constant.

We now show that, for £ > 0,and A, (k) = 0 for all [,
the series

(1/k) Z}O (21 + 1)T (k)P (cosb)
1=

is convergent inside an ellipse in the cosf plane with

foci at — 1, + 1, and semimajor axis equal to 1 + (2y2/k2).

We denote the sum by F(%; cosg). If we introduce ¢ = 2k2
(1 — cosd), then F(k;t) = F(k; cosf) is holomorphic inside
an ellipse in the ¢ plane which includes the interval

0= ¢t>— 42

Using the bound?23
V?T/(Zl + 1)«

for k real, we find that

|G, (k;x,x') | <

min

|K, (2, 27) | < (Do/N2L + 1) 27172 714, (6. 6)
where D, is a constant. Hence using Hadamard's
theorem, 14 we have, from (2.7),

la, () | < (1/Q21 + 1))¥2 Dy M /2, n =1,

(6.7)

0
M= [T dxxl1/2 ev .
0
Hence we have

A(k) — 1

l—> o0

uniformly in 2 > 0,

We consider the behavior of T{V(k) and T{2)(k) as
1 - ©, We have24

f0°° dx(kx)j, (kx) £1/2 g (r+8)
=V(nk/2)- [k2 + (y + B)2]3/2- (1 + HVRE T (y + B)E
+(y + U/ IVEZ + (o + P2 + (y + B)]} 1°2/2, (6. 8)
Hence we obtain,
| Jy dx(kx)j, () 1/2 = (y*8) |

< Vak/2 [(1 + 3)/(k2 + y2)] e,

where
A=In[(VEZ+ 42 +4)/k], k>0,

Hence we obtain

O < L [ [ gpay DB Tk
N S

(32 o,
(7242
(6.9)
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DM (o 2(3,3'))2
(2) < — 1 ’
e k\/21_+_1<f° s PO a1
e, 0XD? anl e9)

2 (k2 + 42)2
Therefore, using the inequality25

IPl(cose) | < const- [e(t+1/2)l imol/ | sing |1/2 1+ %)1/2]’
(6. 10)

we find that the series
xQ
(1/%) Z} (21 + 1)T (k)P ,(cosb)

converges, for k > 0,and A, (%) = 0,for all /, when
[Imé | < 2\, which is the 1nter10r of an e111pse in the
cosé plane w1th foci at — 1, + 1, and semimajor axis
equal to cosh2x, which is 1 + 2y2/ k2, Further,the sum
F(k; cos@) is holomorphic in cosd inside this ellipse.
Hence, we have demonstrated our previous statement.

We now consider the analyticity of F(k; ) in the %
plane for fixed ¢ in the range 0 = ¢ > — 432, We have
seen that T, (k) is holomorphic in II, perhaps with the
exception of poles at the nonreal zeroes of A, (%), which
are finite in number in the regions (37/2) — e > argk =

— (/2 —¢€), 1/2> € >0,and |Imk|<y—¢€, y2 € >0,
We examine the convergence of the series defining
F(k; 1), for Imk > — 3.

Using the bound

|G, (k;x,%')| < (const/v2l + 1) x,;,, Imk=>0,
which may be derived by
| G, (k5 x,x) |
= | (k% pg ) D (R g ) Xy Fy (R )]
= | % f_;l d cosf- %ﬁﬂpl(cosm |
const +1
< o fam I dcossm
1 _ Fan
Y1+ 02— 20cost’  x,,,’

< (const/v2I + 1) x

min

Ix}=x |x'|=x, x+x =xx’ cosd,

and the bound

1[G (k; %, x"} < (const/v21 + 1) Xpq €IBEIGEHE) - ImE <0,
which may be similarly derived, we obtain
| K (R x,x7) | < < (const/v2l + 1) x'1/2¢7v¥, Imk > 0,
[K (B x,x') | < (const/v2l + 1) e ! Imklx x11/2 ¢ rE

Imk>—(y—e¢€), y=e€>0,

for fixed I. Consequently we obtain

A, (R) T2 1 (6. 11)

uniformly in & in Imk > — (y — €), y =€ > 0.

Equation (6. 8) holds for |Imk | <y + B, and the right
side is the analytic continuation of the left side in 0. If
we denote the right side of (6. 8) by g,(k;p),then we
have, from (2. 19) and (2. 20), the following representation
for T D (k) and T 2) (k):
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TOR) = 1/k) [ [ apds’ 0,(8,8)2,(k; g, (k; ),

TR = /8 [ [ [ dpap g o, (8,8

o0
X [, dx' 112 e 082x" p, (ks 5, B7) g, (ks B) &, (k3 B7),
(6.12)

inImk >—(y—¢€), y = € > 0,cut from iy to i,
where p,(k; x', 3”)26 is holomorphic in % in this region
for © > x’" = 0, © > B” > 0, and continuous in x’ and 8”
inw> x' >0, ©>pg”>0,for k in the above region, and
(6. 5) holds for % in this extended region, for x’ and g”
in the above region. We have

o poo , E(é é')
Jo  Jo avas g

| 7O (k) | < S008t L1,k £)5, (8 8,

el
@)p) | < Const © [ apap 2B ) g )2
|70 | < S Dot ([ [ apap ZELD ) g ).
(6. 13)
Since
WE2+ (y + B2+ (y +B) | 2| VB2 +92 + 4|, >8>0,

for k in II, as may be demonstrated using the inequalities2?

RevVik2 + (y + B2 2 RevEZ +42, © >p >0,
[B2 + (y +B)2| + B2+ 28y > | k2 +y2|, ©>B>0,
we find
kl |k|1/2
k; < LI .
2, (k:8) | / AL T
[1— 31 1 )-M
6.14
"(sz—rﬁw e rpeia) s &1

for % in II, where A is given by

A=1n[(VEZ + 52 +4)/Fk |
and
cosh2x = (1/1k[2) (] k2 + 32| + 92),

We consider, for each 2 in Imk > — (y—€), y 2 € > 0,
cut from ¢y to 7 «,the ellipse in the ¢ plane which is
the map of the region |Img | < 2x in the ¢ plane. The
intercept of this ellipse with the negative £ axis is given
by

cosh2(2x)—1 -

t=—21k|2. —4y%,  k=|kleiv.
cosh2x + cos2¢ (6.15)
E' Plane
/\:,j:‘::: 5
Cl(e)
FIG. 3.
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Hence the interval 0 > ¢ > — 442 is included in every
ellipse in the ¢ plane which is the map of the region
[Im@ | < 2 in the ¢ plane, for every such k. Hence,
using (6. 10), (6. 11}, (6. 13), and (6. 14), we find that for
eacht in 0 = ¢ > — 442 the series

1 (1 _ _t_>
k 2k2
is convergent, uniformly with respect to %, in Im& >
—(y—€), y=¢€>0,cut from iy to i, with 2 = 0, and
k not equal to any nonreal zero of A l(k) for all [, and its
sum F(k; t) is holomorphic in # in Imk > — 3, cut from
iy to {0, with 2 = 0 and % not equal to any nonreal zero
of Al(k), for all I. And from (6. 12) we find that, if
A,k = 0) = 0 for all [, then, for each ¢ in 0 > t>—4y ,
the series (l/k)Tl(k)P [1- (t/2k2)] is holomorphic in &2
in a neighborhood of # = 0, and we may similarly demon-
strate that the sum F(&;¢) of the series

o0
(1/k) ?0 (21 + 1) T, (k) P,[1 — (¢/2k2)]
is holomorphic in a neighborhood of %2 = 0 under the

same assumptions on A, (k = 0).
From (5. 17), we obtain

F(— k% 1) = F(k; 1)*. (6. 16)

We note that for £ = ik, ¢y > k > 0, the intercept of the
above ellipse in the ¢ plane with the positive ¢ axis
approaches zero as « approaches y.

We now discuss the asymptotic behavior of F(k; ). We
have, from (3. 1) and (6. 11),

la,() 1>z, |EI>R,

f}o 21+ 1) T, (k) P,
1=

Imk>—(y—¢€), y2e€>0

(6.17)
for all /, where R is a constant. We also have, for
k=lk|leiv, 12 @ >u/2, 1/2> ¢ = 0,and |k | >y,
that

A= (y/I k)] cosg |+ O(y2/k2),
IImé | = (VIz1/ | £]) | cosg | [1 + O(»2/k2)],

where the approach to the asymptotic limit is uniform
in cos¢. Hence,from (6. 10) and (6. 13), we obtain

| (;8) | < const/| k], (6. 18)
for 7= argk > (#/2) + €, (0/2) — € >argk= 0
1/22€>0, |k]| > y,for fixed ¢ in the range

0=¢>— 4'y2. Consequently, we have the following
unsubtracted dispersion relation28 for f(E; ) = F(k;¢):
I

(® Imf(E f)
= 8
fE: 8 = Z—:EJZ-)(E E) nf aE —
1 , f(E’;t)
o Joo 9E g &9

(Fig. 3) where E = E;, E is not on the cut from 0 to ©and
is on the right of the contour C(e), the E,'s are the
negative bound state energies for the system in the ith
angular momentum state, which are greater than — o2,
for all 1. € may be taken arbitrarily small.

C(¢€) is the curve consisting of parts of the two half-
lines at an angle € > 0 with the negative real axis and
on the left of the imaginary axis, and part of a straight
line parallel to the imaginary axis and at a distance €
to the right of E' = — y2. ¢ is less than 7/2 and 42 and
is sufficiently small so that all E, are on the right of
C(¢).
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7. THE REGULAR SOLUTION, THE JOST
SOLUTIONS, THE JOST FUNCTIONS AND A
REPRESENTATION OF THE S MATRIX, FOR /=0

In this section we are concerned with solution of the
s wave radial Schrodinger equation, the Jost functions,
and a representation of the S matrix in terms of the
Jost functions, for I = 0, for potentials satisfying Con-
ditions (A).

A. The regular solution

We introduce the following integral equation, for
[Imk | < y:

@(k; x) = (sinkx/k) + fooo dx' KD (k; x,x') o(k; x'), x > 0,

(7.1)
where
KW (k;x,x') = (1/k) fow dx” sink (x — x”) Vo(x”, x'). (1.2)
K (k; x,x') is holomorphic in all its variables in the
whole & plane,Rex > 0 and Rex’ > 0.

For [Imk|<y—¢€, y>€>0, x> 0, and Rex’ > 0,
we have the following bound obtainable from (2. 2a) and
(2. 2b):

| K(D(k; x, x")| < const -x e ! Imkix |g7y#' /x'8|  (1.3)
We also have
| KW{e; 2, %) | < XD (k; 2)| €715/ x78 |, (7.4)

for | Imk| <y, Rex > 0, Rex’ > 0, where X (1) (k;x) is
continuous in |Imk| < v, Rex > 0.

For 2 > 0,(7.1) has a unique bounded continuous solu-
tion given by?
sinkx % AU (B x,x')  sinkx’
kyx)=—— + x! 22 . , 7.5
ol ) = S+ [ o S, @)

when A (k) = 0, where AD(k) and AV (k; x, x, x') are
the Fredholm determinant and the Fredholm minor,
respectively, of the kernel K(1)(k; x, x’). This solution
belongs to C*(0, ), is a solution of (2. 11) for 7 = 0,
and satisfies the following relationships at the origin:

@olk;x =0) =0,
P (7. 6)
x ok;x=0)=1.

Using (7. 3) and (7. 4), we may define the Fredholm
determinant and the Fredholm minor, A (1) (%) and
A (k;x,x'),in | Imk | < 5, Rex > 0, Rex’ > 0,by
Fredholm series, and so defined, A (1)(%) is holomorphic
in |[Imk | < y,and AWM (k; x, x’) is holomorphic in &, x,
and x’,in | Imk | < y, Rex > 0,and Rex’ > 0. And for
|[Imk | < y—€, y >€ >0, x= 0, Rex’ > 0, we have
[ADE; x,x')| < const-x-e!Imklx|gyx" /x5 |, (1.7

For | Imk | <4y, (7. 5) defines a function ¢(k;x),x > 0
which is a C*(0, ©) solution of (7. 1) (see Ref.7) and of
(2. 11) for I = 0,and which satisfies (7. 6). We call this
solution the regular solution. Further,the function
@(k; x) can be extended, via (7. 5), to a function holomor-
phic in 2 and x,in |Imk ] < y and Rex > 0.

b

As in Sec. 5, we may continue A (k) to a function
holomorphic in II. If we call this function by AM)(%) also,
then in the strip | Imkeiv | < y cosw, /2 > w > —71/2,
we have a representation of A(D (k) given by (5. 5) and
(5.2) with A, () replaced by AD (%), A% (k) replaced by
AL w(k), and A (s lx)etw, x| etw) replaced by

J. Math. Phys., Vol. 15, No. 8, August 1974

1221

A(I) (k; | X ' eiw, l x’l eiw)
1 Ix1 ” i : " i
- fo" d]x"|eiw sin[k(|x|—|x"])eiv]

e-vIx" et

0 ” i ’ i
oerne VollxletIxlete), (.8)
where we have used the inequality
|AD(k; |x | eiv, |x'] eiw) | < const- | x| e!mee™ix1 (7, 9)
for | Imkeiv| < y cosw — €,y cosw > € > 0,and w
fixed
We may also extend the function
gD (k;x) = [ dx' AD(k; x,x') (sinkx'/R)  (7.10)

to a function holomorphic in 2 and x, for %2 in II and
Rex > 0, which we shall also call g{D(k; x). Hence ¢(k; x)
has been extended to a function holomorphic in 4 and x,
for & in II, perhaps with the exception of poles at the
zeroes of AXk), and Rex > 0, via
o(k; x) = (sinkx/k) + g D (k; x) (7.11)

which we shall also call ¢(k; x). For k in the strip
[Imkeiv | < y cosw, 7/2 > w > — /2, and for Rex > 0,

¢(k; x) has a representation given by (5. 19) and (5. 20)
with y, (k; x) replaced by (p(k %),y ¢ ,(%; x) replaced by

@ (k; x) (kl x'| eiw)«j, (k| x’| eiw) replaced by

sm(klx | eiw)/k, andA JRsx, | x| eiw), A, (R; | xq et
| x| eiv), ete., replaced byA(I)(k x, | x’ le““)
A (B le ! eW | x| eiv), ete. w1th

AD (B x, | x| eiv) = (1/k) fox dx” sink(x — x")(e"*"/x" 8)

X Volx”, |x' | eiw).
For k >0, ay(k) = 0, A (k) = 0, we have

Yolk;x) =

since then (2. 11) has a uniqgue bounded solution with
absolutely continuous first derivative and vanishing at
the origin, for ! = 0. The function G(k) is sectionally
continuous.

G(k) p(k;x), G(R) =0, (7.12)

We have the following symmetry properties, for & in II:

AD(— k) = AD k),

AD(EY = AD(R)*, (7.13)
(— k;x) = @(k;x), Rex>0
¢ . ¢ " ’ (7. 14)
pR* %) = @(k;%)", x=20.
Using
|AD(k; |x]eiw, | x| eiv)| < const/| k] cos2w, k=0,
(7. 15)

for =+ | k] eiv,all win 7/2 > 0 > — 7/2, we obtain

A (k) —— 1

lel—>©

(7. 16)

uniformly in the region (n/2) — € = | arg(z &) | =0

/2 > € > 0. Hence the zeroes of AW (k) in the region
(@/2) — €= larg(t k)| = 0, 7/2 > ¢ > 0,and also in the
region | Imk | < y — €, y > € > 0,are finite in number.

We may define A,(k) H(k) in 7 via

H(E) = b+ (1) [ dx'eths’ [ dx” Vo(x’,x”)xpo(k;(;c”)ﬁ)
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Then A,(%) H(k) is holomorphic in II. Also we know that
Ag(k) @ o(k; x) is holomorphic in k and x, for % in II and
Rex > 0. Further, y 4(k; x)/H(k) is defined and is holo~
morphic in 2 and x, for & in II, perhaps except at the
zeroes of Ag(k)H(k), where there may be poles, and

Rex > 0, is a solution of (2.11) for |Imk | <y, 1= 0,

and satisfies (7.6) with ¢(k;x) replaced by yo(k;x)/H(k).
Hence yy(k; x)/H(k), for & in Il and Rex > 0, belongs to
the same analytic function as ¢(k; x). Hence we have
obtained another representation for ¢(k;x).

B. The Jost solutions

We introduce the following integral equations, for
[Imk| < y:

x>0,

FHk; x) = e*ikx + f: dx' KD (k; x, x') f(k; x7), i)
7.18

where
KD (k; x,x') = (1/k) fm dx"” sink(x — x”) Vo(x”, %),
* (7.19)

KUD(k; x, x') is holomorphic in all its variables in
|Imk | <y, Rex > 0,and Rex’ > 0. We have

IKD (B x, x')| < const ¢7x | g7 1 ;
|B| «x8 2% 1y — |Imk|
(7. 20)
for |[Imk| < y, k=0, x >0, Rex’ > 0. We also have
| KD (k; x, x')| < const- ¢! Imk!x e ‘ 1 )
28 |y — |Imk|

(7. 21)

for |[Imk | < v, x = 0, Rex’ > 0, using (2. 2a) and (2. 2b).
We therefore obtain

| KD (; 5, x7) | < SBEE oyx | ers LI
1+1k]| x'8 | o — |Imk |
(1. 22)
for |[Imk|< 5, x>0, Rex’ >0,
Further, we have
| KD (ks x,2) | < RUD(R; %) | e7r%'/x'8], (7.23)

for |Imk | < y,Rex > 0, Rex’ > 0, where X UD(k; x) is
continuous in | Imk | < y, Rex > 0.

For & > 0, each of the integral equations of (7. 18) has
a unique bounded continuous solution f*(k; x), respec-
tively, given by?
: © AUDEx,x") iner
t(p: = ptikx + 4 27 tikx 7.
frles ) =e Jo ax == .

when AUD (k) = 0, where AUD (£) and AUD (k; x, x’) are the
Fredholm determinant and the Fredholm minor, respec-
tively, of the kernel KD (k; x, x’). Each of the solutions
belongs to C*(0, %), is a solution of (2. 11) for I = 0, and
satisfies the following behavior at infinity, respectively:
fr(k;x) = erikx, (7. 25)
X200
Using (7. 22) and (7. 23), we may define the Fredholm
determinant and the Fredholm minor, a{1D(%) and
AUD (k; x, x’),in |[Imk | <y, Rex > 0, Rex’ > 0,by Fred-
holm series, and so defined, A0D (k) is holomorphic in
|[Imk | < y,and AUD(k; x, x*) is holomorphic in &, x, and
#',in [Imk | < v, Rex >0, Rex’ > 0. And for |Imk | <
y—€,y>€>0, x>0, Rex' > 0,we have

| AOD (ks x, x') | < [const/(1 + |k[)] ev* |er*'/x"8].
(7. 26)
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For |Imk| < y, (7. 24) defines functions f*(k; x), x = 0,
which are C~(0,©) solutions of (2. 11) for / = 0,and
which satisfy (7. 25). We call these solutions the Jost
solutions. Further,the functions f*(k; x) can be extended,
via (7. 24), to functions holomorphic in # and x, in
[Imk | <y, Rex > 0.

Again, as in Sec. 5 we may continue AUD (&) to a func-
tion holomorphic in II. If we call this function A{ID(k)
also, then in the strip [Imkeiv| <y cosw,n/2 > w > —7/2,
we have a representation of AID (%) given by (5. 5) and
(5. 22 with A, (k) replaced by A4D(k), Ay (k) replaced by
AUDw(k),and A, (k; | x| eivw, | x"|eiv) réplaced by
A(II)(k, lx I eiw’ l x' | eiw)

= (l/k)f:' dlx"|eiv
x sin[k(] x| — |x"])eiw](er1x"1e?e/ | x7 |6 gisw)
X Pollx"leiv, [x'] ete), (7. 27)

where we have used the inequality

| AUD (ks | x |eto, | x| eiv)| < —COMSL  __e1Ixlec
[+ k] cosw — |Imkeiv |
Y
for fixed w. (7. 28)
We may also extend the functions
gD (B x) = f0°° dx’ AUD (ks x, x7) @ik’ (7. 29)

to functions holomorphic in # and x, for %2 in 11 and
Rex > 0, which we shall call g{ID+(k; x) also. Hence
f*(k; x) have been extended to functions holomorphic
in £ and x, for % in II, perhaps with the exception of
poles at the zeroes of AUD (£), and Rex > 0, which we
shall call f:(k;x) also, via

fH(k; x) = erikx + [ g UDx(E; x)/ATD (B)]. (7. 30)

For & in the strip | Imkeiv| < y cosw, 1/2 > w > — /2,
and for Rex > 0, f*(k; x) have representations given by
(5. 19) and (5. 20), with ¥, {(%; x) replaced by f*(k;x),
¥, (k; x) replaced by f42(k; x), (k|x"]ei“)j,(k|x'| )
replaced by e*#*1#'1e* and A (k; x,|x" [e), A,(k; | x| e,
|x’|ei@)etc., replaced by A (k; x, |x"|eiw), A (k; | x|
eiv |x'| eiv), etc., respectively, with

AUD(t; 5, | x| ei%)
= (1/k) fl"°| dl x"| eiv sin[k(x — |x”] eiv)]
X
X (evt="1ete/| x| 8 gidw) Fo(lx”|eiv, | x| eiw)

+ (1/B) [, dx” sink(x— x7) 1"/x"8) Vylx", [ 2’| &),

(7. 31)
where C is an arc from x to [x | eiv.
We have the following symmetry properties:
(UD(— p) = AUD
AUD(R*) = AUD(R)*,
f(k;x) = f*(k;x), Ereal,Rex>0,
fr— kY x) = fHE; 0", x=0, (7. 33)
f(R*x) = fx)*, %20
Using
AUD) (k; iw | x'|eiv)| < const/| k |cos2w, k =0,
| (B; | x letw, | x'|eiw)] 7 5)
for k== | k| eiv,all w in 7/2 > w > — 1/2, we obtain
AME) — 1 (7. 35)

lkl—>©
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uniformly in the region (n1/2) — € = | arg(zk) | = 0
1/2 > € > 0. Hence the number of zeroes of A{D (%) in
this region, and also in the region |Imk | < y — ¢,
y > € > 0,is finite.

We note that the functions f* (¢; x = 0) are holomorphic
in II, perhaps with the exception of poles at the zeroes
of AUD (%),

If we consider the following integral equations, for

[Imk | <y,
vt (k;x) = etikx + f dx'Ko(x kb, x, x" W (k; x"), x > 0,
(7. 36)
then we find, following the arguments concerning
Y, (k; x), that:

(i) For k > 0,each of the equations of (7. 36) has
a unique bounded continuous solution given explicitly by

. x) = etik © dx' o EYletike’
vt (B x) = etikx + fo dx'[Aglxk; x, x7)/ Do k)]e i 3)
when Ag(+ k) # 0. The solutions belong to C (0, «©),
satisfy (2. 11) for [ = 0, and have the following asympto-
tic behavior:

vi(k;x) = H(R)etiks + O(1), (7. 38)
X =0
where
1 , ,
Hi k) =1 — f dx’ smkx] dx” Vox', x"wt(k; x").
(7. 39)

(ii) For | Imk| < y,the functions defined by (7. 37)
are C<(0, ) solutions of (7. 36) and of (2. 11) for I = 0,
and satisfy
vtk;x) =
X 0

Ht () etiks + oe*ikx) (7. 40)

with H:(k) defined by (7. 39) now extended to |Imk | <.

(iii) The functions v* (k; x) can be extended to func-
tions holomorphic in £ and x, for & in II, perhaps with
poles at the zeroes of Ay(+ ), and Rex > 0. We call the
extended functions vt (k; x) also. For % in the strip
| Imkeiv| < y cosw, /2> w > — 2, they are given by
(5.19) and (5. 20) with y,(k;x) replaced by v* (k; x)

v ,(k; x) replaced by vtw(k;x), (k]| x’|eiv)j (k] x" | eiv)
replaced by etiklx'letw and A Jesx, | % Ie'w) Ak lx|etw,
x| eiv), etc., replaced byA (£ kx| x| ew) A (i k;
|x]etw,|x’ Ie‘w) ete.

(iv) The functions v* (k; x) are continuous at x = 0,
from Rex > 0,for & in IT and Ay(x &) = 0.

We may define A (+ k) H*(%) in II via (7.39) and using
contour rotation. Then Ay(x £) H* (k) is holomorphic in
II. Also we know that Ay(+ 2)v* (%; x) are holomorphic in
k and x,for % in II and Rex > 0. Further, v* (k; x)/ H* (k)
are defined and are holomorphic in & and x, for & in II,
perhaps except at the zeroes of Ay(+ 2)H*(k), where there
may be poles, and Rex > 0, are solutions of (2.11) for
IImk | < 4, I =0, and satisfy (7. 25) with v (&; x)/H¢ (k)
in place of f#(k;x). Hence v*(k;x)/H* (&), for & in II and
Rex > 0, belong to the same analytic functions as f*(k; x),
respectively. Hence we have obtained further representa-
tions for f* (k; x). We have Ay(— R*)H (k*) = Ay(R)*
H*(R)*.

We note that from their behavior as x — o, we find
that f*(k,x) are linearly independent when they are both
defined, and when |Imk| <y, 2 = 0,

We also note that from the representations v* (; x)/
Ht(E) of f*(k;x),the functions f*(k;x) are holomorphic
in & and x, for % in II, perhaps with the exception of
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poles where both AUD (£) and Ay(x k)H* (k) are zero,
and Rex > 0. A similar remark applied to the function
o(k; x).

C. The Jost functions and a representation of the S matrix

We consider first 2 > 0,and Ag(k) = 0, AD(R) = 0,
AUD(R) = 0. Then we know that the functlons fH(k; x)
are linearly independent solutions of (2. 11) for I = 0,
and that any bounded solution of (2. 11) for = 0,and
that any bounded solution of (2. 11) for I = 0, and with
absolutely continuous first derivative is a linear com-
bination of f*(k;x). Further, one and only one bounded
solution of (2. 11) exists, for 7 = 0, and with absolutely
continuous first derivative, which vanishes at the origin.
Hence we have

Vo (k; %) = G(R) p(k;x), G(k) =0 (7.41)
@(k; x) = (1/2iR)[ L~ (k) f*(k; x) — £(k) f(k; x)], (7.42)
for x = 0 and Rex > 0, where £*(k) and £ (k) are not

both zero.

Taking the Wronskian of both sides of (7.42) with
f*(k; x), we obtain

WL (k; %), p(k; %)),
W[ f*(k; %), f(k; x)],,=oo

From the behaviors as x — ®© of f*(k;x) and their
derivatives, we obtain

W[ f(k; %), £~ (k; %)} = — 2ik.

Further, since both f*(k; x) and @(k; x) satisfy (2. 11)
for I = 0, we have

L'(k) = — 2ik (7.43)

(7. 44)

W[k x), 0(k; %)) 4o 0o = WSk 2), 9(B; %) ] - (7. 45)
Consequently, from (7. 6) we obtain
W(f*(k; %), o(k; 0], = f*(B; x = 0). (7. 46)
Hence
LHR) = fHR;x=0). (7. 47)
Similarly, we obtain
L£(k) = f(k;x = 0). (7. 48)
From (7. 25), (7. 41), and (7. 42), we have
Yolk; x) =~ [G(R)/2ik][L (R) eikx — L (R) e ikx]). (7.49)
From xSe:. 2 we have
Volks ) = ¢*0® gin[kx + 64(k)] (7. 50)

where do(k) is the s-wave phase shift. Hence we obtain

£(k) = E/G(R), (7. 51)

L(k) = [k/G(R)] 2 0P = [k/G(k)]Sy(k).
Hence the s-wave S matrix has the following represen-
tation:

(7. 52)

So(k) = £(k)/L* (k). (7. 53)
We also have
Yolk; x) = [k/L* (B)] @(k; x). (7. 54)
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If we define £*(k) by (7. 47) and (7. 48) whenever
f*(k; x = 0) are defined in the & plane, then £¢ (k) are
holomorphic in II, perhaps with the exception of poles
where both AIl(k) and Ay(+ k) H* (k) are zero. Conse-
quently, the representation (7. 53) can be extended to II.
We call £t (k) Jost functions. We have, from (7. 33),

£H(k*) = L R) ", (7. 55)

The relationships (7. 42) and (7. 54) may be similarly
extended.

A REMARK

We remark that it can be shown2? that all bound state
poles corresponding to energies E, with 0 > E; > — o2
in the dispersion relation (6. 19) and the dispersion rela-
tions in Ref. 1 are necessarily simple.
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We give examples of “analytic nonlocal potentials” which show local correlations for a finite range

of the distance, bounded below and above.

1. INTRODUCTION

Any potential between two nucleons is nonlocal at
small distances and becomes approximately local at
large distances. Recently, studies have been made on a
class A of analytic nonlocal potentials, and a subclass C
of it, and dispersion relations have been obtained. 2 In
this article we show, by explicit construction, that there
exist potentials within these classes which show local
correlations in a finite range of the distance, for dis-
tances neither too small nor too large. These examples
suggest that the classes A and C might be sufficiently
wide to include potentials having the properties men-
tioned in the beginning of this paragraph.

2. LOCAL CORRELATIONS

We first consider the class A of analytic nonlocal po-
tentials V(x,x’') defined by the following conditions (A):

(Al) V(z,x')isreal, V(x,x)=V(®,6Xx)

(A2) V(x,x') is rotationally invariant:
V(x,x')=V(x,x’, cosp)
x=|x|>0, »=|x|>0, 1=cosv=>~1,

where v is the angle between x and x'.

— m~
(A3) V(x,«, cosv):ixp-(—%gx—-*‘i V(x, x’, cosv)

 EXD(=yx )(x* + a)"

xld a>0

, v>0,

ki

where V(x, x’, cosv) is holomorphic in x and x’, in Rex
>0, Rex’ >0, for 1= cosy= -1, and continuous in all
these variables in Rex >0, Rex’ >0, 1> cosy> =1, and

[V(x, %', cosv) | < const.
for Rex>0, Rex’ >0, 1=cosv=~1,
The following potential V,(x,x’) belongs to this class:
Vi(x, X’) = exp(-yx)V (x,x’, cosv) exp(- yx'),

where

Vv 1/2 o
Vl(x,x',cosv)=gexp{_ 1-1(972‘;_5) [ln(;c,-:_ccﬂ}

& \1/2 x+c\]|?
xexp{-— T‘<——x' T b) [ln(——x, +c)] }

« expl~ T,(xx')! /%]

with g real, v,>0, 7,>0, 5>0, ¢>0, and u=1 - cosv.
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The function Vl(x, x', cosv) is bounded in Rex >0, Rex’
>0, 1=cosv= -1, since Re(xx')!/2u >0 for these values
of x, x’, and cosv, and since the functions

P
A n)=(Fg) " n(E29))

map the region Rex >0, Rex’ >0 onto a region in the
complex z plane which lies to the right of Rez=p, for
some p <0,

We next consider a subclass C of A, namely the class
of V(x,x') satisfying Conditions (A) with V(x, »’, cosv)
satisfying the following Condition (C)3:

(©) V(x,x, cosv)= [ [~ dB dp’ exp(- Bx)
x exp(- B’ x")o(B, B’, cosv).
where o(B, 8/, cosv) satisfies
(i) o(8,8',cosv) is real, ofB,p’, cosv)=o(f, B, cosv);

(i1} o(B, B, cosv) is continuous in 8, B, and cosv in
©>8>0, ©>8>0, 1=>cosv=~1, and in this region

|o(8,#',cosv)|<Z(8,8),
E(B,B’)ZZ(B’,B)y
77 agag ne,8) <=,

where Z(8,8’) is continuous in 8 and #/, in ©>g>0,
w©w>p >0,

The following potential V,(x,x’) belongs to C:
Vo(x, X') = exp(~ yx)(x + a)’flz(x, X/, cosv)
Xexp(~yx' {x' + a)®,

where

~

,yz 12
Vo(x, %, cosv) =

(x +a)*

satisfies Condition (C) for some integer s> 0. This fol-
lows from a slight extension of a result on a set of suf-
ficient conditions for a function of two complex vari-
ables to be a double Laplace transform of a continuous,
bounded, symmetric, and absolutely integrable spectral
function o(B, p’) satisfying*:

| (1 +B)20(8,8')(1 + B')?|< const., ©>B=0, =>pg >0,

Yx?
m Vi(x,x’, cosv)

We now consider local correlations for the potential
V,(x,x’). We have

Vi(x, %) = g exp(- yx)f(x, ¥/ )f(x" , x) exp[ - 7,(xx*)* /%)
X exp(_ Yxl)’
f(x, x') = exp[" T],f],(x’ x’)];

Copyright © 1974 American Institute of Physics 1225



1226 Te Hai Yao: Analytic nonlocal potentials, 1

Vy(x, x)= g exp|- 2yx],
[V, (x, %) | <|g|exp[- yx]W(x, ')
with

W(x, x') = f(x, x*) exp(~y’).

We consider, for fixed x>0, values of x* satisfying

|x" - x|>x/10 (2.1)
For these values of ¥, we have
|v,&,x')|<D|V,(x,%)],
where D «1, if
% 17z x 2
Tl<m) (x T C) 2 100(yx + A) (2.2)

where we have put D=exp(-A). For suitable values of
T, 8, ¢, and A, this inequality is satisfied if and only if
% lies in some interval [d,,d,], d,>d,>0. Hence for
these values of x, |V, (x,x'}| is very small compared
with {V,(x, )| = 1glexp(~ 2yx) for values of x* satisfying
(2.1).

We have the following example of choices of 7,, b, c,
A and approximate values of d; and d:

T, =10% b=10/y, c=5/f, A=10, d,=2/y, d,~100/y
For values of x’ satisfying
[ = x|< x/10
and for x € [d,, d,] with suitable choice of 7, b, ¢, and
A, we may choose 7, large enough so that
expl~ 7,(xx ) /2u] «< 1

for # outside some interval [0, p], where p satisfying
2> p >0 may be initially chosen arbitrarily small.
Hence we have shown that with suitable choice of 7, 7,
b, ¢, we have

|V.(x,x)| <D| V,(x,x)| =D|g| exp(~2yx) 2.3)

with D « 1, for x< {d,, d,] and for % outside the region
|x’ =x|<x/10, 12 cosy=1~p, 1>p>0. Hence the po-
tential V,(x,x’) shows local correlations for x€ [d,, d,],
with suitable choice of 7,, 7,, b, ¢, and A. For x suffi-
ciently small or sufficiently large, there is no local
correlation.

Similarly, for values of x* satisfying (2.1), we have
[V, (x,x)| <D|V,(x,x)]|
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with D« 1, if

,(_..__" )”2( x )2>100( K +A), yx>1 (2. 42)
N\x+b xtc) TV » YEZ D :
X

x 1/2 2 "
T‘(x—!—b) (x+c> = 100(yx + A = In{yx)?), yx<1

(2. 4b)

Again, for suitable valuesof 7,, b, ¢, and A, {2.4a) or
both (2, 4a) and (2. 4b) are satisfied if and only if x lies
in some interval [d;, d}}, d,>d{>0. For these values of
%, 1V,{x,x'}| is very small compared with |V,(x,x)|

=l gl {yx)* exp{- 2¥x) for values of x’ satisfying (2.1),
For a choice of 7,, , ¢, and A which is the same as the
example given for V (x,x'), we obtain d,=2/y, &
=100/y.

Again, by choosing T, sufficiently large, 1V, (x,x')] is
very small compared with |V,(x,3)l, i.e.,
|Vax,x) | <D|V,(x,%)| =D|g|(rx)*exp(- 2yx)  (2.5)
with D« 1, for x & [d}, d;] and for x’ outside the region
1%’ -x]<x/10, 1= cosy=1-p, 1> p>0, Hence the poten-
tial V,(x,x’) shows local correlations for x € [d}, d;] with
suitable choice of 7,, 7,, b, ¢, and A. For x sufficiently

small or sufficiently large, there is no local
correlation.

Remark: After this article was completed, we found,
in Ref, 5, an investigation on the analyticity in £ of the
S matrix for real and complex angular momentum for
examples of nonseparable nonlocal potentials.
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For a class of short-ranged nonlocal potentials, the 7" operator T'(k) is studied in the region Imk >
—v, where v > 0 is some parameter of the potential. Inversion formulas are obtained which deter-
mine the potential from t(E) = T(v/E) for any real E, for which ¢(E) is defined, perhaps with the

exception of a countable set of points.

1. INTRODUCTION

The two-particle T operator {(E), where E is real,
defined by

HE) =V +lim V—t v,
=0 E +ie—H

where this limit exists,! and where V is the interpart-

icle potential and H the internal Hamiltonian, occurs in

the theory of three-particle systems? with local pair in-

teractions. It is of interest to study the T operator for

nonlocal potentials.

In this article we first study the two-particle T
operator T(k) in Imk > — v, where y > 0 is some para-
meter of the potential, for a class of rotationally invariant
hermitian short-ranged purely nonlocal potentials, We
find that 7(k) is a Hilbert—Schmidt operator in L2(R3)
holomorphic in Imk > — v, with the exception of a finite
number of simple poles at vE3, ¢ =1,2,***+,N-,on the
upper imaginery axis, for all the negative energy eigen-
values E; < 0, a finite number of simple poles at +vE],
i=1,2,-",N*, on the real axis, for all the positive
energy eigenvalues E; > 0, and perhaps with the ex-
ception of a double pole at k = 0 and poles in 0 >
Imkg > — v, The function #(z) = T(¥z) is analytic in
Imvz > — y in the two-sheeted z plane with a branch
point at z = 0, whose only singularities in the first sheet
2m > argz = 0,z # 0,are simple poles at z = E; and
z = E%. We then show that for any real E, for which the
operator ¢(E) is defined, perhaps with the exception of a
countable set of points, the potential can be expressed in
terms of the kernel of the integral operator #(E) by Fred-
holm series, The coordinate space is used in these
considerations,

Results on the pole structure of the scattering ampli-
tude F(k; cos8) in Imk > 0, for physical scattering angle,
i.e.,for 1 = cosf > — 1, are obtained as a corollary.

The problem of determining a two-particle T operator
t(E),for some real E for which it is defined, from pro-
perties of a three-particle system, is interesting.

The class of potentials V(x,x’) which we study here
are defined by the following conditions3—4

(1) V(x,x’) is real, V(x,x') = V(x', x);
(2) V(x,x’) is rotationally invariant:

X = |X‘ > 07
x' = |xI| > 0,
where v is the angle between x and X';

e Vx +a)yt. “Y¥(x' + a)ym
e +aym V(x, x', cosv) e + ay
xa x’d

Vx,x') = V(x,x’, cosv),
1=cosvz—1,

B®) vix,x' cosv)= ’

y>0, a>0,m=>0,%>a=0,
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where V(x,x’,cosv) is continuous in x,x’,and cosv in
0>x>0,0 >x">0, 1= cosvz—1,and in this
region of the variables x,x’, and cosv, we have

| ¥(x,x’, cosv)| < const.

The potential operator V with kernel V(x,x’) is of the
Hilbert-Schmidt class.

2. THE RESOLVENT

For any potential satisfying conditions (1)-(3), the
spectrum sp(H) of the Hamiltonian operator H consists

. of a sectionally continuous part from 0 to © with a

finite number of discontinuities at the positive eigen-
values and a finite number of real nonpositive eigen-
values,3 5 For z 4 sp(H),the resolvent operator g(z)
is defined by

1 1

TR @.1)

glz) =

where H, is the free part of H and V the potential
operator. We introduce the operator G(k),defined by
G(k) = glz = k2),for Imk > 0 and k2 & sp(H). G(&) is a
bounded operator for & in this region of the k plane and
holomorphic there. And following Ref. 6, we find the
following for Imk > 0, k2 ¢ sp(H):

(i) G(r) is an integral operator of Carleman type satis-
fying the following resolvent equation:

Glk) = Golk) + Gok)VG(R), 2.2)

where Gg(k) = 1/(k2 — H) is a bounded integral opera-
tor of Carleman type with kernel G4(k;x,x’):

— 1 eiklx—x’l

Golt;x,x') =—=4"""_, 2.3
olk;x, x') 47 |x —x'| 2.9
(ii) The kernel G(k;x,x’) of G(k) is symmetric:

G(k; x,x’) = G(k; X', %) (2. 4)

almost everywhere in R3 X R3, and satisfies the follow-
in kernel equation:

Glk;x,X’) = Golk; x,x') + fdx”'K(k; X,x")G(k;x",Xx’)
(2.5)

as a function of x almost everywhere in R 3 for almost
every X’ in R3, where

K(k;x,x") =fdx”’GO(k;x,x”’)V(x"’,x”). (2.6)
(iii) Any sclution L(k;x,x’) of (2.5) such that L(k;-,x') e
L2(R3) for each x’ is the kernel G(k;x,x’) for almost
everyxand X’ inR3 X R3,
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We now solve (2. 5) for G(k;x,x’) using iteration and
Fredholm method.

Putting

Gk;x,x') = Gylk; X, X°) + GUNk; %, %), 2.7

we obtain an equation equivalent to (2.5):

G OE;x,x) = GO (k;x,X") + [ dx"K(k; X, x")GD(k; X", X'),
(2.8)
where
Gy (k;x,x') = fdx"K(k;x,x")Go(k;x”,x'). (2.9)
The inhomogeneous term is continuous and bounded
in x in R3,for x’ in R 3,and (2. 8) has a unique continuous

and bounded solution given by the Fredholm series, for
each? x/;

GO x)= Gk x) + fax" SEXE Guargesxr, ),
(2.10)

where A(%) and A(%k;X,Xx”) are respectively the Fredholm
determinant® and the Fredholm minor of the kernel

K (k;x,x"), and are holomorphic in % in Imk > — 4, for

x and X" inR3 x R3.3

For Imk > 0,%2 & sp(H), A (k) is never zero,3 the
solution GM(k; x,x’) is continuous in x and X’ inR3 xR 3,
and GIXk; * ,x’) belongs to L2(R3) for each x’. Hence we
have obtained the resolvent kernel, via (2. 7).

Using (2.10), we can define a function GW(k;x,x’) for
kinImk > — v, A(k) # 0,and for x and X’ inR3 X R3;
GCO(k;x,x’) = GOk; x, %) /A (R), (2.11)
where G(k;x,x’) is continuous in x and x’ inR3 x R3,
for Imk > — y,and holomorphic in % in Imk > — y,for

xand x’ inR3 x R3. Further, G (k; x,x’) is symmetric
and rotationally invariant,

GCO(k;x,x’) = GO(k;x’,X), (2.12)
CO(k;x,x') = GW(k;x,x’, cosy),
x=|x/20,x'=1]x|20,1>cosv=~—1, (2.13)

where v is the angle between ¥ and X', and satisfies

|G D(k;x,x")|

const Imk = 0,

const-ellmklxellmklx 0>Imk > =>e> 0.

(2.14)

We define a function G(k;x, x’) for Imk > — 3, A(k) =0,
which is the resolvent kernel for Imk > 0, k2 ¢ sp(H),
by

”‘(Y'f): Y

Gl;x,x') = Gylk; X, x") + GONk;x,X'), (2. 15)

where G4(k; X, x’) is now defined by (2. 3) for Imk > — 4.

We now introduce the “eigenfunction expansion” of the
resolvent kernel G(k;x,x’),for Imk > 0, k2 4 sp(H).
Using the formula

dE()t)
Gle) = [, o

(2.16)

where E()\) is the spectral family of H, we obtain, for
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any? f andg € L2(R3)
o i Neoffrer AL 09
(f, G(r)g) = 2 5 _k ; +231 o +i§ Seeu
+ Jadt 5 ENEMENE), =8 @1
with
20 = [dx ypo@*f(x),
gp0 = [dx er(x)*g(x),
(2.18)

(5£)(#) = Li.m. [ ax w(&; %)*f(x),

(2 )3/2

(F)E) = Lim. o )3/2 [ax (& x)%ek),

where 1.i.m.denotes limit in mean;y* (x), i =1,2,°*+ ,N¥,
are the orthonormalized eigenfunctions of H with posi-
tive eigenvalue E} = &2,k > 0,and Y, °(x), i = 1,2,

N-, are the orthonormalized eigenfunctions of H with nega-
tive eigenvalues E; = k32, Imk; > 0, where E} and E;
are repeated according to the respective multiplicities;
Yv¥x), i =1,2,"*,NO,are the orthonormalized eigen-
functions of H with eigenvalue zero if zero is an eigen-
value of H,and ¢/f(x) = 0 otherwise; and ¥ (£;x) are the
scattermg solutions defined by3

Y(E;X) = eibx +fdx’A(g (’E‘;x)eiﬁ'x;
EcR3, &t=IEl, A@®) =0, (2.19)
and
Vi =£f;%) =lim (& = £5;%), A(Eg) =0, £,>0,
£~z (2.20)

where é is any unit vector. The existence of the above
(limit) will be shown in the Appendix.

We shall also show in the Appendix that &(§ = £§;X)
is continwous in &, u, y,and x,in{ € D, 1> p = 0,
21> x>0, xeR3,where D is a suff1c1ent1y small
ne1ghborhood of the interval (0,0),and p and y are the
polar angles of g is holomorphic in £ in D, for
T2420,27> 520, xeR3,and satisfies

l¢(§=‘ég;x)lsconst[(£+b)/§]-e7*/2,x=|x|>0 b>0 (2.21)

for £ € D and g, y, and x in the above region. Here we
suppose that D is inside |Im¢ | < y/2.

We state, as a corollary, that a—{ét}/(ﬁ = t&;x)is con-

tinuous in ¢, p,x,xiné €D, 72p> 0,271= x = 0,x € R3,

with;
E?E"’('E: 37 x)l <consts[(§+b)€]2e7+/2, x=|x|20,6>0 (2.22)

for £ belonging to a sufficiently small neighborhood of
the interval (0,%) contained in D, and p, x, and X in the
above region. These results follow from those of the
preceding paragraph with the use of the relation:

5 v = 50} =L far i————"“‘f —;)25’ x)

3. THE T OPERATOR
The T operator T(k),for Imk > 0, k2 d sp(H), is
defined by
T®k) =V + VG(R)V. (3.1)

Since V is a Hilbert—Schmidt operator and G(%) is a
bounded operator, T'(k) is a Hilbert—Schmidt operator.
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The kernel T(k;x,x’) of the operator T(k) is given by
T(k;X,X’) = V(x,x')
+ f f dx”dx"’V(x,x”)G(k;x”,x'”)V(x’”,x’).
This relation enables us to extend the domain of
definition of the function T(k;x,X’) to Imk > — 4,
A(k) =0, xand X’ inR3 X R3. For k in Imk > — 4,
Afg) =0, T(k;x,x’) is continuous in x and x’ inR3 X R3,
and satisfies
[ [ axax’ | T(k;x,x)|2< o (3.3)

and hence is the kernel of an operator T(k) of Hilbert—
Schmidt class. From the bound

3.2)

0 = ’
\ e GCO(k; x,x )l
const, Imk =0,
const *elImklzglimkls’ 0 > Imk > — (y — €),
Y =€ >0 (3. 4)

and the holomorphy of A(k) in Imk > — 4, we find that
T(k) is holomorphic in Imk > — y, perhaps with the ex-
ception of poles at the zeroes of A(2). We have the
following results for the kernel T(k;x,x’):

(i) T(;x,x') is symmetric:
T(k;x,x') = T(k; X', X). (3.5)
(ii) T(k;x,x’) is rotationally invariant:
T(k;x,x') = T(k;x,x', cosy),
x =|x|>0,
% =|x'>0,1=cosv=—1 (3.6)
where v is the angle between x and x’.
(iii)
e v (x + a)™ T(k;x,x’, cosy)

T(k;x,x',cosv) =
( 2 H ) xa A(k)

=YX ’ m
« €7 (x' + a) ,

( (3.7
x'a

where T(k;x,x’,cosv) is continuous in x,x’,and cosy in
©>x>0,0>x">0,1=cosvz=—1,for Imk > —,
and holomorphic in & in Imk > — y,for @ > x > 0,
©>x">0,1>cosvz=~—1,and satisfies

| T(;x,x', cosv] < const (3.8)

for Imk > — (y — €), y = € > 0,and x,x’,and cosv in the
above region.

The kernel of the operator T(k) in momentum space,
for Imk > — y, A (k) # 0,denoted by T(k;p, p’), satisfies
the following:

T(%; p,p’) is symmetric:

7(k;p,p') = T(k;p’, p)- 3.9
(ii) T(k;p,p’) is rotationally invariant:

T(k;p,p’) = T(k;p,p",cosw), p=Ipl=0,

p’=1p'l=0, 13=cosw=-—1, (3.10)
where w is the angle between p and p’.
(iii) T(k;p,p’, cosw) = T{k; p,p’, cosw)/a(k), (3.11)
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where T(k;p,p’, cosw) is continuous in p,p’, and cosw in
0>pz0,0>p" 20,1 cosw = 1,for Imk > — y,and
holomorphic in &, p,and p’ in Imk > — 5, |Imp| < 4,
Imp’| < y,for 1 > cosw > — 1. Further, we have

T(k; p,p’, cOSW) p—_:)oO (3.12)
uniformly for &,p’,and cosw in Imk = — (y — €),
y2€>0,0>p"20,1>coswz=—1.

We now assert that T(k) has simple poles at the zeroes
of A),i.e.,k =k, i =1,2," - ,N-,and k = % &I,
i=1,2,"*,N',in Imk > 0, k& = 0. This follows from
(3.1), (2.17), the continuity of Y (¢ = ££;x) and of

:—EW(E = Eg;x) inte (0,0),7r2p= 0,212 xy20,x € R3,
and the bounds (2. 21) and (2. 22).10 Further, T(k) has
a double pole at & = 0, if zero is an eigenvalue of H.

We also have

T(— k*) = T(k)*, Imk>—y, A(k) #0. (3.13)

We remark that the poles of the scattering amplitude
F(k; cost):

F(k;cos0) = T'(k; kp, kp'),

p and p’ being unit vectors with p-p’ = cos#, in the in-
terval k = iK, y > K > 0, are necessarily simple.3 From
this it follows that the poles of the partial scattering
amplitude!! 7,(k) in this interval for any /, are also
simple, 12 Further,for V(x,x’, cosv) of the following
form13:

L Ny
V(x,x’,cosv) =25 P/(cosv)(xx’')! 3, C,, e e arx
=0 b8 =0

ipq

2> 0,C,greal, G, =Cy,

any bound state pole of the scattering amplitude

F(k; cosd) on the upper imaginery axis must also neces-
sarily be simple, if —(y + pA)2, p=1,2,..., max N,
are all distinct from the negative energy eigenvalues.12

We now turn to a Lippman-Schwinger equation satis-
fied by T(k),for Imk > — 4, A(k) = 0.

We have,from (2. 2) and (3. 1), the following equation
for T(k), for Imk > 0, %2 & sp(H):

T(k) =V + T(R)G,y(R)V. (3.14)

For Imk > — o, A(k) = 0, we have the following equa-
tion for the kernel T(k;x,x’) of the operator T(k):

T(k;x,x') = V(x,x')
+ ffdx”dx"’T(k;x, x")Golk;x", x")V(E",x'). (3.15)

In particular, for E real and 6(E) = A(VE) = 0, we have
the following equation for #E;x,x’) = T(VE;Xx,x’):
HE;x,x) = V(x,x')

+ [ [ax"ax"t(E;x,x")go(E; X", X")V(x”,x')  (3.16)

go(E;3",3™) = G, WE;3",7™) 3.17)

4. THE INVERSION METHOD

We study the following problem: Find values of E,
where E is real and such that the operator ¢ (E) = T(E)
is defined, for which one can determine the potential
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V(x,x’) from #E), and determine V(x,x’) from #(E) for
any such E. We consider the cases E< 0and E > 0.

i) E < 0: In this case we have ImVE > 0, and we
have,from (3.14)

HE) =V + HE) go(E)V 4.1)
for any E for which #E) is defined, where
goE) =1/(E —Hy). (4.2)
We have,from (4. 1),
{1 + B oENV = HE). 4.3)
Hence we have
vV ={1/[1 + HE)g,(E )E) (4.4)

if E is not a zero of d(E) = det{l + #(E)g,(E)}. Here ¢E)
and #(E)g,(E) are Hilbert-Schmidt operators, and

{1/11 + HE)go(E)]} — 1 is also a Hilbert-Schmidt operator
if d(E) = 0. The kernel of {1/[1 + {(E)gy(E)]} — 1, for
d(E) = 0, can be given by a Fredholm series. (4.4)
determines the potential uniquely.

The Fredholm determinant D(k) = det{l + T(#)G,(k)}
can be shown to be holomorphic in Imk > 0, k2 4 sp(H).
Hence d(E) can have at most a countable number of
zeroes in E < 0, E 4 sp(H).

(ii) E = 0: In this case we write (3.16) as

Vix,x') = {Ex,x’) + [dx" h(Ex,x") Vx",x"),

4.5
where (4.5)
h(Ex,x") = [dx"HE;x,x")go(E;x",x").  (4.6)
We obtain the following equation for V(x,x’):
ry . ’ ~ -
7o, x) = AEBX) | [ar f(Exx)TE,X),  @.7)
6(E)
where
V(x,x') = V(x,x’, cosv),
I(E;x,x') = TWE;x,x’, cosv), (4.8)
x=1x|>0, x'=[x'|>0, 13zcosvz=-—1,
v being the angle between x and x’, and
h(E;x,x") = [ax" tHE;x,x7) &o(E;x",x")  (4.9)
. 5(E)
with
~ . n e (x" + a)m m o_me Y (x" + a)m
go(E,X”',x' )_—_ _———;g”'ﬁ gO(E,x' ,X') i
(4.10)
" =Ix"|>0, x"=I[x"|>0.

For each x’ in R 3 which is nonzero, (4. 7) has a unique
continuous bounded solution given by Ref. 7:

x") = fE;x,x") | [ dax" d(E;x,x") {E;x",x')

Vix, 5(E) AE) 5(E)

(4.11)

if E is not a zero of d(E), where d(E) and d(E; x,x") are
the Fredholm determinant and the Fredholm minor of
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the kernel Z(E;x,x”). Hence for such values of E, the
potential is uniquely determined.

We can show that D(k) = d(k2) can be extended to a
function holomorphic in Imk > — y, A(k) = 0. Hence the
number of zeroes of d(E) inE >0, 6(E) =0,is
countable.

APPENDIX

We now prove our assertions concerning the scatter-
ing solution Y (¢ = £&;x).

First we mention, without going into the details here.
that we can establish!4 that ¢ (££;x) is continuous in £,
px,andx,inéecD, , 7>p>0,2r>x>0, xeR3,
where D consists of all points at a distance less than
some €, € > 0,from the interval (0, ©) and at a distance
greater thanpfrom the zeroesof A(§),i.e.,£=k i = 1,2,
*+*,N*,and possibly £ = 0 in the interval [0, ®), p being
any positive number less than €. Then we establish that
the limit (2. 20) exists and that & (¢ = ££; x) is continuous
in&,p,x,andx;inée D, 7> p=>0,2r2>x = 0,xc RS,
where D, consists of open discs of radii 7, 7 > 0, with
centers at the zeros of A(£) in the interval [0, ©), with
7 sufficiently small. To show these, we proceed as
follows.

Let £, be any zero of A(£) in the interval (0, ).
Then the limitl$

lim f

e—~>0+ czlEl>gy*e

at|Gr) ) (2

exists, where ¢ is any positive number such that no zero
of A(£) lie in the interval (§,, ¢] and where (5f)(£) is
defined by (2.18) for any f ¢ L2(R3).

In particular, the above limit exists if f(x) is any of a
set of measurable functions qb,.(x), i=1,2,...,which
are zero in |x| > » and which together form a complete
orthonormal set in L2(S,), S, being the sphere 7 > [x|=>0
and 7 being an arbitrary positive number. We thus have
the existence of the limit

¢ - g ’:l;(g = £§,x)</?,(x)| 2
1i 2 dx Al
m f° dt 2 fao®) | ) NG I
for any i, where we have put
YE = £E;x) =0 = ££;3)/a(2). (A2)

The holomorphy of A(£) in Im£ > — y enables us to
write

1/A() = JE)/(E — £

for &£ = £, and £ in a sufficiently small neighborhood of
£,, where n is the order of the zero of A(£) at £, and
J(£) is holomorphic in the same neighborhood of £, with
J(Eo) = 0.

The holomorphy of /(¢ = £&;x) in £ in Im& > —
enables us to have a Taylor expansion of (¢ = ££;x) in
£ about £, for £ in a sufficiently small neighborhood of

505
P& = £8;3) = Cylé;x) +CE; ) — &)
+ CoE;XNE —£)2 + 700, (A4)

X € R3,

(A3)

T2pz20, 2r=>2yx=20,

~ 1 . T(E — £E-
C,E;x) = — $dz Y =88 (A5)
2md

(&~ Eo)iL
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where C]. (g;x), j=20,1,2,°, are continous functions of
i, x,and x. The existence of the limit (A1) for any ¢ and
arbitrary » > 0 then leads to

Colt;®) =CyE;x) =...=C,1(E;x) =0 (A6)

for u, x,and x in the above region.

Consequently, we have

Y = £E;%) = JENC, (%) + C, 1 (E;x)E — Eg) + ¢}
(A7)

for £ in a sufficiently small neighborhood U of £,. Hence

the limit (2, 20) exist. Using (A5), we find that the above

series converges uniformly in §, u, x,and x, §{ € U, 7 >

p= 0,21 = x = 0,x€ RS, and is therefore continuous

in these variables in this region.

Similarly, we find that &y (¢ = £ x) is continuous in &,
p,x,andxinéec W,m > p= 0,21 = x = 0,x<c RS, where
W is a sufficiently small neighborhood of zero.

This analysis also clearly shows that y(§ = ££;x) is
holomorphic in £ in a sufficiently small neighborhood of
any zero of A(£) which lies in the interval [0, ®), and
consequently is holomorphic in £ in a sufficiently small
neighborhood D of the interval (0,®),for 7 > p = 0,
2n > x 2 0, x€R3.

The inequality (2. 21) follows from (2. 19) and the above
discussions.

* Present address: Mathematics Department, Bedford
College, London, England.

'The underlying space for the operators #(E), V, H, and the operators
g(2), Ho, G(K), T(k), introduced below, is L? (R?).
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“The expansion

Fk; cose)=11? T (2 + 1) Tik) Py(cosd)
=0

converges for k > 0, with

Ti(k) =§ [+1dcoso F (ki cos0) Py (cos 0)

This is a consequence of a result of M. Bertero, G. Talenti, and G. A.
Viano, Nucl. Phys. A 115, 395 (1968).

?We have not proven that F(k;cos@) hasapoleat k= ki ,i=1,2, -,
N~

Y>The only singularities of the resulting scattering amplitude F(k; cos 8)
in Imk > 0 are poles on the upper imaginery axis.

Y*We first establish the relevant continuity property of K(¢; x, x'). See
Ref. 5, Theorem 3.2.

'SSee Ref. 5.
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We derive representations of the Jost solutions, the Jost functions, and the S matrix, for analytic
nonlocal potentials belonging to a double Laplace transform class, for the s-wave case, in terms of

the spectral function for the potential.

I. INTRODUCTION

We have studied a class of analytic nonlocal
potentialsl.2 and we have obtained results including
forward dispersion relation, the analyticity properties
of the scattering, the regular, and the Jost solutions,
and the analyticity property of the S matrix and its
representations in terms of Fredholm determinants
and in terms of Jost functions. This class includes
potentials V(x,x’) of a double Laplace transform class
defined by
V(x, x’) = V(x,x’, cosv),

x=|x|>0, x'=|x'|>0,

1= cosvz-—1,
where v is the angle between x and x’, with

_eri(x+am

-~ ~vx'(x’ + g)m
Vix,x’, cosy) = Vix,x', cosv)—e——(x—-—L

xe x'x

and y>0,a>0,m=0,3>az>0,

~ 0 00 ot
Vix,x’, cosy) = fo fo dp dp'e~Bxe~B'*'g(8, B, cosv),

where o(B3, B’, cosv) is continuous in 8, 8/, and cosv in
0>z 0,0>p 201z cosy > —1 and satisfies

(i) o(8,B’, cosv) is real, o(8, B’, cosv) = o(B’,B, cosv)
for B, B’, and cosv in the above region, and

(ii) fogofooo dpdp’|o(B, B, cosv)| < const,1 =cosv = — 1.

For m = 0, @ = 3, and for ¢(8, 8’, cosv) satisfying a
slightly more detailed condition, we have obtained a
fixed ¢ dispersion relation,2 for ¢ in 0 = ¢ > — 4,2, where
t is the square of the momentum transfer,

We also note that there exist potentials belonging to
this double Laplace transform class which show local
correlations for x in some finite interval [cq, ¢,],
c,>c; >0.3

In this article we derive representations of the Jost
solutions, the Jost functions, and the S matrix, in the %
plane, for the s-wave case, for any potential belonging to
the above double Laplace transform class withm = 0
and « = 1, and with o(8,B’, cosv) satisfying:

, < const
lo(8,B’, cosv)| < 6% Bl (B Boinn

0 >p=0,0>p =201=cosy=—1,
B> 0, A>0.
Il. THE REPRESENTATIONS (S WAVE)

We now obtain the above-mentioned representations
for any potential belonging to the double Laplace trans-
form class withm = 0, @ = 1 and (B, B’, cosv) satisfying
condition (1.1),for % in the k plane cut from éy to i and
from — #y to — iw.

For such a potential, the s-wave partial potential
Volx,x’), defined by

for some
(1.1)
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+1

Volx,x') = 21r(xx’)f_1 Vix,x’, cosv)d cosv (2.1)
has the following representation:

Volx,x') = fy °° f;odﬁ d’ e~Bxe~Bx's(8, B"), (2.2)

where s(B, B’) satisfies
(1) s(B,p’) is real, s(,B’) = s(g’, B);
(ii) s(B, B’} is continuous in B and B’in © > B = y,0 >
B’ = y,and in this region:
[ s(8,8")| < const/p{1+Ng/@+N),
We have,for 2> 0,and A 0D(k) = 0,4 and © > x = 0:
fx(k;x) — e tikx
1 o0 . o
+ k—fx dx' sink(x —x’)fo dx” Vo(x'x")f*(k; x"),
(2.3)

where AID(k) is the Fredholm determinant of the kernel
KAD(f; x,x'):

’ 1 o0 ” : ” " ’
KQ(E; x, x') =;fx dx” sink(x — x")Vy{x",x")

and f#(k; x) are the Jost solutions.2 AUIX%) is holomorphic
in the doubly cut %2 plane.

Since the functions f#(k;x) are bounded in © > x > 0,2
we obtain

Frlsx) = esihr + [Tdp emss[Ex(k; )/ (B2 + 62)],  (2.4)
where
g 8) =~ [T B s(8,6") [, ' e frl;x),  (2.5)
and

[£+(k; B)| < const/pA+V, (2.6)

for fixed k., Hence £#(k; ) belong to both L1(y, ) and
LZ(.},’ °°)-

From the following radial Schrodinger equation for
Sr(k; x):
d

(:1;— + k2>f*(k;x) = fowdx’Vo(x,x')f*(k;x')

5 (2.7)

and using (2. 4) and the identity theorem in Laplace
transform theory,5 we obtain the following integral
equations for £(k;B):

E4(k; B) = £4O(k; B) + [T B J(k; 8,818+ (5 8),  (2.8)
with

HO)E-8) = [7°d ,M, 2.9

O ) = [y SR (2.9)

1 w o0 S(B,8")

: N = d, 2 . 2.10

T3 8,60 =z b B (2.10)

Copyright © 1974 by the American Institute of Physics 1232



1233 T. H. Yao: Jost solutions and S matrix

We consider the integral equations of (2. 8) for k in
B(e), where B(e) is the domain in the 2 plane consisting
of all points at a distance more than € from the cuts
from #y to i and from — # to — iw, where y > € > 0.
Then the inhomogeneous terms and the kernel are square
integrable inw > gz yandin®w > g2 5,0 > B’ = v,
respectively. Hence we may apply the method of
Smithies.?.8 We find that when the Fredholm determinant
D(k) of the kernel J(&; 8, ') is not zero, each of the
equations (2. 8) has a unique square integrable solution
given by

) = £00; ) + [y DU 0 00, 2.1)

with
D) = ¢ ¥ 5(k), (2.12)
=5 0,8, Sk =1, 8,0)=0,  (2.13)
n=0
0 =x-1 0... 0 0
T,(k) 0 n—2 0 0
L | Ta(B) TB) O 0
0,00y = 10 | P :
T8 Tog(B) Ty (B, Ty(R) O
n=2 (2.14)
D(k; ,8") = e "Po(k; 8,8, (2.15)
6(k; 8,8") = 20 6,(k; B, 8),
n=0 (2.16)
Solk; B, B’ =d(k; 8,87, 61(k;8,B") =J2%(k; B,8).
0,(k; 8,8
J(k; B,8') n 0... 0 0
J2(k; B, B") 0 n—1 0 0
J3(k; B, B') T4k} 0 0 0
_ =1
T onl )
TR 8,8 1, (B) Ty (B)en. Tolk) O
nz 2, (2.17)
where
7,(k) = Trd=(k), (2.18)
J (k) being the Hilbert-Schmidt operator in L2(y, ) with

kernel J(%; 3, B').
Using the holomorphy of J(k; 5, 8’) and the bound

|J(k; 8,87 <

for k in B(¢), we find that 5 ,(k) is holomorphic in B(e).
And using the inequality?9:

const/BUAM(B’ + 4), (2.19)

16,(&)| < er/2||J(R)#/n"/2, n=2, (2.20)

and

l7(2)l| < const, (2.21)
for & in B(e), we find that 6(k) is holomorphic in B(e), for
each € in y > € > 0. Hence 6(k) is holomorphic in the
doubly cut 2 plane., Consequently D(k) is also holo-

morphic in the doubly cut 2 plane,

Similarly, §,,(%; 8, 8’) is holomorphic in & in B(e), for
0> B =a,0> B =y,and using (2.19) and
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|72(k; 8, < const/BN(g’ + ), (2.22)
for k in B(e), we havel0
t en-1/2]] J(&)||7-1
|6, (k58,87 < ——o0> n= 2.
nyE BN’ + 4) nn-2y2 ’ (2. 23)

Hence 6(k; 8, ') is holomorphic in %2 in B(e), and con-
sequently in the doubly cut 2 plane,for«© > g = y,© >
B’ =z y. Also, we establish

|o(k; B,B")| < const/BNB" + 4), (2.24)
for % in B(e).
Hence, using
| £+O(E; B)| < const/B1+), (2.25)

for k in B(c), we find that [, dp’6(k; 8, 8')£*O(k; ') and
consequently f dp'D(k; 8,8 )E+O(k; B') are holomorphic
in k in B(e), and hence in the doubly cut %2 plane, for

® > B =y, Hence we have demonstrated that, for & in the
doubly cut & plane, and for D(k) = 0, the equations of

(2. 8) have unique square integrable solutions £(k; )
respectively, which are holomorphic in £ in the doubly
cut # plane, perhaps with the exception of poles where
D(k) = 0. And we have

| £4(k; B)| < const/gl+N), (2.26)

for & in B(e). Hence £x(k; B) belong to both L1(y,») and
L2(y, ). Further, £t(k;B) are continuous in g in
0> pB= .

The right side of (2. 4) are therefore functions holo-
morphic in £ and x in the doubly cut 2 plane, perhaps
with the exception of poles where D(k) = 0,and Rex > 0.
These functions, for k in the doubly cut % plane,and for
AUL(k) = 0, D(k) = 0, are just the Jost solutions f*(k; x)
defined in Ref. 2, Hence we have obtained representations
for the Jost solutions in terms of the spectral function
o(B, B’, cosv).

We now show

in the doubly cut 2 plane,

We first consider £ > 0. Then the integral operators
KIXk) and J(k) defined on L2(0, ©) and L2(y, ), respec-
tively, with kernels K UD(k; x, x") and J(k; 8, '), are
Hilbert—Schmidt operators. We have

s 1 1) = [ [ Zap dpr o vg-er SEB)
Kk, x, x) fy fy dp dp’ e Bre- 02 o 62 (2.27)
Hence, we have
K D" (s x, x")

o apdsy. s, T L
= y - J, B 1o nk2+52 i:1k2+Bi2
n-1
«© 1
dpg’dg’...dgl e B 11
f f72 ! Bue i=1 B; + B/
e
S8, T (B, B1) (5, 8. (2. 28)
Consequently, we have
TeK W)y = [7... [T dp,...dp nm—_t
4 Y "1 k2 + B2
Y 0 ” 1 n
x .- apgy...dpg; 1l I s(B;,Be),
Sy e dy e g T e TSR L)
(2.29)
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with 8, ,, = 87, which is just 7, (k),n = 1.

Hence, we have

A R) = D(k), (2.30)

for k > 0,and consequently as a result of holomorphy,
in the doubly cut 2 plane,
The Jost functions have the following representations
for & in the doubly cut & plane:
0
L) =1+ [ dB[E(k; B)/(k2 + B2)].

The S matrix has the following representation for & in
the same region:

o0
L+ [Tap[E(k; B)/(R2 + B2)]
1+ [ °dp[&(k; B)/ (k2 + B2)]
We remark that the representations (2. 4), (2. 31), and
(2.32) allow us to discuss the analytic continuation in %,

of f#(k; x), for fixed x, and £*(k), S (&), across the inter-
vals k = % ik, k € (y, ®),for analytic partial spectral

(2.31)

S(k) (2.32)
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functions s(8, 8’), by contour deformation, The possi-
bility of such analytic continuations would, of course,
convey information on the limiting behaviors of these
functions as & approaches the above intervals from the
doubly cut plane,
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An approximate interior solution of the field equations of Brans—Dicke theory is obtained for a static
spherically symmetric metric which can be considered to be an analog of Schwarzschild’s interior

solution in Einstein’s theory.

. INTRODUCTION

In previous papers!? we have obtained approximate
solution of the static spherically symmetric metric for
the vacuum case and for a point charged mass in the
Brans-—Dicke® theory of gravitation starting from the
usual variational principle

6/[¢R +1—657-1-I—’--‘9¢—'(;ﬂ] (=g /2d'x =0, )

where R is the scalar curvature, L the Langrangian, w
the dimensionless constant, and ¢ the scalar playing the
role of G, following a technique used first by Weyl* and
then by Pauli.® A similar solution for the static spheri-
cally symmetric metric for a fluid sphere is well worth
consideration.

In this paper we obtain an approximate interior solu-
tion of the field equations of the Brans—Dicke theory of
gravitation for a static spherically symmetric metric
following the same technique. The solution is then com-
pared with the interior solution in Einstein’s theory.

{l. FIELD EQUATIONS

We consider the line element for the static spherically
symmetric metric case in the form®

ds? = (d P + (d2P + (do3) + L(xtdat +22d® + B dx®)?

+ g ldxt)?. ()
The scalar curvature R has been calculated to bel’
1 d 1’2g'> 2 A’ 2 dfvga\ 2
e 2 {544 el L _ i1z _ 2
k= r2A d'r< A +7_A_§g“4 r2A d'r< A ) r2?

®3)

at x'=v, x2=0, x*=0 where dashes denote differentia-
tion with respect to » and

Gu=H=1+1r%, A=(-gh/?=h(-g, ). @

The energy tensor of a homogeneous incompressible
fluid is given by

T, = (Ko +Phuyu, + pgyy - (5)
We set the Lagrangian as*
L= py= (v, v)*/2, (6)

where the scalar p denotes the pressure, A, is the con-
stant, density and

(o +P)u, =v,. (7)
Also ' =17 =1® =0 for static case.

Consequently, the variational principle (1) in this case
can be written as
5 [{¢R +167] o = (vh/8)] = (w/BD(¢'/$)F r*adr=0,
(8)
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where

dix = d*AdQdrr?
(dQ is an element of solid angle at the origin),
0,0 =g"(0"?/d)=1/m)d"?/P).
R is given by (3) and the velocity of light is taken to be
unity.

Now variation with respect to ¢, A, and h in (8),
respectively, leads to the following field equations;

(22).
d_‘i ,—2} _2=%12;2%'—:-—16ﬂ72uo¢", (10)
2_2912_“’_7}::3%—: +8mrZypt, (1)

Also, since, in a connected space filled with fluid, »
has a constant value we have*

v= (o +P)(= 24" /% = o/ g =1ty + P)A/ . 12)

Using (4) the above field equations can be written as

__d'<1’zg44> +2‘rgA4;A' “ZE‘Z<T§“) __2A=w72g44_?f_
e

dr A A ?
d ng« ¢')
+9w— x.
zwd';'( A ¢/’
9"
_27gu _28u +4'rg4;A' _2A=_w72g44 ¢ 161r2uea ,
A T a A N b
(10’)
’ 2 2
_%ﬁiA_ =_"‘W_g4§_ ¢_ +87T1’2‘Uhd>'1. (11/)

AZ A ¢?

111. SOLUTION OF THE FIELD EQUATIONS

We consider the equation (9') which can be written
[using (3)] as

2 ” 2 4

Rv2A =ﬂ&g—“-%- +2wjd; ('r—Agg' %) . (13)

Also we have®
2 @¥igus $7 12 ( 2w )

Rr®p=—r7r 7 +87T¢™ v2A 3135, - (14)
From (13) and (14) we have

d (7% g’)_ . a

dy( Aty )=8Te 72A(3 +2w), (15)

Copyright © 1974 American Institute of Physics 1235
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where T=3p ~ y, from (5).
And so using (12) and (15), the field equations
(9")—(11’) become

_i(&) L2rgud’ . d (@)_M_% 97
dar\ A a? dr \ A T A ¢

2
+87¢7(3p ~ Wo)r2A <3 +“2’w) , (97

_278h 28w  47guA" o, w77 $7Z 167770

A "Ta a’ a ¢ ¢
(10”)

27gal’ gu ¢ 8112

- =g G B Gt pia, a1”)

Equations (9”), (10”), and (11”) constitute only two in-
dependent equations which can be taken as

%(&A‘“): -A [1 +8w2¢-1<l’_;.ﬁ>] ,

(16)
d (r3gh\ _ . [4rgaa’ - (Zw ) 81r2p
dr( A ) “A[ as P8O \3030) T 6
<2w—6>]
342w /)
Also we have
2 ’
.i (y_gﬂ ﬂ) =87T¢)'11"2A(3p —- “0)(3 +2w)-1,
dr\ Ao ¢ am

v="_to +P)= g4)" 2 = Lo/hy= (o +p)(A/R).

Now the problem reduces to finding A, g, ¢, and p
from (16) and (17).

Let us consider the field equations (9), (10), (11), and
(12). When ¢ =const = ¢, (which is to be calculated to
the second order in ¢;') we get the general relativity
interior solution

A= 3k ~h,)/2hy, (=g )"*=Bh—hy)/2hh,;
(18)

p=uol(y~h)/Bh—hy)], 1/K2=1-72/R2,
where
R*= 3/817#0(]561

and h, is the value of # on the surface of the sphere.
Also when ¢ =constant =¢,, u,=0, and p =0 we get the
Schwarzschild’s exterior solution. In view of the
difficulty in finding an exact solution of the equations
(16) and (17), we find an approximate solution correct
up to the second order in /R by using the method of
successive approximation.?!

Let us consider the equations (16) and (17). Now,
when ¢ = constant = ¢, substituting the values from (18)
in the right-hand side of Eqs. (16) and integrating with
respect to » and keeping the terms up to the second
order in 7/R in the expansion of resulting expression
(since ¥3/R? and higher terms contains ¢% and higher
terms), we get
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¥8yu/0% =7 +% (rr2/R?) + (r3/4R?) +A, A=const, (19)
r2igl /A= —(27%/R?)[(w +3)/(8 +2w)] + B, B=const. (20)

Since our solution is to be regular as »— 0, the con-
stants of integration in (19) and (20) must be put equal
to zero. Hence we get

8i/A=~1+3(r2/R?) + (r*/4R?),

gh/B == Qr/R?)[(w +3)/(3 +20)], 1)
where
R =375t

Eliminating A in (21), integrating with respect to »
and keeping the terms upto the second order in /R in
the expansion of the resulting expression for g,,, we get

g1~ C{1 + (r2/R?)[(w +3)/(3 +2w)]}, C=const.

Since our solution should go over to the Brans—Dicke?
exterior solution in this approximation, on the surface
of the sphere, i.e., at r=7,, viz.,

2M¢5‘(4+2w>__ +5(4+2w>
r% \3+2w/ RE\3+2w/’

gau=-1+

where
M=4nriu,/3
we must have
C=-{1 = (r3/R)[Bw +7)/B +20)]}

so that
~ r3 3w +T\ 7%/ w+3
Bu==1+p (3 +2w)_R2 (3 +2w) : 22)
Using (22) in (21), we have
oy 7% 6w+19> 72 (6w +15
4 1_4R2<3+2w TiE\3 20 ) @3)

Again from (17) we have [using (18)]
(g,0/8)(®" /D) = ~ (v/R?)(3 +20w)™",

24
(o +2)(= g2~ 1 = (r2/2E9)]. @4)
Now using (22) and (21) in (24) and making the same
approximations as the above, we obtain
o=D[1+ (»2/2R?)(3 +2w)™], D=const, 25)
ey | XS (w*3 7 (w43
p= “0[2122 <3 +2w> ~3R° <3 +2w)} 26)

Again to evaluate the integration constant D in (25) we
invoke the condition that our solution should go over to
the Brans—Dicke® exterior solution at » =7, in this
approximation, viz.,

¢>= ¢0{1 + [2M¢51/70(3 +20J)]}, M=47T7'glio/3
= ¢,[1 + (r2/R?)(3 +2w)™*],

so that
D= ¢g[1 + (r2/2R?)(3 +2w)™].

So we have

o= p[1 + (r2/2R?)(3 +2w)™" +(»2/2R?)(3 +2w)1]. (27)
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Now considering (22), (23), (26), and (27) we can
write down the approximate interior solution for the
metric (2) in the Brans—Dicke’s theory as

r3(3w+"7 72 fw+3

2
Any_TB (6w+19)+ y <6w+15),

4R\ 3+2w/  4RZ\3+20

oy |70 (0+3 _ﬁ(.ﬂi)]
PRk |5p7\3 720 /T2RE\3 120 /)

¢ = do[1 + (r3/2R*)(3 +2w)™ +(r2/2R?)(3 +2w)™].

(28)

Thus, we see that the solution (28) is an analog of the
Schwarzschild’s interior solution in Einstein’s theory.
It is interesting to note that when w— = the solution (28)
exactly agrees with the general relativity interior
solution in the same approximation. And when r=7,,

J. Math. Phys., Vol. 15, No. 8, August 1974

i.e., on the surface of the sphere the solution goes over
to the Brans—Dicke exterior solution in the same
approximation. It can be, also, seen that there are no
singularities at »=0, i.e., at the center of the sphere.
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Starting from the formal expansion of an arbitrary transport coefficient X in series of the inverse
range y of a van der Waals potential, we establish the explicit form of the first y correction to X;
we show that it can be expressed solely in terms of the Fourier transform V§ of the long-range
interaction and in terms of the equilibrium and transport properties of the short-range reference
system. A comparison with previous work on related problems is also given.

I. INTRODUCTION

In a preceding paper, two of the authors (J.P. and
P.R.), have performed a formal analysis of the trans-
port coefficients of a three-dimensional van der Waals
fluid* (this reference is hereafter referred to as I). Such
a fluid is characterized by an interaction potential V(r)
which can be decomposed according to

V(R =V5(r) + VI, (1.1)

where V5(#) is the short-range part while ¥*VX(y7) de-
scribes the long-range tail of the total potential: the
motivation of the splitting (I. 1) is that the inverse range
v is supposed to be small and furnishes thus an expan-~
sion parameter for the calculation of equilibrium and
transport properties.

Starting from the Green—Kubo expression for an
arbitrary transport coefficient X, our main result, ob-
tained through a detailed many-body analysis, is the
following expansion:

X=X+ §7"X<">(y), (1.2)
where X5 denotes the pure hard-core contribution while
the coefficients X"’ (y), which are still (possibly non-
analytic) functions of y, are such that

lim X"™(y) = finite const. (1.3)
yo

More precisely, Eq. (I.2) is an immediate conse-
quence of a similar property for the various operators®
¥, Cl, Db and G! which appear in the microscopic analy-
sis of X. For example, we have shown that the linear-
ized collision operator ¥}, which plays a central role
in the theory, can be expanded according to

V(o1 9) =S (0y) + Ly e (04| 9). (I.4)
Let us stress the nontrivial nature of the expansion
(I.4); indeed, the naive but straightforward perturbation
expansion of ¥} which expresses this operator as a

functional of the free-particle propagator G‘;,

‘I’(l)(vl l ‘)/) =q’(z)(vl |')’ I{Gg})’ (I- 5)

Gvy; 2) =1/(z - kvy), (I.6)
does not lend itself naturally to an expansion of the type
(1.4). Rather, we first have to renormalize the one-
particle propagator, taking into account the interaction

of the propagating particle with the rest of the fluid.
We write thus first

vy | N =Tiv, [y |{G,D, I.7)
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(1.8)

where G, is the exact propagator while ¥} describes the
collision of particle 1 with the remaining (N — 1) parti-
cles of the fluid.

A crucial observation in our analysis is that, because
of the long-range character of the potential VI, the
dominant contributions to ¥} due to VZ come, in (L. 7),
from small values of 2 (2<¥) and z (z<S7v). In this limit,
we are able to get an exact expression for the dominant
contributions to the operator G,. We have indeed

G,(vy; 2)=1/1z = kv, + ¥(vy; 2)),

HmG,(oy; 2)= 23 [Ttz — MO Be),  @.9)

where lim, is an abbreviation for the following limiting
procedure:
y -0, k/y=y finite, (I. 10)

The eigenvalues A%(y) and the corresponding eigen-
functions were already explicitly displayed in I for &
oriented along the x axis; we give them here for an
arbitrary orientation of k. We have

A} (y)=xic(y)k -T (K,

1 1 (VBT . 1 3BT\ /2
REoN =75 [7(3;)— | 1)+ |2%) + e )CE (_:_>

z /Y =w finite.

(I. 11a)

X (53—?)5 | 5>] , (I. 11b)
1
<f1 2(3’)' l:c(y)\/'k_T nxT(y) (1|1|2 k|
28, T\/2 1
+< - ) TS ( ) <‘s|] (I.11c)
At ()==-n°K/n, (I.12a)
£ ()= |3"%, 45, (1. 12b)
(fah )| =(8"%,4%), (1. 12¢)
At(y) = =kSE*/nC (»), (1.13a)
3\1/2T (3p
Al z(y)[ () ( ) |1+ nxT(y)‘5>] (1. 13b)
<fs"‘(y)l—[ cs@)l/z(ap) 1] +<x5] (1. 13c)

Here |i*®) (i=2, 3,4), respectively, denote the longi-
tudinal and the two orthogonal components of the velocity
field; they have the following velocity space
representation:

(v|2'%) = (2 I vy = ¢*(v) (vrlkx + ”ylk, +'v¢1k‘) Ve T,
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(v]3") = (3| v) = ¢*¥0) (~ v 1,1, +v, (1 + 15)
¢*Hv) - v,lkzlky)/w/kBT(lﬁz +13),

(0| 4% =(4"*|v)= (v, -v,1,)/VET(E, + 1),

where 1,=k/lk|. All other symbols appearing in (I. 12)
have been defined in I: Let us simply recall here that
c(y), C,(»), x.(»), respectively, are finite y-generaliza-
tions of the adiabatic sound velocity, specific heat at
constant pressure, and isothermal compressibility of
the van der Waals fluid. Equations (I. 11—13) thus give
the hydrodynamical eigenvalues and eigenfunctions of
this van der Waals fluid, suitably generalized to finite y.

(1. 14)

We shall not reproduce here the calculations leading
to these expressions for an arbitrary vector 1,; let us
simply remark that for 1,=1_, they exactly reduce to

Egs. (I.V.27-—29); moreover, the vectors |i'*) are
orthonormal with our definition (I.A. 9) of the scalar
product.

With this renormalized from (I.5), we have been able
not only to establish the expansion (I. 4) but also to ob-
tain the explicit form of the first few corrections ¥}™
(n=1,2,3) in terms of the Prigogine —Balescu diagram
technique (suitably adapted to the present problem).

For example, the first correction, ¥}, is given by the
graph depicted in Fig. 1. Here again, we refer the
reader to I for the detailed meaning of this diagram:
Roughly speaking, it represents, to dominant order in
¥, an arbitrary pure hard-core process (the dashed
bubble) from which two particles emerge with wave-
numbers k and ~ k; these particles then propagate hy-
drodynamically in the presence of the van der Waals
forces (the two heavy lines) and then again interact
through an arbitrary hard-core process; finally, in
order to get the correct result, we should subtract from
this graph the corresponding pure hard-core term, ob-
tained by formally setting V=0 in the hydrodynamical
lines of this same graph.

The corresponding corrections for the quantities (},
Db, Pl are given in I, Table II.

The aim of the present paper is to go beyond these
formal results and to give an explicit evaluation of the
first correction X®(y =0) for the various transport co-
efficients. However, whenever it will be necessary to
specify the explicit nature of X, we shall perform the
detailed calculation for the thermal conductivity (X = Tk)
only, in order to avoid undue lengthiness. For the shear
and bulk viscosities, we shall merely quote the results.

In Sec. II, we establish a fundamental property of the
dashed bubble of Fig. 1: Indeed, we show that, in the
k — 0 limit, this quantity, when acting on a product of
two hydrodynamical eigenfunctions, can be reduced to
the pure hard-core linearized collision operator ¥}5,
which also appears as the leading term of (I.4).

In Sec. I, this property is explicitly used in order to
calculate X“’(y =0) and leads to the remarkable result
that this correction can be cast in a form which only in-
volves equilibrium fluctuations and hydrodynamical
eigenvalues: In particular, the collision operator ¥}:S,
entirely disappears from our formulas, which can then
be calculated independently of any specific model of
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- hard core

FIG. 1. The first correction ¥f"’ (v1/y).

the hard-cove dynamics. We then give an explicit cal-
culation of the above-mentioned equilibrium fluctuations
and we get an expression for X*)(y =0) which has the
following form:

XO(y=0)=f," dy fX(VE, {x5},{¥s}), (1. 15)

where {X5} and {Y5}, respectively, denote the transport
coefficients and the thermodynamic properties of the
pure hard-core reference system; moreover, f¥ is a
simple algebraic function of the Fourier transform of
the long-range potential, denoted by VI,

The simplicity of this results makes it a posteriori
plausible that this result can also be obtained using
semimacroscopic arguments, similar to those used in
the mode —mode coupling analysis. ® That this is indeed
the case is shown in Sec. IV.

Finally some remarks of general interest, including
the connection of our results with the recently dis-
covered long-time behavior of the Green—Kubo inte-
grands, * are presented in Sec. V.

Many mathematical developments have been relegated
in Appendices.
I1. A REDUCTION FORMULA FOR ¥,/ y&«, ',
Y@ ') andyg [ )

A straightforward application of the rules given in I
(see Table I of that paper), leads to the following formal

expression for the correction y¥}®(y) depicted in Fig.
1 [compare also with Eq. (I.1I.8)]:

Q 1 ,
7‘1’3‘1’(01|7)=<§T—3§T fdk/dv{‘l’(o};kl,-kz,(ol‘(vl’v2;l€)

t
x[limif dTXk(vl;T)X-k(vz;T)}
(o]

F

Xy, kg, (01 (01 (V1 U38€) — hard core > ,
(I.1)

where the propagator X,(v,;7) is defined by (I.IT1. 5, 9),
while ¥ (o), _p, 0 20d ¥, o (0110 2T two-particle
operators, representing t’he bubbles of Fig. 1. More
precisely ¥,q)., ., (0} i an operator which acts on an
arbitrary two-particle function &,(v,, v,) in the following
way:

‘I’{O);kl,-kz,(oy(vn Vy; Z)(I’z(vu v,)
N
- (vnﬁltv—:’l f dvn-z[‘l’"(soy;km-kt, {oy({v}; Z)]u, '

XB0,,9) /00,0 (0,)) + O,

where we have
(50}, -r,, i} 20,

(1. 2)

w “Res
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-5 (({O}Il{(— SLO)(Lo ~ 2) @3- LT,

x Ikug - k,,{O}) ﬁlq’"(v;) + (;ﬁ?eo ({0}|1{(" 5LS)

R aky=0
x [(Lo - z)"‘Qi(- GLS)]n}fBSt ' ku’ - kt’ {k'})

x (@ H oo {0}); (@)
in the following, we shall also need the same operator
for u=t [see (II. 12)]. It is obtained by setting k,=k,=0
and u =t into (II, 3). In this equation, we have introduced
the projector

Q=1 {OD(O} - 2 {0V, k., ~ )k, - B, DOV
(I1. 4)

which eliminates not only the “vacuum component” |{0})
(as is usual in the definition of a collision operator) but
also all intermediate states with a single pair of lines
(a, b) with wave vectors k, =k, =k and k,=k,= - k; this
supplementary restriction is necessary because such
states are already included in the propagators X,(v,; )
and X_,(v,; 7) of Eq. (II.1). Note, however, that, in the
k0 limit of Eq. (II.3), the projector @2 reduces to

Q=1 - |{o}({o}].

Similarly, {i,kl,-kg,(ol';(o] acts on any one-particle func-
tion in such a way that

(11.5)

-

\I,k!.- -kz, {0} (Ol(vn vy; 2)®(v,)

N
= ;ﬂ [ a2 s oo (o) 2@(0) 00(v,),  (1.6)

where now

V8 o= 23 (s = {0V |y e ol(- 022 - 2046

x(= o)} [{oh I ¢3°(o)

+“§)—:’m (Ryy = 3y {0} |, o o=~ SLS)(L, - 2)*Q;

o
Ky

(= SLOHE-< [ D} %l f0)). ()

Although the most difficult problem in “translating”
Fig. 1 into these analytical expressions is clearly a
question of notation (which can be best understood by
working out explicitly a few simple examples), the fol-
lowing remarks can be helpful in the understanding of
these equations (II.1, 4):

(1) If we had followed strictly the rules given in I,
Table I, we should have expressed all contributions in
terms of renormalized vertices. However, to avoid a
complicated notation, we found it more convenient to
apply backward the theorem on propagation of equilib-
rium correlations [see I, Eq. (II.31) and following]; by
this trick, we can lump together all these equilibrium
factors at the right of the operator ¥5 —the reader will
easily convince himself that this is indeed a legitimate
procedure.
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(2) Both in Eqs. (II.2) and (II. 6), we have neglected
terms of order y. Indeed, we should take there the com-
plete contributions of type II segments (see I, Sec. III)
which generally involve long range vertices; the domi-
nant contributions are however of pure short-range
nature, as indicated by the superscript S in Egs. (II. 3)
and (I1.7).

(3) Let us still point out the factor (2!)™* in Eq. (IL. 1);
indeed, when we interchange the label of the particles
respectively carrying wave number k and - & in Fig. 1,
we do not generate a distinct graph while the two cor-
responding contributions have both been retained in the
bracketed term of Eq. (II.2): This overcounting is cor-
rected for by dividing by 2!.

Let us now insert into Eq. (II. 1) the expansion
(1.I11. 10) for the propagators; more precisely, we use
the following representation for the operator X,(v; 7)
acting on an arbitrary function &(v):

X,(v; 78 (v) = 2 expl AL 0TI £ 30 | VX F20) | @)

+[X,(v; )& () omnyas (1. 8)

where the subscript “nonhyd” denotes the nonhydro-
dynamical contributions, which generally have a com-
plicated time behavior; moreover, f%(v|y) is the veloc-
ity space representation of the eigenfunction |f%(v)) and
the scalar product (f|g) is defined by

(flgy= [ avle=(v)I'f (v)glv).

We then assume that the nonhydrodynamical part of
X, (v; 7) gives a finite contribution to the time integral
appearing in (II. 1) when ¥ — 0; taking into account that
the k-integral in (II. 1) is restricted to | 2| v, we get
then

Q 1 ;
Wt’)‘”(”lly):(ﬁ 37 HZ)B f dk f dvz{‘l’(o);{o)(’vn vy; i€)

Xfak(w, |9) Fte (v, | 9i(A% () + AN ]

(1. 9)

X f v} dojl@* (o)) v k(] |y)

Xf5 2 (03] 9Y¥ 0y, (0)(v1, v3;i€) ~hard core})
x[1+0(ymrt 1], (1. 10)

A word of comment is required here to explain our
estimate of the terms neglected in going from (II. 1) to
(II. 10). Besides the ¥ correction involved in (II. 2) and
(I1.6), we first have dropped the nonhydrodynamical part
of X,(v; 7): following our remark after (II. 8), this cor-
rection is only of order ¥* compared to the leading term
retained in (I1.10). Second, we have replaced
Y08y, -k2, 101 OV ¥(o), (0) Which, for k<v, should lead to
an error not larger than O(y). Similarly, the replace-
ment of the exact eigenfunctions |f2(y)) by their leading
contribution 1£2%(y)) [see (I.11, 13)] is also expected to
involve errors of O(y) for £<¥. Finally, we have re-
placed the exact eigenvalues A%(y) by their dominant
part A%(y) [see again (I. 11, 13)]. Here the situation
seems less favorable; indeed, we have now indications
that the slow decay of the Green—Kubo integrands for
long times* has a counterpart on the k-behavior of
transport eigenvalues A%, even for a pure short-range
system. On the basis of semimacroscopic arguments,
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one expects®
A: =(A%), J1+0(&")], (1. 11)

where (A%), , denotes the usual hydrodynamical eigen-
values; the exponent p is expected to be ;. As we are
interested here in a microscopic theory while we only
have semimacroscopic arguments to support (II. 11), we
shall be a little more careful and we shall take min(1, p)
as our estimate of the neglected terms, leaving p as an
unknown parameter,

As it stands in (II. 10), our expression for Y¥}® is
still very formal because it involves the two-particle
operators ¥y o and ¥ {0};{0y Which cannot be written in
a compact form.

However, a cruicial simplification occurs when we
realize that these operators, when acting on a product
of two hydrodynamical modes [see (II. 10)] can be re-
duced to the one-particle short-range operator ¥k S [see
(I.4)]. We present here a formal proof of this result;
moreover, due to the key role played by this remark-
able property in the present analysis, we also prove it
explicitly in Appendix E for the dilute gas; in this latter
case the same result was already implicitly used by
Dorfman and Cohen.®

We first notice that the operators \If(o} [o}({v} i€) and
\Ilw, oy{v}; d€), from which ¥ 5. o) and ¥ ). o) are built
[see (II. 2) and (II. 6)], conserve the collision invariants;
we have, for example, ‘

N

g [[‘I’{o);(o)({v}; iE) u, ¢ a(‘U )] 0, (IL. 12)
where i ,(v) is any of the five collision normalized in-
variants [11_1 i, 5,4= V1), 4, VR T ;is=V2/3(v? 2k, T
-3/2)]. The commutation relation (H 12) is trivial to
prove for i, (particle conservation) and i, ; , (momentum
conservation); for the kinetic energy 1nvar1ant is, the
proof is more involved but has been given previously in
a different context”; we shall not reproduce it here. Let
us also mention another important property of
[\Iffo); (0} ]u,t: It gives zero when acting on a constant

[¥%y),10)({2}; i), ,C=0. (I. 13)

This latter property merely reflects the fact the Max-
wellian distribution is a stationary solution of the gen-
eralized Boltzmann equation [see (II. 3)].

If we now take into account that the eigenfunctions
fik(v|y) are linear combinations of these invariants, we
can simplify (II. 10) in a decisive manner. We have
indeed

S
faHw]y) /o (0)= 1M ) = 25 e )iglo), (I1. 14)
where the ci% are v, -independent coefficients which are

readily calculated from (I.11, I.13). Using twice Eq.
(II. 12) and then Eq. (II.13), we get in succession

:4:’[‘1’(0} (1), LaH (0| 9540, |9)

=2 [@?0);(0)111 tha (vtly)l-lk(v |y)

allt,u

- ; [‘T’?o);(o)]:,/;k(”f |9)15" (v, | 9)
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1 = -1
=auZ"ulak(‘U¢ |9 oy, 01, Lo (0, ]9)
—Z} [:I;fo);m)]g ta (vtly)I'l"(vJy)

1 -1 ~
= allzt; uIak(vt l y)IB k(vu I y)[\l“‘(so}, (0}]!4, fl

-2 ['?'fo);(o}]z, daM, |9 (v, | 9)

t

~ 1 .
= —E [‘Iffo); (0)]5, rozk(vt Iy)Iﬂlk(vt |y)

t

(1, 15)

The remarkable feature of this equation is that in the
initial form—at the extreme left-hand side of (II, 15)—
@?o);(o) acts on a function of two variables v, and v,
while at the extreme right-hand side it only operates on
a function of one variable!

Inserting this result into (II.2)—taken at &, =~ k,=0 and
z =ie—we obtain after integration over v,

S dvz\l’(o} 10 (01, Va3 5 (0, | 9)f5 M, | )
"-Ef " Ty, 10, {0}; 1)), L 3M(0, |9 (0, | 9) + O0)

= = b S (w20, | ) *(v, |9) 0*(wy) +O(y),  (I1.16)

where ¥}'(v,) denotes the purely short range linearized
collision operator, obtained from (I.II. 24) by setting
z=1{¢ and putting everywhere the superscript S; this
operator is precisely the leading term of the expansion
(1. 4).

Notice that in going from the second to the third
member of Eq. (II. 16), we have made the nontrival
identification

N
‘I'é's(v,)é(vl)=tz=i S " ¥y, 0, ({0); )], 2 (0,) S0 (0,),
(I1.17)
which is justified by the remark after (II. 3).

From (II. 10), we see that we also have to transform
the quantity

A= [ dv] duT Mo |9 (03| 9)¥ (o), 10) (0], 085 7€) (v]).
(1. 18)

We shall not present this calculation here because, ex-
cept for numerical factors, A is essentially the con-
jugate of the left-hand side of (II. 15) and can be handled
by the same method.

The result is

= - 3 [ an T 9T )08 w0 0 + 00,

(I1. 19)
Combining (II. 10), (II. 16), and (II. 18), we get finally
L4 (1)(,01 I'Y)‘I’ (v,)

=vow) [ﬁ 37 3 [ (1 90550, e (e

X TG ETEY] J Tl

Xy (w{)8(s}) ~hard core) | + 0= (. 20)
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Thus, the only operator which appears in this equa-
tion is the hard-core linearized collision operator ¥} 5;
this property is a generalization to arbitrary density
and interaction of a result previously established by
Dorfman and Cohen for dilute hard speres, © in the con-

text of the #3/2 decay law for the Green-Kubo integrands.

As we shall see later, this linearized collision opera-
tor itself will disappear from the final formulas when
computing the ¥! correction to the transport coefficient
X. However, before we can show this, we first have to
derive the analog of (II. 20) for the other quantities
which appear in the calculation of X, namely for
DM, CI&P0), PL*(r). As this analysis follows the
same line as the previous one, we shall be very brief,
stressing mainly the few points where new features
appear.

Consider for example the case of )§®)(y); from I,
Table III, we obtain, in analogy with (II.1),

YDE ) (v,; i€)

Q1 .

={-8?2—!'fdk[fdvz‘I’(OI;kl,-kg,(O)'(vls ,; 2€)
t

X(%?‘Bzf dr X, (vy; T)X_(vy; ‘r)) fdv”'2
0

X ((kl, -k, | [T -

x ({vhsie) (&} [I= - 6T=]Q¥ pos| 0)) - hard core} },

6J]0 pee|0) + ;%05,, ~hg, 10} {7}

(I. 21)
where we have put

~

0 kg, {0}% wn{eh 2)

= nZi (y, = By {{= BLS QXLq = 2)21}F-C| {£7}) + OG).
(I1. 22)

Inserting the representation (II. 8) into (II. 21) and using
(11. 15), we get after some straightforward manipulations

YOI (v, i€)
=ve S(vl)(8n S 21 aE fdk(llk(vlly)rlk(vlly)

x{il A% (y) + AF()] 1@ (1, ¥) —hard core))

+ O(.y1+mln(u ,1)) .

Here we have introduced the velocity-independent
quantity & /%(1,,9):

s, 1 ¥ = =
<I>a"3(1k, y):llrm N a%}:l/ dUNI;k(valy)IB k(vny)

(II. 23)

x((ka, -k, |(J= = 8T )2 pea| 0)

+ 20 DF, oy o (s 1R H (7 = 87)

X Q¥ pea| 0)) + O(y) (I1. 24)
and we have used the definition (I. 10) taken for w=0.
Let us stress that, in this latter formula, the limit
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k-0, y=p/y finite, has to be taken with great care and
is not obtained by merely setting &, = — &, =0. Indeed

(as was pointed out in Ref. 1 Sec. IV), the flow term
({®'} (J= - 67%)2¥ p*2| 0) involves long-range contributions
which remain finite when v —0: In other words, Eq.

(IL. 24) is not purely short range (although the operator

55 is!) and we thus have to keep y finite when going to

the k& — 0 limit.

The bracket of (II. 24) involves equilibrium correla-
tions which have a nonanalytical behavior at £ — 0 in the
canonical esemble used here; for example, we have

-k, |(I% = 8 %)% pee| 0) # (0](J* - 6T%)2"pe¢|0),
(11 25)

11m(

even for purely short-range terms! The situation here
is completely analogous to the well-known case of the
pair correlation function g,(k), where

limN
k=0

dv pkh'kzr(")'({v}) 11mn 1o, (R)= F T<ap> -1

#N f dv¥ps({v}]=N1  (IL.26)

Due to these difficulties, we shall provisionally main-
tain &7 o as it is defined in (I1. 24), leaving for later the
proof that it can be reduced to purely equilibrium fluc-
tuations, which can then be computed according to
standard methods.

The so-called creation operator ,ﬁ;"(vlly) can be
similarly transformed; we get

Y w? O[5 - 67 [{eNC 14,0 (v, M2 (0,)

81r3n 2| & [ dr(® (1, YNl AL() + A}

f dvy I (v, | )1, (0, | )T %S ()@ (v,) —hard core

+ O(thin(u,l)). (II. 27)

Here the function & 5(1,, ) is defined by

@ 3(1,,9) =lim 23 [ do¥[(0|(J5 - 077) | (k,, ~

83)|{'D

x ({#'}|C s({v} i€) | b,y = k) 1 1H(w, | D)5 (v, ] 9),

x Lo(u)+ 2 (0] -

(IT. 28)
with
{RCS ol 2) | &,y -
=2 [({k’H{[(Lo -2 QA= LS)IVF % | &, — B,) n 9%(v,)

* (3:})#0 ({k’}l{[(l’o - z)’lQi(— GLS)]"}F'C'l{k”}’ kyy - kb)]

YA
KR

x ({&"}| (@Y p*9)% | 0). (II. 29)

Finally, for PJ®(v,|y) we find

v [ dv, (k%o (0] (7 - 87 |{R PPLV (v, | 7)
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=@mn) (21 2 [ dr(@ 31, Wil AL () + AT
x%(1,,5) —hard core) + O(y™2&:1) (11, 30)

HI. EXPLICIT CALCULATION OF THE FIRST
CORRECTION x(*’

With the important formulas (II. 20), (II.23), (II.27),
and (II. 30), we have all the basic elements required for
the calculation of the ¥! correction to any transport co-
efficient X. Rather than giving immediately the detailed
calculations for the general situation, we prefer to
discuss first the simpler problem of the purely kinetic
contributions to X, Indeed, in this case, the result can
be obtained in a few lines and the salient features of the
calculation are not obscured by technical aspects. In
particular, we will see very clearly the way in which
the linearized collision operator entirely disappears
from the final equations. The general case, involving
the potential part, will be considered later on.

From Eq. (I.1I.38) and (1.1I. 39), it is obvious that we
can split X into a kinetic part XX’ and a potential part
X(V):

X® =~ fnlin [ dv, (0] (T35 - 677 ) | 0)
o

x{il¥3(v,; i€) + i} [ do¥2(0| (7P - 5J7 )
X p*Q¥ |0), (Im. 1)
XV =X"+X" =X (Im.2)

where JF®, 8J7%, and 6J7® denote the kinetic parts
of the corresponding flow operators. For example, in
the case of thermal conductivity, we have

JIE —y, 2 /2,
8J,TKU) = 5J T E) = L(5k, Ty, (11 3)

The simplicity of (ITI. 1) comes of course from the fact
that it only involves the linearized collision operator
¥}: the other basic quantities of the theory, namely

I, D&, P} all appear in the potential part XV only.

From the expansions (I.2) and (I.4), we get
immediately

.yx(K)(l)(-y) — —Bnleigl f dvl[Jlx(K)(vl) - 6:71" (K)(vl)]

x{il Wi S (v,) + i} - ir®d (v, | )]
X{i[\Ilc’,' s (U1) + ie]}-l[J1X(K)(v1) - 6J1x (K)(vl)](peq(vl),
(1m. 4)

where we have used the fact that the kinetic flow opera-
tors only depend on the velocity of one particle.

Inserting now (II. 20) into this equation, we obtain
5

B 1 3 £
55T > fd k(f;g(lkly)fgs(lkly)

a, B=1

YXEOWD(y) = _

x{[A%(y) + Az*(y)]}* —hard core)

+O(.),1+rln(u,l))’ (III.5)
where we have introduced
FadLy )= [ v I ®(0,) - 85 (v)]
XI ko, | 9); (v, | 9)o*4(v,) (1. 6a)
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and
Frau|9) = [ do [Ir ) (0,) - 607 %)(v,)]
XI x| 9)I; (o, | 9)e *(v,). (I1L. 6b)

In the derivation of (III. 5), a crucial role is played by
the identities

lim @ [{elwdS () +ie]} 20 S (v) =(@ |, (I 7a)

and

lim {i[¥%S (v)) +ie]F1i¥s S (v,) |8) = | ) (1. 7b)
€-0

which are valid for any vector |&) (and (&|) which is
orthogonal to the null-space of ¥} S, As discussed in
Ref. I, the choice of 8J7, and 8J7, is precisely such
that this orthogonality property is satisfied.

Equation (III. 5) essentially gives us the answer to our
problem for X*; Indeed, from (III. 6) and (II.14), we can
easily get an explicit form for f%,(1,!y) (in terms of the
equilibrium properties of the reference system and of
Vf) by performing the trivial velocity integration in-
dicated in (II. 6); notice that, in this operation, most of
the fi, will vanish for symmetry reasons: For example,
in the case of thermal conductivity [see (III. 3)] we will
get a nonvanishing f7¥ only if one of the I3% has a vector
component along the x axis and if, simultaneously, the
second one is a scalar quantity. The next steps are then
to insert the eigenvalues (I.11a), (I.12a), (I.13a), into
(HI.5), to perform the integral over the angles of k and
to make the change of variable | k| =vy. We are then
left with an expression which is precisely of the type
(1.15). We shall, however, not perform these calcula-
tions explicitly here because X'’ is of little significance
in a dense system; furthermore, a similar analysis will
be performed later in the general case, including the
potential part, which we consider presently.

We now have to start from the complete expression
for X, given by Eq. (1.1138)-(II. 39). Using again (I.4)
and the analogous expansions for (1, )¢, and P}, a
straightforward calculation, based on (II. 20), (II.23),
(1. 27), (I1.30), and (III.7), readily leads to

B 1 < -
YX®(y)=~ =T aZBZl fdsk(‘ﬁﬁs(lk!y)q’fw(lk[y)

x{[A%(y) + Az*(»)]}* ~hard core)

Y O(.ylunln(u ,1)) . (m. 8)

Comparing with (III. 5), we see that the structure of
this v*-correction is similar to the one obtained in the
kinetic case except that the simple factors f, and fZ,
are now replaced by the more elaborate expressions

&%, and 5’;6. They are defined by the following
formulas:

q”fxs(lkly) =9 :xxﬂ(lkly) + f dv, ((Ol (J7 - 6*71") ‘ 0)
+ 0107 - 87| ENCHS oloss 9)
X (p"‘l(vl)I;k(v1 | y)IB'lk(v1 | ¥) (I11. 9)

and

&)Lﬂ(lkly) 2‘3’2‘5(1&'3’) + f dvl{I_;"(vl | y)l_s-lk(’h |y)
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X[ dv¥1(0|(J3 - 8J7)R¥pe| 0) + DS (v, i) .
(II. 10)

Here the quantities &, and 35 s are given by Egs.
(I1. 24), (II.28) while Cw;,o and )& are the pure hard-
core analogs of the quantities introduced in Eq.
(I.11. 38).

We can expect, from our previous d1scuss1on of the
kinetic case, that %, and <I>a8, like £, and f%,, can be
reduced to purely equilibrium properties and that most
of them will vanish for symmetry reasons. As we.
shall now indicate, this is indeed the case; yet, this
proof is far from trivial and, in order not to interrupt
our analysis by too many technical details, most of the
calculations are relegated in Appendices.

First of all, let us notice that, because of (I1. 14), the
%, (and & * o) are bilinear functionals of the invariants

i,(v) (v=1...5). In order to get rid of awkward numeri-
cal factors, we write
5
&%4(L9) = ,:L:/l daﬂ,vﬁ(lkly)m;"é(lk I, (1m. 11)
where we have put
dos o(1,19) = 2 (D)cR*(), (III. 12)
and a similar formula for &%,
&)’:18(111 |y) = rZoZL Eﬂﬂ,rG(llz ' yIms(1, l ), (1. 13)
with
o ro(1]9) =T ()T D). (III. 14)

The definitions of m%4(1,1y) and 7%,,(1,] y) are read11y
obtained from (III. 9) and (III. 10) by replacing I;*(», | y)
—1i4{(1v,) etc. They are explicitly evaluated in Appendix A
and (B), respectively, where the following results are
shown to hold in the particular case of thermal
conductivity:

mE(1,|y) =mZ(1,]y)

oh/n . P av]
~nkT[(an>+V+21 5y

(Im1. 15a)
Tk Tk \/_'— _a_YJI_'
mIk(1,|9) =mE(1,|9)=nVR, T 1,1,y 5 )’ (I11. 15b)

ovEL
mf4“(1k|y) =m§'1“(1k|y)=n\/kBT (1,&1"3! 2 ), (1. 15¢)

E2
mIs, | 9) =mIx(L, |9) = VE VBT Tr(ah/”) , (I 15d)
while all the other mZ¥ vanish for symmetry reasons.
Similarly, we have
mIE(L, | y) =m(1,]9)
=mtlnky Txr(y)] + O0Y) (i=2,3,4),
(III. 16a)
(L, 9) =T IE(L,]9)
=mis(1, |y)6{}'+mﬁ"w/_
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% (gg)s _ 3kpT
on, 2

all other coefficients m"g vanish for symmetry reasons.
For the other transport coefficients, the corresponding

m%, and m*, are listed respectively in Appendices A and
B.

- nw,8] +0(); (I 16b)

From these formulas, it is now a straightforward
though tedious matter to express the first correction to
X in the form suggested in (I. 15): In a first step, we use
(III. 11) and (111 13) to calculate the functions &%4(1,|y)
and &%,4(1,|y); in doing this, we also need (III 12),

(1. 14), and (1. 14) where the coefficients c'k(y) are ob-
tained by comparison with (I.11--14), We get, after
considerable algebraic simplifications,

8751, |9) =8 (1, |y) = (s T)*/*1, G,T0),

1
3Ix(1,]9) =021, |y) = (&, T)S’Z((m—lz)%ﬁ) G0,
(II1. 1'7b)

(I. 17a)

-1,
741, ]9) = -0 Ix1,|y) = (ks T)*/2 m Gae(y),
(I. 17c)

where we have introduced the dimensionless constants

G e (), » 2 122

L, n 3VE ]
+nVi+ PRAry %y (II. 18a)
and
T 1 h/n\S
Gs"0)="% =5 {nk 1o (oF).
ap oh/n z
-3 T(aT) [(_'an >T+nVy . (m.18b)
Similarly, we find
3Tx(1,|9) =dZx(1, |9) =271, ), (II. 19a)

BT (1,9 =311 = (ks T/ -1, 1, /(1 +1})"/?]

x {Zlnky Tx () c?(y) /by THG E(v), (TI. 19b)

Ix(1,]9)=-8Tx1,|y)
=(ka TV /2= 1, /(1F +15)'/?]
x{Z[nkg Tx () c?(y) /Es TG E(»). (III. 19¢)

The quantities $7%(1,1y) and $Z%(1,1y) which we have
not written down exp11c1t1y here elther vanish for sym-
metry reasons [as for example ®7*(1,|y)] or only con-
tribute to (III. 8) to higher order in ¥ {for example, the
combination of one sound mode with any other mode, as
in #J¥(1,1y), gives a contribution of order ¥* to (III. 8)
[see (1. lla) and (I. 13a)]. The corresponding formulas
for shear and bulk viscosity are displayed in Appendix
C.

The next step is simply to introduce these results into
(T11. 8) and to perform the angular integration over &; in
terms of the variable y =1kl /¥, we get then, after some
elementary thermodynamic manipulations,
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o ks [ n_ OVEV Sly) St
KO0 = e @ {[(1 " 27G) 7;-) 2T(y) 21"s]
Cy(y)
7° /n+x5 /nC (v)

_ __i__ + O(y=ntli))
7 /n+ kS /nCS ’

The two terms in the integrand with the negative sign
correspond to the purely hard-core part in Eq. (III. 8)
and, as is readily checked, they are obtainable from the
two terms with the positive sign by putting formally
VE=0. As we have assumed from the very beginning
that V-0 for y> 1, we see thus that the integral in-
volved in Eq. (III. 20) is improper but convergent.

+2T(

(111, 20)

Equation (ITI. 20) is our final result for thermal con-
ductivity; without making an explicit assumption about
the long-range potential VY, the y integral cannot be
performed in closed form. Yet, even in this form, we
see the remarkable property of the van der Waals trans-
port coefficients: The first correction can be computed
by a simple quadrature provided we know the equilibrium
and transport properties of the the short-range refer-
ence system, plus of course the Fourier transform Vy"
of the long-range potential.

Using the formulas of Appendix C, we have similarly
shown that the first correction to the shear viscosity is

ssf [ aimam S35 ()

nColy) ( n QZvi)zL L]
*2%s T\ 325 3y ) T T TE

nO(y) =

+ O(y‘“‘““"”), (I, 21)
where we have used the notation
r(»)=C,(»)/CS. (1. 22)

For the bulk viscosity, we have found

BeT [~ 1
W)y . ZB_ _———— _h
£M(y) 2 ), dy [(bl(y) 5% JnC ) ard core)

+ (bz(J’)#G) - hard core)] +O(yminthi)),

(111 23)
where
t0)= 52 (52) o) - 1P 5 (*52)
r ?
2(3C00)) (2T() 1 T
'n( » >T( on >,+cz(y) n[aT(y)/on],
X3ny 3;31.]2 (IIL. 24a)
and

_[1 ., 1{ac’y) n
bz(y)‘[s +2( aT )n[ap(yVaTL [1-1/46)]

(B ) ]

(II1. 24b)

In these formulas, we have used the notation
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and the “van der Waals” thermodynamic function
gla, Bly) is obtainable from the “free-energy density”

fn, T|9)=f5(n, T) +n*VE (111 26)

by the same standard thermodynamic formulas that
allow to obtain the thermodynamic function g(a, f) from
the usual free-energy density f(r, T). This point is ex-
plained in detail in Appendix B.

IV. A MACROSCOPIC FORMULATION OF
THE PROBLEM

The fact that our final expression for X’ only in-
volves the macroscopic properties of the hard-core fluid
and the Fourier transform of the long-range potential
is a strong indication that these results can also be es-
tablished on a purely macroscopic basis. As a matter of
fact, attempts in this direction were made previously by
Zwanzig and co-workers® and by Kawasaki® in their dis-
cussion of critical properties of transport coefficients.

We shall show here that this type of macroscopic
argument can indeed be used to reproduce our results;
we shall also point out the difference between the pres-
ent calculation and the above-mentioned papers.

To be as simple as possible, we limit ourselves to the
case of shear viscosity. The Green—Kubo formula reads
thus

T
n=1imlim £ f di{ ()T (0)), (v.1)
T-o 0 Q 0
where the momentum flow J” is given by
N N
1 av(t)
Fy — —= RAALY/
I"()= 2 v, (B, (-3 .-;’,-:1 T L. (V.2)

Before analyzing (IV.1), let us first recall that, ac-
cording to macroscopic fluctuation theory, the long-
wavelength fluctuations are Gaussian.'° Defining thus
the Fourier transform of the density and velocity fluc-
tuations by

N
bn, =0t /221 exp(ikr,), (1v.3)
N
u, = (%) 'l/zn'liz_; v, exp(ikr,), (Iv.4)

these fluctuations are characterized, for a wavenumber
k smaller than any inverse length of the problem, by
the statistical weight

exp —38ln|u, |2+ (| 6n, |2/nPxp)]. (Iv.5)

As shown by Van Kampen,!* such Gaussian fluctuations
persist in the range 2~7 provided that, in (IV.5), we
replace x, by the wavenumber-dependent suceptibility

S -1
Xy = Xo(k¥™) =[n(§2) + nzV:fy-l] .
T

o™ (Iv.6)

Due to this difference in weight, we see that the equilib-
rium fluctuations of the van der Waals fluid will differ
from those of the hard-core system in the range ky*< 1.

Moreover, in this long-wavelength regime, we shall
assume that the motion of these fluctuations are
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governed by the equations of linearized hydrodynamics,
suitably modified by an average field term due to the
long-range van der Waals potential.®® The linearized
Stokes—Navier equation becomes thus

3,u,(D) +ik= (_2) Ony (£) + iRV} -16n,,(t)+zk1(5§,) 6T, (2)

= - (T B+ 5 (28 +in ko)), (v.7)
while the continuity equation for du(f) and the tempei'a-
ture equation for 6T,;_(t) keep their classical form. We
find here a second reason for a different behavior of the
van der Waals fluid compared to the reference one.

To lowest order in ¥, we assume that these two effects
are entirely responsible for the correction to the trans-
port coefficient due to the long-range potential. To per-
form the calculation, we then replace in (IV.1) the
equilibrium ensemble by a restricted ensemble where
the only fluctuating quantities are the long-wavelength
components of dn, and u, with 2 <k, &, being a small
cutoff wavenumber such that &,> v. In this ensemble,
we can replace the flow J" by J "< defined by!?

7= 3 (rm,, 0y, (1) + 5y BB 2 a"” rm(t)ou-km)

(Iv.8)

In order to obtain the time dependence of &u,(t) and
u (t) we can use the well -known decompositions

on,(t)=exp — tkzr(y)[ o) n, (0) coske(y)t

4 i (k 1;:( ))sinkc(y)t]+z-%;—1-

c®
X exptAk(y)6u,(0) (Iv.9)
and
t (1) =exp - tkzl"(y)[k,<5—'-3k52-(0—)-> coske(y)t
4 tReec(y) un(0) .
ky(y) sinkely )t]
+ exptAl {umw) - k,(i"%@)] . (IV. 10)

Note that, as a consequence of the mean field term in
(IV.7), we have to introduce here y-dependent transport
coefficients, as defined in the previous sections [see
(1.11) and (111 22)).

Inserting these expressions into (III. 8) and integrating
over time, we obtain for the dominant contribution

f‘dtJn ‘L(t)_ E n ( 2(3’) | om(0)12
0 2 5o

2F°T(y) Y(y)?
L ke u,,(O)I2>&,£( 1 n aVL)
2 O ¥ oy

205y) B Y3y

k<ko
<lon, 0 (57)

+ (transverse velocity field contributions).

12 n kxky ovi
ik

(v.11)
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The transverse velocity field terms [a(A%)] have not
been written down explicitly because they take the same
form in the van der Waals fluid and in the reference
fluid, and so they do not contribute to the final result
(at least to lowest order in 7).

From (IV.1), (IV.8), and (IV.11), we obtain for the
long-wavelength contribution to 7

5%7 fo dt (I E(I™E(0))

.l yn k(1 ny 3V
20kT 6 2K°T(y) ¥ 2 c*(y) 3y
0

k-uel®\ | 2 3VE Rukyf c(y)
o ) 1 20
|y 6, |2 = | 35, )

1 1 (v =1\ K2R3 ( aV%
+ 2akT Q ZAs(y)< ) >_k—21(y )
x| om | [y [2= ¢ o, 13D

+ (transverse velocity field contributions).
(Iv.12)

nt=

In deriving this last expression, we have used the fact
that fluctuations with different wavenumbers are un-
correlated. From the statistical weight given in (IV.5),
we have

<uk,,u_k,y‘_k‘_;l;ﬁ>= B (E%T-)z, (Iv.13)
(| O | | 6my |2 (| 61y |3 =[n2ly Tx, ). (IV.14)

Inserting these fluctuation formulas into (IV.12), we
then take the difference between the values of #* for the
van der Waals fluid and for the reference fluid [formally
obtained from (IV. 12) by setting VZ=0]. We then replace
the sum over & by an integral over y =ky™! and perform
the angular integration. We then recover (III. 21) if we
let ky/y — .

Although, strictly speaking, these authors only con-
sidered the critical region, the considerations of
Zwanzig et al. and of Kawasaki are very similar to ours.
However, they assumed from the start that the kinetic
part (more generally, the short-range part) of the flow
J 7 is rapidly decaying and they thus only retained the
long-range potential part of this flow. This kind of con-
tribution, proportional to (3V} /0y)?, is identical to ours.
Yet, in agreement with our microscopic calculation, we
find supplementary terms connected to the short-range
part of the flow. These terms should, however, be of no
surprise: Indeed, it is now well-known that purely short-
range flows have a slow decay for long times, due to the
propagation of coupled hydrodynamical modes in the
fluid. *5 As this propagation is different in the van der
Waals fluid and in the reference fluid —due to the mean
field term in Eq. (IV.7)—we expect indeed such sup-
plementary corrections.

As a matter of fact, the reader can easily check that
(IV.12) is nothing else than the time integral of the dif-
ference between the asymptotic behavior of the Green—
Kubo integrand for, respectively, the van der Waals
fluid and the reference fluid. If, in this latter case, an
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explicit #2/% power law decay is easily obtained, it
should however be pointed out that, with long range
forces (and for times of the order vi ~¥), no such
simple analytical expression exists because of the com~
plicated wavenumber dependence introduced by V.5-1.

A similar argument can be developed for the other
transport coefficients but we will not present it here.

V. DISCUSSION

The present calculation essentially brings the van der
Waals model to the same status as the other existing
soluble models for fluids. Indeed, in much the same way
as for the dilute gas (virial expansion, Boltzmann equa-
tion and its generalization to higher densities!®), for the
hot plasma (Debye —Hiickel theory Balescu—Lenard—
Gurnsey kinetic equation) or for the Brownian motion of
a heavy particle (trivial Maxwell —~Boltzmann distribu-
tion, Fokker ~Planck equation), we now have available

both the equilibrium and the transport properties. From
this point of view, the weakness of the present work is
that we do not have a complete kinetic description but
only the transport coefficients.

Moreover, we have here the first example of a fully
microscopic treatment of a mode mode coupling de-
scription in a dense fluid.?

It should be stressed that, although few calculations
may pretend to be less mathematically rigorous than
the one presented here, we nevertheless believe that
our final results are exact. Indeed, no assumptions
were made in the course of our proof except the validity
of a series a formal manipulations (for example, in-
finite perturbation calculus, small wavenumber expen-
sions, etc.) from which our final results, expressed in
a compact form, appear to be completely independent.
In this context, it is also worthwhile to point out once
more the unusual character of the expansion (I.2): While
each coefficient X (y) has a finite limit when ¥ — 0, it
is nevertheless highly probable that X (y) is a non-
analytic function of y; this is a consequence of a similar
property for the small wavenumber expansion of the
hydrodynamical modes. Moreover, we should also again
stress that (1. 2) is not an expansion in power of VZ; as
a matter of fact, it is amusing to notice that if one tries
to perform such a naive expansion, the low-order terms
converge but lead to corrections which are of higher
order (y*) than the dominant contribution (y?) retained
here; as explained in I, when such an expansion is
systematically pursued, divergence difficulties appear
which have been resolved here by the formal resumma-
tion presented in the first paper of this series.

In Sec. IV, we have already compared our results
with previous work on the subject and we shall not com-
ment on this question any further here. We just want to
stress again the close connection between this van der
Waals problem and the long-time behavior of the Green—
Kubo integrands. In fact, using techniques very similar
to the one followed here, it is possible to develop a
kinetic theory, valid at arbitrary density, for this
asymptotic time behavior. This point will be the object
of forthcoming publications. In the same respect, it is
also interesting to note that we have refrained from ex-

J. Math. Phys., Vol. 15, No. 8, August 1974

P. Resibois, Y. Pomeau, and J. Piasecki: On the transport properties of Van der Waals fluids

1247

tending our calculation to two dimensions. Indeed, the
present calculation is based on the very existence of
transport coefficients (in particular for the reference
system) and this property is presently very doubtful in
two dimensions.

Finally, let us point out that, although we have not
discussed this question in detail here, it is very simple
to verify that, to order, v, the first correction to the
self -diffusion coefficient identically vanishes:

D(”(')/=0)=0. (V. 1)

This can be obtained either by a slight extension of our
microscopic method (by introducing the self-diffusive
mode of a given particle) or by the macroscopic method
of Sec. IV; in both cases, the physical reason for (V.1)
is that the dominant mode—mode term involves the
combination

Aks + Nys, (v.2)
where

s = —-n°k*/n, (v.3)

Ais = - DSR2, (v.4)

which are both y-independent. Thus their contribution is
the same for the van der Waals fluid and for the refer-
ence system and it disappears in the final result. In this
case, we have, however, the hope of being able to cal-
culate the first nonvanishing correction which should be
due (a) to more complicated mode—mode couplings,
leading to 32 corrections and (b) to the fact that, to high-
er order in y, we should replace A%s —~ AF,, where n(y)
is given by an expansion of the type (I.2). The consis-
tency of this procedure is, however, not easy to estab-
lish and will be discussed in a future publication.

APPENDIX A: CALCULATION OF m§5(1k| Vo)
A. General discussion

From (IT1, 11), (0L 9), (1. 28), and (II. 14), we get the
following expression for m%,(1,|y):

N
) ~ N
migg(1, '3’) = llym[ all?,bﬂ( © l ¥~ 56J7F) lku - kb) il_-__Il fpeq(‘l)f)

+ (Z) 0] @5 - 6J7) |{e R} s Qu}; de)

B7#0

x|k, —k,,)) io(v)igw,). (A1)

(For a=b, the quantities in the integral are obtained by
formally setting k,=%,=0.)

Let us stress that we have here complete sums over
all g and b, including the terms g=»5. As a matter of
fact, these terms can be shown to give a finite contribu-
tion to (A1), as also do the contributions a #b.

In the second term of the bracket in (Al), we can take
immediately the 1limit =0 because none of the difficul-
ties mentioned after (II. 24) occur here; in particular,
there is no long-range contribution, as can be shown by
using the method presented in I, Sec. III. In the first
part of this bracket, there is, however, such a 7° con-
tribution involving the long-range force, as was illu-
strated in I, Eq. (IV.3); there, we have thus to split
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Jr- 631"), according to
(0 I (Jlx - G‘Zx)lka’ _kb)= (0 l (Jlx - 63})5 Ika’ —kb)
+ (0| FF = 8T |k, — k). (A2)

For example, in the case of thermal conductivity, we
find
1im(0 | T = 6T |k, = &,)
=v, [z} ~ (h/m)]oET+ 97, V(1 -517)
X (857 + b (A3)
and

1m0 | (g,7% = 67T |k, ~ &,)
7

— -1 L akaLz'l Kr Ky Ky
- (29) vl:xvn'l + vy (1 - 611,1:)(6¢|.1 + ébyl ’

ok,
(A4)
In order to further simplify (A1), we also use in
(I1. 29) the property (IL. 5) as well as the identity
(&} (@295 [0)=C ook i) M1 0%0)), (A5)
with
Coolloh 2)= 2 (Lo -2 Q=L [0}, (46)

this important result was established in Ref. 7.

Putting all these remarks together we can split mj,
into two parts:

mig(1,]9) = [mia(1,[9)]F + [m,]°. (A7)
Here the long-range term [m%,]* is defined by
(s (L4 =1im [ do* 23 (O] U7 = 67V |k, ~ )
N
X I g*(,)io,)is0,), (A8)

while the short-range contribution [m%,]® can be written

(miglS= fav™2 20 Al (@D s "W, )iy v, )igw,).

G & bE(G)

(A9)
In this latter equation, we have introduced the operator
A, defined by

Aiey= (0167 -870%10)+ D 0|7~ 637 froh
G 0

xC3y ook ie)) o

(A10)

where the subscript (G) means that in the right-hand
side of (A10) we only retain those contributions which
explicitly involve G particles, including particle 1; in
Eq. (A9), [m?%,]° is thus given as a sum over all possi-
ble grouping of particles: This seemingly artificial
decomposition will turn out to be very useful in the
following,

B. Calculation of the long-range part [mgﬂﬂkl vyt

From (A4) and similar formulas for the other trans-
port coefficients, it is easy to get an explicit expression
for (A8) by performing the trivial velocity integration.
Taking again the example of thermal conductivity, we
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get
L
(Y- = Iy =nVe,T (Vj L, a—a‘;L) , (A1)
o _ "VkaT vy
(nTE = (mif)" = —=F (1 neley a; ), (A12)
e _ nVesT avE
onTr=nfr =R 1,1,y TR (A13)

and all other coefficients [mZ%]* vanish for symmetry
reasons,
C. Calculation of the short-range part [m%;]S

The explicit evaluation of (A9) is rather tricky but it
can be done by the method developed in Ref. 14 in a
similar context: we shall thus be rather brief.

Consider first in (A9) the case o =1, thus { (v)=1.
If we notice that the sum of all the graphs involving G
particles is of order n°™! in the density, we can write
formally

oy (2 ) ()

a& (&) b (G)
G-1 9 G-1
X anl-lG o i

9 .
= a—) nAg, T (0“(1;,)( 2 zB(v,,)>.
n/r 1€(6) BE(C)

Similarly by a simple differentiation, we get for =5

2\1/2¢ 3! 3 ] .
II g = —_— = >
A4 &g ¥ (v‘)[a§c><3) <2kaT 2) (CE(G)%(DC)>

2\, 3 e :
= <§) T 5?) . A(G) ierl(c) Qo (vi) (CEE(G) ZB(UC))’
(A15)
while for ¢=2,3,4, momentum conservation implies

Va,x
A o 72==)( 2
@ 161;[0) v (v‘)(a(—:zgc) kBT) <b€<6) 16(1)"))
— Ya,e o ;
aez(c) VepT A ser(lc) ¢ (v‘)<bez(>a)l"(v")>'

Note that in (A14) and (A15), the thermodynamic co-
efficients which appear in 4 ¢, [through 6JF: see (A10)
or in 44(v,)], have to be kept consiant when taking the
derivative with respect tonor T.

(A14)

(A16)

Applying then again the same type of formulas to
eliminate i,(v,), we can easily reduce (A9) to simple
equilibrium properties of the hard-core system. Let us
illustrate this point by discussing in detail the coeffi-
cient [mTF]5.

From (A9) we have

iz = [ 2 (017 - 077010
+23(0 [ (7% - 551"),{1?'})6 (sv);O)
(7 )

o Uy
8 (el}c) ¢ ‘(v{)<4€2?0) 1) ("EZ()G)Tk_:?‘)' (a17)
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We use (A14) and (A16) to get

+§§)(0[(J“-5J")[kl, C,,l,-k,, >«;

I ¢%@w,).

(A18)
€6

Now, with the help of (I.II, 7), a simple symmetry
argument shows that the only nonvanishing contribution
in (A18) corresponds to b=1. Then using (A5), we get

2 OH v 13
TklS — [~ N 1 2Ly - S eq
[mi] <an)T”fd” W[(Z sz;z-xv" To*@,)
1 & 1 .1 ak,V,f) o0, S (ﬁS)
+mz-’12k(2szv+zn ok, )P\

X IiI (Peq(vf)] 5

(A19)

where the tilde on the factor (#5 /n) indicates that it
should not be differentiated with respect to n. The in-
tegral in the left-hand side of (A19) is directly related
to the enthalpy per particle; we get

)

s ‘
- kBTn(M> : (A20)
on Jp
A similar calculation leads to
[mf¥]1% =(mT1s, (A21)
S
(515 =m0 =3 Vo5 7(22)", (a22)
n
while, for symmetry reasons, all other [7%%]° vanish.

If we now combine (A11)—(A13) and (A20)—(A22), we
recover Eqs. (III. 15a—d) of the text.

Similar calculations can be performed for the other
transport coefficients; for completeness, we give here
the final formulas. For the shear viscosity, the only
nonvanishing coefficients are

avE

mi(1,]y)=1, 1 nyﬁ (A23a)
m3s(1,]9)=mL(1,|y)=%,T, (A23D)

while for the combination B=47/3 + £, we have

=+ { () -2 (9]

A } (A242)
mis(1, ) =mg(1,]y)

RS EANC AL [
- 32 RS- (5] o
mi(1, ly>=kBT[2 - (51;-)5} (A24d)
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m2(1,]19)=mEQ,|9)=-ksT (ai’> (A24e)

APPENDIX B: CALCULATION OF /?7{.25 (1k|y)
A. General discussion

From Egs. (H.13), (III. 10), (II. 24), and (II. 14), we
get the following expression for r‘Tz’;B(l,Iy):

my 1, |v)= th-1 S va Z) i (v, )zs(vb)( s =k, [ (T
- 8J%)2"p quO) + E Dk,,,-k,,,(oy (k.,({v} i€)

x ({&'}| (7% - 6J")Q”p"‘| 0)) . (81)

Here again the terms a=>b are obtained by formally
putting &, = -k, =0,

This expression can be reduced to purely equilibrium
fluctuations. Indeed, consider first the case where
and B€1,2.--4, It is then an easy matter to prove that

St T oo in @) o el i) =0,
(B2)

This is an immediate consequence of both particle and
momentum conservation. Analytically, (B2) is proved
by first taking notice of the Liouville operator SL‘/a3/
3v,, [see (II. 22)]; an integration by parts on the right-
hand side of (B2) then immediately leads to the required
result.

Using the definition of the matrix elements given in
(I.11.9), we get thus for a,B€ 1-+-4

me(1, I y) =1i7m N f @ ar® 2 1a(v,)ig(v,)

all a,b
87)p% (a,Bc1---4)
(B3)

xexplik(r, = r))(J* -
or

m%,e(1, | ) =1iym N2 [ dy dr'{d (r)d,(r'(I* = 8J*))

Xexplik(r 7)) (a,Bc1---4).

In this latter equation, we have used the traditional
notation (- - ) to represent the canonical average and we
have introduced the density operators

(B4)

N
d (r) = E1 io(0,)8(r - 7,), (B5)
which, up to a trivial constant, respectively represent
the number density n(r) and the momentum densities

v,(7) ({=x,y, 2); indeed we have

¥
()= 23 8(r —7,) =n(7), (B6)
di('r)z(l/s/kBT)aE v, 8(r=7)=v,(r)/ Ve, T. (B7)

Note that if we use the definition (B5) for a@ =5, we
get a quantity related to the kinetic energy density ¢ (7):

N
4= 3 T L2 /2ty ) -7,
= @{[EK(T)/kB T] - 3n(r)/2}. (B8)

However, in the case a or (and) B=5, Eq. (B2) is no
longer valid because the kinetic energy alone is not
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conserved by the Liouville operator and Eq. (B3) is thus
not correct either,

A similar problem was already encountered in Ref.
15 where it was shown that the effect of /)5 was essen-
tially to replace the kinetic energy density in (B8) by the
total energy density [e(r) —=nVf]. More precisely, let
us consider the quantity

2 f dv” au:—:’ bia(va)ia(vb)ﬁfa,_kb,(oy;{y)({v}; ie) e -

{r'}#0

(B9)

and let us use the fact that 55 has the following form
[see (11.22)]):

Dsoc:z%(GL”)s (Ly-2)" (1 + ;,)l (BLA)S .. ) . (B10)
We then perform in (BY) successive integrations by

parts over (8L*/)° 3/dv,, and (8L*")° 3/3v,,, consider-
ing separately the various cases i=or # from q, b, j=
or #a,b etc. The result of this straightforward but
tedious calculation is that, even for ¢ or (and) 8=5, an
equation similar to (B3) still holds, namely

m%(1, l Py = liym N f dr dr’(?la(r)ﬁﬂ(r’)(J" - 8J*))

xexplik(r - ")), (B11)
where
2¢,,(7’)=d,,¢('r) (ac1---4),
N =VE{eS () /kaT) = [3 4 V8 /e D)}, (B12)

Note that only the hard-core energy density enters
into Eq. (B12):
N

(=2 i+ (Z) Vs(rb)>6(r -7). (B13)

As was announced in Sec. III, Mm%, is thus indeed re-
duced to purely equilibrium quantltles from which we
have to properly extract the leading yY°-contribution.

B. Calcufation of the equilibrium correlations

As is well-known, !¢ for a purely hard-core system,
the average appearing in (B11) can be reduced to purely
thermodynamic fluctuations by going to the grand
canonical ensemble {(denoted by G.C.) and computing

(8d A (JT* ~ 8T 7))g ¢, (B14)
in terms of the grand canonical variables T and p; here
8dy= [ drd,(r) ={ [ drd (). (B15)

Although this formula will turn out to be useful later
on, it is not sufficient for our purpose: Indeed, we have
to extract the lim, in (B11) by letting % — 0 but keeping
y finite [see (I. 10)]. This will be achieved by using the
method developed by Hemmer. !’

Let us again consider the case of thermal conductivity:

(1, |y) = =lim f drdy’ d (r)dB(r)[Z v,,( +z Z}V(r, B

) gfv‘ a7, (v”)]>

where we have followed the notation (I.1).

(B16)

Simple invariance arguments show that the only non-

vanishing coefficients in (B16) are ¥ =m]¥ and mJ¥
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=m3¥ (=2,3,4). Let us take the example of mif; we
have

mIr1,|y) = lim er‘T a“Zﬂ)b dr¥ dv" explikr,,)
(Y _3_n@ 1 ) M)
2y T 2 kyT T2 &% BT

2
2 (o, 1 i 3V

X [vx,b<2 + 2 %% Vir,) 3 ?b TN (rp),

(B17)

We write this as
mI,|9) = IS + [mI1, |y, (B18)

where the first term corresponds to the pure hard-core
contribution (which is obviously y~independent) and the
second term is the long-range correction.

For evaluating (725)S, we can use (B14) by going to
the grand canonical ensemble; we have [see I, Eq.

(1. 8)]
s 11,)3,2 <[AE -(3k;T +nVos) Aﬁ]

(m)_

S
X E v, (TS — 5an,S)> . (B19)
b=t 7 G.C,
Using the well-known equivalence relations
= d
AE —Fk,T? —) (B20)
BT 9T, /T
and
~ 0
AN -k, T — B21
kB au) T’ ( )
we get
1 3 3k T
kyS _ = 2 B S
- A iy [or ) (L )T
2
x2) T] o, -(Bvw, 1), @22)

where, as in (A19), the notation (h/n) indicates that this
quantity should not be differentiated. By simple thermo-
dynamic transformations, Eq. (B22) can still be cast in-
to the following form:

e =T R |1 (‘“’Zé") (G2 - (% o)

(ah/n> on\$
an ap. b/r

The calculation of (m57(1,|¥))* is much more
elaborate; first, it is readily checked that, to order ¥°,

only the terms a#b and S #a, b contribute in (B18); we
have thus

(msZ (1, |9)E = lim (N‘/"_

nvy
X( ®T +Zs¢1z

(B23)

dr” dv™ exp(ikr,,)

k(?‘ )){”3'2 [%5
+3 RV -3 B(50) .

gtk

(B24)
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After a trivial velocity integration, we find in (B24)
three type of configurational averages:

(a) Those independent of the potential; they involve

L= <1im N[ ar¥ exp(ikrlz)pg,v>L, (B25)
r
where
p% =exp(-BVy)/ [dr¥ exp(—BVy). (B26)

I, is simply related to the Fourier transform of the
long-range part of the pair correlation function; it is
known that!?

1"L

=1 g L= Lgr - = ks Tul(9n/0p)FVE

L+ n(3n/ap)3vE
(b) Those linear in the potential V(7). Putting

(B27)

0,(1,3)=V(n,) or =——n,, (i=1or2),

73

X

67(1,3)=0l(1,3)+05(1,3),
we find in (B23) a series of terms involving
LT9=1im [N? [ dr¥oT:S)(1, 3) exp(ikry,)pP
+7Nf dr¥ o (T:8)(1, 2) explikr,)p3 I

(we always work in the thermodynamic limit).

(B28)

(B29)

(c) Those quadratic in the potential V(#):
I,=lm {N3 [ dr¥o$(1,3)07(2,4) exp(ikr, )03
+N [ dar¥o$(1,3)07(2,1) +01(2,3)]
X exp(iky,)pPE. (B30)
Let us first learn how to deal with I.7; we have
II=I7, +IT,, (B31)

where

I; 1_hm[ledr1 dr, dr,0.7(1, 3) exp(ikry,)ny(1, 2, 3)JE,

(B32)

L,=1mlN [ dr¥o"(1,2) exp(ikry,)ppl*. (B33)

Here we have introduced the three-particle distribution
function %,(1, 2, 3),

75(1,2,3)=[N1 /N =3)!] [ dr¥-3pgs. (B34)
With the cluster decomposition
75(1,2, 3)=n® +ng,(1, 2) + ng,(1, 3) +ng,(2,3) + g(1,2, 3),
(B35)

we immediately get

I _hm{g2 (»o T(0)+ O’{T(k) +N7? f dr, dr,dr,

x 0,(13) exp(ikr, g1, 2, 3)}L, (B36)
where have put
&(R)= [ drexp(ikr)g,(2),
G7(k)= [ drexp(ikr)ol(2). (B37)

The long-range part of the first term in Eq. (B36) is
readily evaluated:
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FIG. 2. A typical graph contributing to (B43) and its
decomposition.

Um{Z,())[3(0) + 57 (R)}* =2 (1255 (0) + 5 (k)
+8(0)]+27 (05 E (k).
(B38)

Here gf (k) is the long-range part (B27) of the pair
correlation function, while of course

&)= "[k T(ap) 1]'

In order to deal with the second term of (B36), we
follow the calculation of Hemmer!” and we use his
composite Mayer graph technique.

(B39)

If we remember that
g2:(1,2,3)= sum of all composite irreducible 3-graphs,
(B40)
we see immediately that we may neglect
lim N [ dr, dr,dr,e (1, 3)g,(1,2,3) (B41)

because, already in the absence of ¢f(1,3), we have a
connected graph; it follows'’ that (B41) does not con-
tribute in the lim,. We are thus left with

lim N** [ dry dr,dr,o§(1,3)g,(1,2,3). (B42)

Denoting by a wiggly line the bond ¢5(a, b) and following
otherwise Hemmer’s notation, a typical graph contribut-
ing to the long-range part of (B43) is shown in Fig. 2.

It can be divided into two disconnected parts: part (A)
isa contribution to 05(1, 3)g5 (1, 3) while part (B) con-
tributes to g2 (). Noticing that part (B) can be attached
to part A at any vertex of the latter, these vertices
being in number equal to the order in the density, we
arrive at

liva’lfdrld'rzdrsof(l,3)g3(1,2,3)

= %’l:é'z(k)% f drof(r)gs (v). (B43)

Finally, we find simply

LT, =no (k). (B44)
Collecting these results, we obtain

=22 BGER) +5EO0)] +[n+Z5(0) 62 (R)

+ % ZE(R) 587_’_ {[ droS(n)n®+gf ('r)]}.

The modifications required to compute IS are obvious,
yielding

IS = % §2L(k)a—a7; { / drof(n®+gf (r)]}

(B45)

(B46)
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It is interesting to point out that the difference be-
tween [, and ¥, namely the introduction of ¥ ¢(1,a) in
the canonical average, leads in the final result to the
following multiplicative factor [see (B27)];

d
If /I, = P -/‘d%'oi N2+ g (). (B47)

The calculation of I; proceeds along the same way,
but it is of course much more involved. To make a long
story short, let us simply point out that we have proved
a formula similar to (B47), namely,

Q/If:%fdmf(r)[g () +n], (B48)

where LT is given by (B40).

Combining all these results, together with the ob-
vious formulas,

€S — (3, T/2m=3% [ der(r)[gs('r) +n?],
SkT 1

K - 5 zfdr<Vs(r) -7, )[g‘s(r)+nz], (B50)

it is a matter of simple algebra to obtain the explicit
form for (mIx(1,1v))t. We get

RIF, |9 =2 WeTT[(g;;)

(B49)

3ksT ~
.2 —n%s]{(ng:,/kBT)
x [V;" +31F

avE 6h/n>s] (an)

= oy +< on /p M op
L

(e L.

When (B51) is added to (B23), we obtain the compact
expression quoted in Eq. (III. 16b) for mZf. The other
coefficients m%% are obtained by similar calculations as
well as the m7, and 75, which are listed below.

(B51)

C. List of the matrix elements mgs (1« | )

For completeness, let us list here the m%(1,1y)
corresponding to the other transport coefficients. For
the shear viscosity, the nonvanishing coefficients are

m(1,)9) =my, (1, | 9)nky Tx () F + 0G), (B52a)

7 1
mys(1, I y) =my(1, Iy)[nkB T)(T(y)]2 \/—%' ;eﬁ

x[(-ij—j)s _ 3l —nVoS] +00) =ml(1,]5), (B52b)
1
mis(1,|v)=mp (1, {9)nk, Tx,(y)] 3 TY
de\S 3kgT
x[(a)r_ 2 —nVos] +0(y),  (B52c)
(1, ]19) =m2(1,[9) =k, T, (B52d)
where we have used (A23); for B=—4-n + ¢, we find
mB(1,|9) =m2, (1, |9)nk, Tx ()} + 0(), (B53a)
m15(1k|y)=m51(1 131)
=m8(1,]| y)nk Tx,.(y)]+m (1,]y)
de 3k T
xd (R
- nVos] +0(v), (B53b)
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mB.(1,|9)=mE (1, |y) +2mB (1, | y)nk, Tx ()]
de 3k T

7).~ 5 )

+milnkty TP 5 g (52)
—3k§ '”Vos] +0(7), (B53c)
mB,(1,|y)=m2,(1,|9) + O(), (B53d)
mB(1,|v) =m2,(1, |9) =mB(1,|y) + O(), (B53e)

where we have used (A24).

APPENDIX C. THE FUNCTIONS ®%; AND ¢%,

For completeness, we list here the relevant functions

&%, and <I> g for the cases of shear viscosity and of bulk
viscosity.
We have

25,1, |9) =25 (1,|9) =k T1, 1, G130), (C1a)

3%(1,|9) = - 28, T1,1,, (C1b)

85,1, |9)==8L(1,|9) =k T1, , (Cle)

<I>;'5(1k|y) =ky lexlkygs’:s(y)’ (C1q)
where

avE
" (v) = 2
G =1+ —5— Zcz(y) Gl (C2a)
1 2 T [{ap 3]2 aVE

gss(y) 4(3’) 3 nzk [( )n ny E (C2b)
and

e5,(1,]9) =22(1,]9) =25(1,]5), (C3a)

351, | =2L(1,]y), (C3b)

®2,(1,]9) = - 351, ]9 =2L(1,|y), (C3c)

&1.(1,]9) = ( (fs%z(nk TxT(y)))k TGAM L, L, (C3d)

Similarly, we have for B=47+¢
82,1, |9 =881, |») =k, TI(1E -5)G L, + G L,

(C4a)
2 2 S
251,15 =t, T{(—%"T‘?z—) 5+[3- (Z—ﬁ)]} (c4v)
1x,1p,1
®5,(1,19) = -®2,(1,|9) =k T - 2% , (C4c)
2(18,) 2 2 [ap
4’484(1;:'3’) = kBT{((lkz: -: 1"2:) - §> +[§ (ae> :l}
(C4d)
85.(1,|9) =k T((1Z_-3)G1(0) +G50)], (C4e)

where

G4 -(2] (9

+ 2o 12 - (8.6 )
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P G 69

1 aVL Zcz(y) C5a
iyt 3n (C5a)

gss(y)_ 4(31) :23 nzj;e { 2 +nVL

-2 |G ) oo
g xrl(y) [(aiapT) (g_p> <anaT> ] nx:(y)2

2 S S 2,\S
)] - () GR))) (co0)
and
BE,(1, | =35(1,]y)=95(1,]y), (C6a)
35,(1,|v) =251, (C6b)
32,(1, ] =-35(1,[n=251,]y), (C6c)
82,(1, 1) =22,(1,]y), (C6d)

82,(1,|9) =12 [c* 0 ACS T Nnks Txr (9)} g TGA().
(C6e)

Note that in these equations, we have separated &2, and
&2, into two parts:

33,1, |9)=30,(1,|9) +8541,]), ((o49)

which, respectively, correspond to the shear part, —43-77,
and the bulk part, ¢, of the coefficient B=%7n+ {. When
the decomposition (C7) is inserted into (III.8), the inte-
gration over the angular part of 2 makes them mutually
orthogonal.

APPENDIX D: CALCULATION OF ¢ )

If we introduce (C4), (C6) into Eq. (HI.8) and per-
form the integral over the angles, we obtain for B®

B‘”:%T)m-i-im, (Dl)

where 1% is precisely given by (III, 21), while £,
which corresponds to bulk viscosity, is given by the
following formula:

PO f;; 5 [(b (»Y— o, /nC (y) —hard core)
+ (bz(y)z—l_—,l(y—) ~hard core)] . D2)
Here b, and b, are, respectively, defined by
_ oY) =1\%  L{y) vy
bl(y)—[nxT(y)]< ) ) ([(ap/aT)s]2 +3 2y >
(D3)
1 (3p 1 aVE)?
b5} = { s K0+ 3 -(&2). |+ st }
(D4)

o= [(THER) ey Ee)]
() -]
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wor 68, -GG e
and

xor=n(722), - (2 (5,
+2(§¥>s nTc§[<anaT> <—p (anaT) ]
()] s [GR) - GBI GR) )

(D6)

where we have introduced
P =p5(n, T) +an° VY, (D7)
e(y)=eS(n, T) + 3n*VE. (D8)

In order to bring b,(y) and b,(y) into the form given in
Eq. (ITI.24), we use the following trick: Let us define
formally a free energy density, function of y,

fin, T|9)=F5(n, T) +3n?VE. (D9)

It can be interpreted as the free-energy density,
taken in the van der Waals limit ¥ -0, of a fictitious
fluid which has an attractive potential VZ(») such that!®

Vi= [arVE(r). (D10)

Now, it is easy to check that all the thermodynamic
quantities which appear in Eqs. (D5)—(D6) are related
to f(n, T |y) by the usual thermodynamic formulas,
whether they ave denoted with the superscvipt S or not.

For example, the pressure associated with (D9) is

o, Tl3)==stm, 71y +n(2)

(D11)

=p%(n, T) +3n°VE, (D12)

which is precisely (D7). Similarly, we get from (D12)
(ap(y) _ gg)s
oT ], \aT/,’
which gives an example of the redundancy of the
superscript S, ete.

(D13)

We can thus rewrite (D5) as
w=[(%2) J (), (5,5,
2(29) olGar) - (52) G

e (F9),- (38, G,
(D14)

and a similar formula for K(y); here p(n, T|y), p(n, e|y),
e(n, T|y), etc. are thus all defined by the standard
thermodynamic relations from the free energy fin, T |y).

Having established (D14), where y appears as a pa-
rameter, we can now transform this equation by stan-
dard manipulations, involving a judicious use of the
classical relations of thermodynamics.!” We then ob-
tain Eq. (III. 24) of the text, after considerable but
elementary algebra, which will not be reproduced here.
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APPENDIX E: THE REDUCTION FORMULA
(11.15) IN THE DILUTE GAS CASE

Let us first recall that the linearized Boltzmann
operator can be written

C® (v, |f,(0)) = [ dv,[CBv,, v, |fi(v))P*(v,))
+C2 (v;, v, | 0w, (v,))], (E1)
where the two-body operator C2(v,,v,| ) is defined by
CB(vy, v, | f1(0)fi(0,)) =n [ dQ0(2]vy,) |v,, ]
SACHTACARIATATHCAIR
(E2)

for two arbitrary functions f, and f]. Here a(ﬂlvm) is
the scattering cross section for angular deflection £ and
relative velocity v,,=v, —v,. Moreover, v} and v} de-
note the velocities of particle 1 and 2 after the collision
process.

It is readily verified that, in the dilute gas limit, the
operator ¥,,,..0,(v,, v,; é€) precisely reduces to
CB(v,, vyl - - -} while ¥4 (»,) becomes C*2(y,| - --).” Let
us prove explicitly Eq. (II. 16) in this case.

As a consequence of particle, momentum, and energy
conservation, we have obviously

CB(U:U U, I (ia(v1) + ia(vz))fx(vl)fi(vz))

= (ia(v1) + ia(vz))CB (v]., L2 |f1(v1)fi(uz)), (E3)
-where i,(v) is any of the five quantities
im(v)E l,v,vz/z. (E4)

We consider then [see (II. 15)] the quantity defined by
J= fdvch (vp 1)2’ (ia(vx)ig('vz) + ia(’Ug)iB(’Ul))(P e'1(1)1)«’ eq(vz»
(E5)

and we transform it by adding and substracting the same
term

JI= [ dv,CB(vy, v, | (i o(v,) +1 o0 INig(v,) +i (v) )P0, )P (v,)
= [ @0,CB vy, v, | (6o (0,)ig(v;) + i o(0,)i4(0))P 0,0 *(0,).
(E6)
Using (E3) twice, together with the obvious property
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CB (vp 2% ,¢eq(v1)¢ eq('uz)) = 0, (E7)

we see that the first term on the right-hand side of (E6)
vanishes. From (E1), we get then

J=C IB(vl | ia(vl)iﬂ(v1)¢‘q(v1))- (E8)

Using the linear relationshio (II. 14) between the I ;”
and the 7, one readily verifies that (E8) is equivalent
to (II. 16) in the dilute gas limit.
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The present work completes the algorithm which Bhabha had prescribed so as to set up the
commutation relations of spin algebras but could implement it only for spin one algebra using a

third order permutation identity. Generally this work is concerned with the setting up of the
commutation relations of derived polynomial algebras which are obtained by addition operation from
a basic polynomial algebra. To obtain these commutation relations, a set of identities called Josthna
identities are introduced among the permutations of a finite set of elements. With the help of these
identities it is established that commutation relations for derived algebras can be set up directly.
Applications to spin and parafield algebras are considered to obtain their commutation relations

which make their deduction trivial.

1. INTRODUCTION

In a previous contribution! bearing the same title,
hereafter referred to as I, a class of associative alge-
bras called polynomial algebras A[a?, o2, ..., a™] with
{e*1i=1,2,...m} as generating elements, have been
introduced and important properties studied. The
bearing of the subject on theoretical physics was indi-
cated by showing that through them a unified mathemati-
cal treatment of the class of algebras such as Clifford
and Grassman algebras (ordinary and generalized) and
spin and parafield algebras can be given. The possibil-
ity of this unified treatment strengthened our belief in
the existance of a general procedure of obtaining the
commutation relations of the derived algebras which are
obtained by the addition process from a basic poly-
nomial algebra.

In fact there exist a class of identities called here
Josthna? identities, among the permutations on a finite
set of elements, making use of commutator and anti-
commutator operations on permutations. We establish
that these identities give us all the information required
to set up the commutation relations of the derived poly-
nomial algebras. In fact by making use of them one can
trivially set up, for example, the commutation relations
of spin and parafield algebras of arbitrary order and
their generalizations.

In the second, third, and fourth sections, we intro-
duce Josthna identities by setting them up through an
inductive procedure. In the fifth section we establish the
relevance of them in obtaining the commutation rela-
tions of polynomial algebras and in particular the nth
order derived polynomial algebras obtained by an ad-
ditive procedure from a basic polynomial algebra. We
conclude this section and the paper by setting up the
commutation relations of spin and parafield algebras.

2. NOTATION AND ELEMENTARY LEMMAS

As indicated in I the polynomial algebras are a parti-
cular case of simplicial algebras which are defined in
terms of § and o, the face (restriction) and degeneracy
(substitution) operations. But, as is trivially seen,
these operations coincide when applied to elements of
sets. Hence, in what follows we shall be interested in
face operations on sets of finite number of integers and
in particular the set N of first » natural number and the
permutations defined in these sets,
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Generally, let§,,... N=N,,...={1,2,... iy ,f, -
be the derived set obtained from N by deleting the ele-
ments ¢, j,+:+. Note that N,,...,=d, the null set. We also
write N,;... as N'2**#"*4"""" ywhenever it is convenient.

Let

12¢eem
p_(il,iz,...,i")

be a permutation on N. In what follows we fix the natural
order 1:--n and write the permutation as p=(i;,4,,...,
i,) or simply as i,i,++i,. Further a permutation on N, P
is written as p,,.... In particular, {p}, {p,}, {,;}, -
stand for the set of all permutations on N, N, N,,, etc.,
respectively.

Now, let m and n be two positive integers such that
nzm. Let P=(i,...,1,) be a permutation on (1,2,...,
m) and @ =(,,,,...,%,), a permutation on (m+1, m +2,

., n). Then by PQ and QP we mean the permutations
iyip i, and 4, -+ i i -+« i, of N respectively. In gener-
al, if N is partitioned, then the products of permutations
on these partitions of N have meaning as permutations
on N,

Now, consider a sum ¥ of permutations from {P} over
N with natural integral coefficients /4/. In fact all such
sums define a group module of the nth order symmetric
group over //. Similar sums on {P;,...} are written as
% ij.-.- In particular let S stand for the symmetric sum
of all the n! permutations of N with unit coefficients,
Extending this notation, we write S,,... for a similar
sum of all the (Card N,,...)! permutations on N,....
Hence,

§=2312«.n
(¢}
and

Sijeee = 120ee Gees fren

{By4..0)

In quantum mechanics the commutator and anticom-
mutator operations on observables are of central im-
portance. Now, let us define the following operations on
permutations in analogy with these commutator and
anticommutator operations:

[i,E.-]ZiE;— Z:; (2.1)
and

L2} =i2,+2,, (2.2)

Copyright © 1974 American Institute of Physics 1255
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where 2, is a sum of permutations over N,.

From the definitions we have the following useful,
though trivial, lemmas.

Lemma 1:
s 2 =(n=-7)! 2 (2.3)
(P‘l) (P,'liz...,'rd (Pil)

Proof: This follows directly from the definitions of
{P"l"z"'} by a simple enumeration.

Lemma 2:

25= & s (2. 4)

Proof: Qbviously, S=7 i5,=7, S,i. Hence, the
result by using (2). Hence,

25={,S;}+ 2 {i,S;} (2. 5)
ieNg
Lemma 3:
@ {5,S;}=(n-2)1(25-§i,5,}) (2. 6)

Proof: Obviously,
E{];SJ}=(n_2)! Z: {jasj}’
Py} =Ny

which follows by a simple direct enumeration. Hence,
(6) is obtained from (5).

Now let K(n ~ 2) be the set of all permutations of N
which do not contain ¢ either in first or the last place.
We shall introduce in the fourth section K ,‘,(m) for n and
m which are either both even or both odd. Now in terms
of this notation we have

Lemma 4:
S:{i,Si}-i-Kf,(n—Z) 2.7

Proof: Obviously, Ki(n-2) is the sum of all the (»
—2) (n-1)! permutations of N which do not contain
either in the first or the last place. And {i,S,} contains
from (2) all these permutations of N which contain i in
the first or the last place. Hence, the result.

Now, let us introduce inductively on the order of
permutations certain sums of permutations of the same
order which play a central role in setting up the com-
mutation relations of the derived algebras. For that let

Cli, tyly) =14, 0yi,+ 150,14, (2.8)
and inductively
Cliyiyeee i) =1{i;, Cligty=++ i)} (2.9)

A few typical C sums of permutations are »(3, 6),
dropping ¢,
C(123) =123+ 321,
C(1234) =1234+ 1432+ 4321+ 2341,
C(12345) =12345+ 12543 + 15432 + 13452
+ 54321 + 34521 + 23451 + 25431,
C(123456) =123456 + 123654 + 126543 + 124563
+ 165432 + 145632 + 134562 + 136542
+ 654321 + 456321 + 345621 + 365431
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+ 234561 + 236541 + 265431 + 245631,
(2. 10)

Lemma 5: C(i, -~ i,) has minimal symmetry.

Proof: With respect to i,,, i, the C(i,--+i,) remain
invariant when the two elements are interchanged.
Further, C(i,---{,) contains 272 permutations and the
element ¢, _, never occurs at the end of the permutations
in C(i,+++i,). In fact we can enumerate very easily all the
permutations in C(¢,~ i,) which contain ¢,_, in the pth
place. Hence, we have the following:

Lemma 6: There oceur 2,_,C,_, permutations in
C(iy++ i,) which contain 7, in the pth place. (Note that

L,=0 either if =0 or n=0).

Proof: Note that the lemma is true when n=3. Fur-
ther from (9) we note that permutations in C(i,-+« i,) with
i,., in the pth position come from permutations in
C(izig+++ i,) which contdin i__ in (p° - 1)}th and pth posi-
tions only. Hence, assuming the result to be true for
(n—1)th order C permutation sums and making use of
the additive property of binomial coefficients, i.e., the
structure of the Pascal triangle the result follows.

Now consider the number of permutations in C of
order 3, 4, 5, and 6 in which 2, 3, 4, and 5 occur in
different places. By the Lemma 6 we see that they can

be arranged in the form of the Pascal triangle
2

22
242
26 62
281282

(2.11)
which is nothing but the ordinary Pascal triangle in
which each element is multiplyed by 2. Finally, we have

Lemma T;
(1) 2. Cliyiyiy)=2K2(1)
(952)
(i) 23 C(y 4, dyi,) = 2K 3(2)
(Pia)
Proof: This follows directly by the definition of C of

order 3 and 4 and K,(1) and K,(2) and making use of the
minimal symmetry of the C symbols.

3. JOSTHNA IDENTITIES OF SMALL ORDERS

To set up the identities, let us introduce a Lie type of
permutation sums by making use of (2. 2), namely
[ilia]z byly ~ 1yiy (3.1)

and inductively
(3.2)

Josthna identity of thivd order: From the definitions
(2. 8) and (3. 2) it follows that

(jik] = C(jik) - C(ikj).
Considering the sum over {p,}, we have

2 ljikl= 23C(jik) - C(ikj)

{e;1 {#4}
=2 C(jik) - C(ikj) — C(kji),

[iliz oo i,,] = [il[iz’ tty 7:,,]]-

(3.3)

by making use of the minimal symmetry property of
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C(jik). Hence, we have
cyiky= 2 [jik]+S,
{p,1

where S is the sum of all permutations of {1, 2, 3}. (3.4)
is the required identity.

{(3.4)

In general we shall find an identity expressing some
integral multiple of C({,i,++{,) in terms of

23 dgaees
“in-l}
and

[rz-z (2% n]

20 i obimem 2 COL T Thse v
(Pipey)
and an integral multiple of S. This identity is called the
Josthna identity of nth order. X is not obvious that such
identities exist. However, we shall establish by the
inductive procedure that not only Josthna identities exist
but shall give also a procedure to set them up quickly.

t4
!l(m-n)/z

To carry out the inductive procedure and to motivate
the theory developed in the next section, we shall, in
this section, set up Josthna identities of fourth and fifth
orders which are quite typical, as a consequence of
simple lemmas developed in the previous section,

Josthna identity of fourth ovder: Consider

345, Clkitl}= 20 {j, [kitl}+ {4, S, (3.5)

which follows from the third order identity by a trivial
rearrangement of symbols. Now, sum over {p,} the
above expression in analogy with what is done in the
third order case. Hence,

3 (;’{j,C(kil)}z > T U R+ T {h,s,}

(pgt gyl
Simplifying by using Lemmas 1 and 7, we get

6 Ki(2)=2 2 {j, [kitl}+ 2 {j, S}
#;) (94}

(3.6)

Now, using L.emmas 3 and 4, we have
3S~1{i,s,H= El {j, [Rli]}+ 28~ {i, S},

i.e.,
2{i, 8} = E}){j, [kl ]} +8.

Using the thirdi order Josthna identity in the form

S,=3C(jkl) - L [irl],
[y}
we obtain,

6{i, C4RI} =2 Z{z[;kz}+2{] [RIiT}+S,

{(Pyg}
or

Clijel} =2
[P{

which is the fourth order 1dent1ty.

2 i, R+ E {3, [klil}+5, 3.7

It is interesting to note that all the known commuta-
tion relations of spin and parafield algebras of orders
1,1, 3, and 2, 3, 4 respectively can be set up trivially

with the help of the two identities (3. 4) and (3. 7).
Josthna identity of fifth ovder: Apart from the third
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and fourth order identities which are required for
starting an inductive procedure, we want to set up the
next identity also as it is typical and suggests a general
method to obtain Josthna identities of all orders. To
observe the new features that arise, we first refer to
the Pascal triangle (2. 11). 1t is obvious from it that the
number of permutations in C(12345) with 4 in different
places are not the same. Hence, when we sum over dif-
ferent permutations as in (3. 3) and (3. 6), we get an
unbalanced sum of permutations which can be put in the
form (3.4) and (3. 7) if only we make use of the third
order identity. To establish this, consider

6{j, C(ktim)t= 25 {j{kllim]}}- ZZ {i{iltrm 1}}

tfk}
+{4,8,}
which is obtained by finding the anticommutator of (3. 7)
by j after suitably relabelling the permutations. Fur-

ther, note the preferred position for { when used in the
above expression. Summing over {pi}, we have

6 2 {j,Clrlim)}= 2. {j, ad+ 2 {i,S/h
™ to7)

where A, stands for all the mixed permutations in (3. 7).

(3.8)

Now, we divide the permutations in {4, C(klim)} into
two classes 02220 4 00200 where 0a8y0 stands for a
number of «, 8, and y permutations with ¢ being in the
second, third, and fourth, places respectively, such
that each class has the minimal symmetry with respect
to 7 and m. Considering now the pair IC(jik)m of
permutations that belong to 00200, their sum over {p}
gives

3 Z IC(jikym = 25 2, ljiklm+ 25 1S, m

(6;} {p;}Co, tm} (p;}

(3.9)

by the third order identity. Carrying out the summation,
using Lemma 1 and the minimal symmetry of C’s, we
have

3K = 2 1[jik]m + Ki(3), (3. 10)
tp;}

where Ki1) is the sum of all the fifth order permuta-
tions p with { in the middle position.

We also have, from the division 2(01210)=2(01110)
+ 2(00100) of the third row in the Pascal triangle (2.11)

Z){j, (klim)}= 2Ki(3) + 2K¥(1). (3.11)
125}
Now, using (3. 10) and (3. 11), we obtain
3 33 {j, Clklim)}=8Ki(3)+2 3 iljiklm (3.12)
{2y &)

Finally, eliminating 3, , {4, C(
(3.12), we have

16K4(3)= E {i, 804 Z‘ Wiiklm + 25 {3,8,}

Pil

(klim)} from (3. 8) and

(3.13)

or

8(S-{i, Sih=-1a,+3(25-{i,S,})
by using Lemmas 3 and 4 and Zs for the mixed terms in
(3. 13). Note that by Lemma 1, each permutation in A,
is duplicated. Hence,

5{4,5,} =&, (3.14)
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Now, using the fourth order permutation identity in the
form

6 C(iyig e ig)= A;2‘3‘4‘5 +S,
and substituting in (3. 14), we get
-1 X {j,a)+2 3 Ljiklm

(P,l (Ml
; ipigigi
- {’1’ Ajisis 51(+ 28,

which is the fifth order Josthna identity.

(3. 15)

4. JOSTHNA IDENTITIES OF ARBITRARY ORDER

A few move lemmas: First we generalize Ki(n - 2),
K(2) and K{(3), K1) by considering Ki(n - 2), Ki(n - 4),
-s», etc. Note that Ki(m) are such that either both » and
m are even or both odd and n>m. Hence, n-m is al-
ways even. Now let Ki(m) stand for the sum of all those
permutations which have i in the [{(n-m)+1, {(n-m)
+2, ++ Yn+m)lth places. When ¢ is in these positions,
it is said to be symmetrically situated. Note that Ki(m)
is not defined otherwise.

The simplest way to set up Ki(m) is by considering
the sum of all permutations of order m over a subset of
integers from {12:.. n} containing ¢ and then pre- and
postmultiplying them by 4(n — m) remaining integers in
all possible ways. Hence, designating by Si(m) the sum
of all permutations of m elements from N which contain
i, we have the following:

Lemma 8:

m=1) Kim)= [ LT S¥m) #i! e
) n( ) é’ 1“2 (n-m)/2 ( ) 1“2

i’(n-m)/za
(4.1)

where i’s and #’'s are the distinct elements from N.

Pyoof: Obviously, all permutations on the right side
are contained in the expression on the left and vice
versa, Further, the order of Ki(m) is (n—1)! m and of
the permutations on the right, (n—1)!(m - 1)!m. Hence
the result.

In Lemma 7, we established the relations between
suitable sum’s of C and K symbols which are of basic
importance in setting up Josthna identities of orders
3, 4, and 5. We obtain generalizations of them that are
used to set up all Josthna identities. To consider them,
we introduce first of all what we call odd and even
Pascal triangles. Let them be given by the figure shown
below.

1 11
12 1 1 3 31
146 41 15101051

1615 20 1561
Odd Pascal triangle

172135352171

Even Pascal triangle

Now, consider characteristic vectors A%, a=mn,
n—2, n—4, -+, of order n with units in the place of
entries in Pascal triangle as shown in the following
figure for n="T and 8 respectively, and zeros else-
where, i, e., the units lie in the symmetrical places.

000x000 000xx000

J. Math. Phys., Vol. 15, No. 8, August 1974

00xxx00 00xxxx00

Oxxxxx0 Oxxxxxx0
XXXXXXX

n="1

XXXXXX XX
n=2_8

Note that » and a are either even or odd together. Simi-
larly, we write B¢ for the vectors of order n with bi-
nominal coefficients as entries from a Pascal triangle
which is either even or odd. In what follows, when con-
venient we shall drop the n’s and assume that the Pascal
triangle is bounded by an infinite sea of zeros. Now we
have the important expansion of B? in the basis of A,
given by

Lemma 3:
B"= A"+ (,C, -

F(mCrimerr 21 =

Cy)A™2 4+ (,,Cy= ,C)A™ 440t

mCiimr j21—y) A1 /2]
(4.2)

where ,,C,’s are the usual binomial coefficients and [x]
stands for the largest integral part of x.

Proof: Follows by a simple induction on binomial
vectors B.

Note that n -2 [(—1)/2] is 1 or 2 according as » is
odd or even. We note a few consequences of Lemma 9.

Examples:
(01210) =(01110) + (00100),
(14641) =(11111)+ 3(01110) + 2(00100),
(013310) =(011110)+ 2(001100),

(15101051) =(111111) + 4(011110) + 5(001100),

We further also have

Lemma 10;
(m=2)+(43C; = s Co) (M =4)+ (,,.3C2 = 3 Cy) (m
—B)+ e
+ (s Comenr 72 = mes Cromeny r21-0) (M = 2[(m = 1)/2])
—gm=, (4.3)

Proof: This follows by rearranging the terms as

2ma Cot maCrtos+ 3 Crimenrzar-1 F mea Cromeny 721
X(m =2 [(m-2)/2)), (4.9

the last term being multiplied by 1 or 2 according as n
is odd or even. Now making use of the symmetry , C,
C__. of the binomial coefficients, and

m m-r

m-3

22 mesCr

r=0

=gn-3,

the result follows.

Now, to generalize Lemma 7, let Ci(i,i,++¢,_,i,)
stand for a set of 2(,,_,C, - ,,.sC,.;) permutations of
C(i,8,+++ 1,) which have the minimal symmetry with
respect to i,_, and ¢, and are such that i, , =i (say) is in
the [(m - a)/2+1, (m-a)/2+2, ..., (m+ a)/2]th place
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when m and a are both odd or both even. Hence, by
construction, we have

Lemma 11:
. . m-2 ’ 3
Cliyiyeeriy)= 25 Cifijiyi,), (4.5)
lor 2
where } indicates that o should be increased or de-
creased by 2 in writing the terms of the summation.

Further, consider ¢,i,+- 4, %, as a subset of N con-
taining i=1{,_, in the (m — 1)th place, i.e., i,
(say) and pre- and postmultiplying (4. 5) by (n-m)/2 of
the remaining indices from N and taking the sum over

{p,} of the identity (4. 5), we have

:Zn~1=l

Lemma 12:

" (G i ed i Nawaneesn
23 e Umem r2 CP i1y g E0,) 81 83 2> Wy /2

{p;} .
=2 % ,.D. Kia), (4.6)
lor?2
where
m-SDa = m-3ca - m-SCa-l‘ (4‘ 7)

Proof: The left side Lemma 11 is given to be

m=2
A toe i’ 7 ] LX) i y ”an see i
2388 Ve sz CL(t %, i) 3y " 05 Yimem /2°

2or 1l ) )
(4.8

As C’s have minimal symmetry, each term in the above
summation is duplicated, and further as there is permu-
tation over all symbols expecting i, there exists by
Lemma 9 a further multiplicity of the permutations
given by ,..C,~,sC,., a8 C} contains permutations with
i lying in « central places. Hence, the contribution for
(4.8)is 2, ,D, Ki(a), establishing the lemma, Further
we have, similar to the above result,

Lemma 13:
(n=1)/2
g}){iz, Cligiy ity )t=2 Z_)o 12Do Kln—2a - 1),
; =

(4.9)

Proof: This follows on the same lines as the previous
lemma. However, note that the order of permutations on
the left~hand side is n+ 1.

Induction hypothesis: We assume from the structure
of Jasthna identities of order 3, 4 and 5, that it is pos-
sible to write the first » — 2 identities as

a,Cliyiyei)=4,+b,S (4. 10)

where A are the terms which are contributed from
commutation and anti-commutation operations of the
form {j, jp*** poipiin)} and {j, - [ijk] j,++-}; S is the
sum of all n! permutations on N; the constants a, and b,
are functions of » only and a,=1 and ¢,=6 and b,=1.
Immediately we have the central

Lemma 14:

a,2v2=b n! (4.11)

Proof: To prove this, we introduce an arithmetic
function M on the set {J} of the sums of permutations of
N with integral coefficients. Let § =3 a,(i 4, 1,),
where i=4,i,---i{,and J =}’ if a, =a} for all the n!
permutations i. Now, let
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M(E) = Z) Ay
It follows directly that
M@, +22.) =M, + MZ2,).

Further, M(A,)=0 as each term of A contains a triple
commutator of the form [ij2] according to the induction
hypothesis. Now, to establish the lemma, evaluate the
arithmetic function M on both sides of (4. 11) and use
the fact M (C(4, iy-+ i,))=2"2 and M(S)=n!

Another simple induction hypothesis and its proof:
Consider integers m and n such that - is an even
positive integer. Let then

@y Cliyiyerei ) =4, +b, Shiz""" im, (4.107)

As C and S have minimal symmetry, A, has also the
same symmetry. Now pre- and postmultiply (4. 10") by
(n—m)/2 elements from Nn{i,--- i,}, and summing

over {p,} where i=i,_,, we obtain

2 llm[K:,(m - 2) + m-3D1K:,(m - 4) toeee m-3D[(m-1)/2]K:|(m
-2[(m-1)/2))]

— i’ vee 3! ipescim 4 .04 i’ vee
- 1 Ynm 12 A ™ l(n-m)/2+bm211
{2;} 4

L3 R Py
xSsh m Yn-m) /2

Using Lemmas 8 and 12, we obtain
Gy [Kim = 2) 2+ + 1 Di(mery 211 Kj(1 01 2)]
=3Am)+ b, im -1 Kim). (4.12)

Because of the minimal symmetry A,’,(m) contains pairs
of identical permutations. Hence, multiplication by a
factor $ is meaningful,

The first few examples of (4. 12) are
3Ki1)=34i(3)+Ki(3),

n

3.4 Ki(2)=1A}(4)+3.2Ki(4), (4.13)

which follow from third and fourth order Josthna identi-
ties respectively.

Theovem 1:
A, (n=2)Kin-~2a)=4,,, .o+t A,x(n—2a)Kin-2)
(4.14)
for @=2,3,...,[(n-1)/2] with the constant A__, which is

independent of @; and A, ,, . is a sum of mixed permu-
tations consisting of commutator and anticommutator
operators on permutations.

Proof: By induction. First by using the arithmetic
function M we obtain

(n=-1)MEYn-2a+1))=(n-2a +1)M(Ki(n-1)).

As M(Ki(m))=(n-1)! m the above equation is consis-
tant. Now obviously the theorem is true for n=3 or 4
from the examples (4. 13). On the basis of induction
hypothesis we assume that the theorem is true for
(n— 4) such that we have
A, (n-4)Kin-2a)=A +(n-2a)A, Kin-4)
(4.15)

where @=2,3,4,...,[(n-1)/2] and A,_, is independent

n-20,n-4
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of « and n= 5. Note that A
we have from (4. 12) that

a,,[Ki(n-4)+ ,. D, Ki(n-6)
+ooet 5D ey 21 Ki(n=2=2[(n~3)/2])]
=3Ain-2)+b,,4n-3)! Kin-2).

Substituting for Ki(n — 2a) from (4. 15), we have

A, ((n=4)+ Dy (m=6)++r+ Dis a1y Kin—4)
=3A, Aln-2)+A, b, n=-3)Ki(n-2)

{(n-1)/2]-1

X
&

wa,na=0. From m=n-2,

n-EDa A

n-2a,n-a’

Using Lemma 10 for » -4, we have
A, la,,/(n~4)] 275 Kin- 4)=2 (n=-2)+b, A,
X3(n-3)! Ki(n-2)

with obvious substitutions. Multiplying by (n - 2a) and
using again (4. 15), we have

A, .a,, 2" K (n=-2a)=(n-20)A (n-2)
+[a,,/(n—-4)] 275 A
+(n-2a)b,, A

n-2,n-4

Hn-3)! Kin-2).

n=4 2
This can be written as

(n-2)A,, Ki(n-2a)=A +(n=-2a)A, K, (n-2)

n=20,n=2

for a=2,3,...,[(n-1)/2], where
Ao=08,5[A, /(n- 2)] 25,
Al,=b,, A, 3Hn-3)!

and

An-za 2= (n - 2(!) Zn(n - 2) + [an-z/(n - 4)] 2754

n-2¢,n-4°

(4.15)

Now using Lemma 14, we have A, ,=A _,. By induction
hypothesis A, is also independent of @, since by as-
sumption a,_, and b,_, are functions of z only. As the
hypothesis is true for both =3 and n=4 from (4. 13),
we have established the theorem.

Finally, we prove the main theorem of this paper by
induction which establishes Josthna identities of all
orders.

Theovem 2: In the above notation by induction it
follows that

@y = @+ 1) (n-2)!-
b ., =(n=2)1..2111,

n+l

2111 /2m1 (4.16)

(4.17)

and

- [n/2]

1 m-l}-l— (aml bn/an) Ez An-Za in-a
o=

=% 2 {iz, A:sn'
5y

+{i1: A:Fia'“ i"‘l}' (4.18)
Proof: Consider the following sum of anticom-
mutators:
a, E {12’ Cligiyeeet nlat n+1)} E{lz’ A‘s ’ ‘li"*l}

{ps)) loy)}

+bn Z: {iZ’Siz}’
lpgl)
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which is obtained from (4. 10) after carrying out suitable
changes in the indices and {p; } is the set of all permuta-
tions of {1, 2, s hgy e, M }. Using Lemmas 4 and
11 and the mimmal symmetry of C’s, we have

2a,{K,, (n-1)+ DK, (n=3)+:
+ n-2D[n/21Km1(1 or 2)}
= [;) {iyy A }+0,m=-1)1(25~{i,, Si,P.
i1
Since A, itself has the minimal symmetry a pair of
permutations with identical coefficients are contributed

from each term in ¥, ,. , {¢,, A,}. Hence the above ex-
: yiyd! "
pression can be written as

an{Km-l(n_ 1) + n-2D1 Kml(n- 3) toeee + n-an/ZKn+1(1 or 2)}
=13
PoAee

Now, making use of (2. 14) after changing » —» + 1 which
depends only on the first n — 2 Josthna identities, we
obtain

la,/(n~1)] {n=1)+,.D,(n=3)+ -
><K,,+1(n—1)
+3b(n—1)1(2S - {zl,S}

a}+3b, (=11 (25-{iy, S, }).  (4.19)

+ p2Dinsz1 (LOr 2)}

n+1

by using the obvious substitution.
Now, by Lemma 10, we obtain
[a,/(n-1)] 22K, (n=1)=A, +1b, (n-1)1(2S - {i, Si,})

and then by Lemma 4 we have

n+l

la,/(n-1)]272(S ={iy, S, P, =3, +5D(n~ 125 - {3,,S, })

or

{la,/(n=1)]2"2 = b, (n-1)1}S=24,,, + {{a,/(n
-t b,(n=11} {i,, S,l}.

Now, substituting (4. 10), we have finally

- 1)] 9n-2

Aoy Cliyiyeee i, )=4A,,+b,..S,
where
={la,/(n-1)] 2n2_2p (n—-1!} a,/b,, (4. 20)
b"+1 ={la,/(n-1)] 22~ p (n- 1)1}, (4.21)
and
A a==A, +{i, Alz"" il q  Xb /a,

which is equal to (4. 18).

Note that a,,,, b,,, are purely functions of » only by
induction hypothesis.

Now, using Lemma 14, we have

a,,=3n-2)!(n+1)a, and b, ,=b(n-2).

n+

Making use of the initial condition obtained from third
and fourth order Josthna identities, we obtain (4. 16)
and (4. 17) respectively. This establishes Theorem 2
and the fact that Josthna identities of all orders n =3
exist. Finally we note that if C(i, %, ¢,) and C(i{i} -+ 1})
are the C terms with two distinct permutations of i’s
and ¢’s of N, then

@, Cligipeer i) = A iy i) =@, C(iteee i2) = A (i} oo 1), (4.22)
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which follows directly from the nth order Josthna
identity.

5. COMMUTATION RELATIONS OF
POLYNOMIAL ALGEBRAS

Commutation relations of simplicial algebras

Suppose A[a’, ..., a™] is an algebra not necessarily
associative with a finite basis over an infinite field F.
Let

L(x)=x,a' + x,0% + -+« + x,Q™ (5.1)

be a general element of A in the linear space L over
F. L(x) satisfies a minimal equation

Plx;L]= L"+P, L™+« + P =0, (5.2)

which holds for every general element L(x)= L,,. If A is
a simplicial algebra, then P,’s are symmetric homo-
geneous polynomials (SHP’s) in x and are given by’

P= > a 2 x2 ees 4% (5.3)
r | P P W | . i i i .
laj=+ a1 1'% Ty gy 1 %2 r
for r=1,...,n, where i;,=[1,2,...,m]and [a,,a,,...,

a,] is a composition of 7, i.e., integers a;>0 are such
that § a,=~. In particular, if A is a polynomial algebra,
the degree of Eq. (5.2) is independent of the number of
the basis elements [af|i=1,...,m]. Substituting (5.1)
in (5. 2) and making use of (5. 3) to find the coefficient of
the general expression x,x,+:» x, where n <m, we obtain

1 2
2iay e a,tay 200y @, 6, af2, 2500 @, 50,0,

R O RS SRS S M

-1, ces
n-1,n lay*vva,l lay a,
XE al see a".r én-rd,"' sn=r + al 6n-r+a +1yeae  =ray +ap
xén—anl,x-anz,...,n:()y (5. 4)
where
61'11'2"'1',.:1 if 11=1,2:-.. :1‘7 (5. 5)

=0 otherwise.

Note that in (5.4) 2 is over all the n! permutations of
{1,...,n} and §; is introduced to keep track of all the
symbols permuted. Further note that the general term
in (5. 4) can also be written as

Z>:nC[al,az,... va,l E”

where now 2’ is over distinct terms only and ,C lag .o
is the generalized combination symbol defined by

(5.6)

a,]
- Taleee - )1
"C[alyazy_“,arl~n!/a1.a2! a,l(n-n0!.

Now, multiplying (5. 4) by &, and making use of (4.10)
which is true for a set of » symbols for which as-
sociative law multiplication holds to eliminate
b7, 0+ @, we obtain the general polynomial com-
mutation relation given by

n
a,Cla, a,--- a,)—A,,+ b,:Clay- "ﬂrl,Z_;

r —
x > alal"-ar]Z)'alaz"'Qn-r Alal'“arl‘"o’ (5.7)
layeeca,l (s}

where
al." ar:6 (5-8)

In general it so happens that one knows [a;a ;a k] in

ces
v+l oo ynoreay =, +1,n20, 42,0, ,n°
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terms of @;’s. Then substituting for A, in the above
expression, we get the required commutation relations.

Commutation relations of spin and parafield algebras

Now let us consider the special case of derived poly-
nomial algebras for which the value of {@; @, @,] in
terms of @, are known. To consider them, let A[a] be
a simplicial algebra (polynomial algebra) and let
hA[a]= Ala]+ .- + A[a] be the sth derived algebras by
the additive process. As noted earlier! these are also
simplicial algebras for all values of s > 1. Further, the
roots of the minimal polynomial equations of PF:S Ala]
are sums of the roots of the minimal polynomial equa-
tions zz;slA[a] and A[a]. The commutation relations of
these algebras that are independent of s are postulated
to be

[a* IY]=6"ai -5 a’, (5.9)
where I/ = ' o’ — @’ o' for the spin algebra and
[alz, a"*aj —al a"’]:ﬁ“ aj,
(5. 10)

[a* a'a’ —a’a]=0

for the parafield algebras associated with the ordinary
Clifford algebras. Now the minimal polynomial equa-
tions satisfied by spin 7% A, and parafield 73 A , alge-
bras are easily obtained as

(L2 = 5s%/) (L7 = (s = 1P [)- (L= 5[)=0  (5.11)
if s is half-integral and

(L% = s* )(L? = (s = 1)?) »- (L= /)L =0 (5.12)
if s is integral where

L=x0;++x,0, and [ =x3+.+x2 (5.13)

for spin algebras; and
L=(Z,a'+Z,a'+) and [ =(Z,Z,+Z,Z, +++)
(5.14)

for the parafield algebras respectively. By the general
methods developed in I, these considerations can be
extended to the associative algebras of the generalized
Clifford algebras too. Now, in the half-integral spin
case expanding (5. 11), we obtain

L23_P1L23-2 [ +P, L25-4L2 oo (= l)rLZs-ZrL e 4

(-1)P, [*=0, (5.15)

where P, is the sum of the products of the 7th roots of
(5.11). Now, the polynomial commutation relation re-

duces to
S

Z) (_ l)r Pr Z: al." an—Zr 5n-2n1,n-2r+2'" 5

r=0 n=l.n

=0,
(5. 16)

where n=2s. Now the sum § over all the n! permuta-
tions of the indices can be written as
nl
= e O
71 2°(n-2p)! Z

where }’ is over distinct terms of the summation. Now,
proceeding in the same way as is done in the case of
(5.7), we obtain
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1 n!
a, C(al'" a")—Aﬂ+b":A;Pr m—!
X oy a,,,67=0, (5.17)
where
6r=5m2r41,n-2r+2 °°r 6n-l.n’ (5 18)

Now, using (5. 9) the mixed permutations A, containing
the triple commutators [a; o, @,]can be simplified.
Similar procedure can be applied in the integral spin
case also.

However, in the case of parafield algebras an inter-
esting complication arises as the index set over which
the algebras are set up are given by I® I. For example,
when we consider parafield algebras of order 2s + 1,
when s is half-integral, we have to take in Eq. (5.15)
L and / given by Eq. (5.14). Now, enumerating the
integers in I® I by unbarred and barred integers in
each I and introducing 5 symbols which are given by

5,,=1 if ¢=p

=0 otherwise, (5.19)

let us consider the coefficient of Z Z,-+- Z,, where n
=2s with the auxiliary variables Z; which are equal
either to Z;, Z,, in terms of the auxiliary operators a;
if Z,=2, and a; if Z;=Z, and obtain

n
a,C(a @, a,) —An+bn1§ P, 2008, 4,5, 67=0 (5.20)

where

6" = 6n-27+1,§n—2r+2 5n—2r03,gn-27+4 o ézn-l,gn’ (5’ 21)
The 5 symbols involving Z are simplified according to
the rule that Z, is replaced by i and Z, is replaced by
1 to reduce to the § given by (5. 19).
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Making use of Eq. (5.20) and considering systemati-
cally commutation relations which contain 0, 1, 2, ...,
[(2s + 1)/2]+ 1 bared symbols we obtain [(2s +1)/2]+1
commutation relations for a parafield algebra of order
2s + 1, All the other commutation relations can be ob-
tained from these either by simple complex conjugation
or by using the general commutation relations given by
(5. 10) as this is equal to using the Eq. (4. 22).

As an example, by choosing in Eq. (5.20) a;=aq, for
all i, and noting by Eq. (5. 10) that [a,a,a,]=0, we
obtain

Cla,a,+++a,)=0 (5.22)

for the case of the nth order parafield algebra.
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Winternitz and coworkers have shown that the eigenfunction equation for the Laplacian on the
hyperboloid x3 —x?—x3 =1 separates in nine orthogonal coordinate systems, associated with nine
symmetric quadratic operators L in the enveloping algebra of SO(2,1). Corresponding to each of the
operators L, we employ the standard one-variable model for the principal series of representations of
SO (2,1) and compute explicitly an L basis for the Hilbert space as well as the unitary
transformations relating different bases. We also compute the associated results for realizations of
these representations on the hyperboloid. Three of our bases are related to well-known subgroup
reductions of SO (2,1). Of the remaining six, one is related to Bessel functions, two to Legendre
functions, and three to Lamé functions. We show that there is virtually a perfect correspondence
between the known theory of the Lamé functions and the representation theory of SO(2,1) and

50 (3).

1. INTRODUCTION

As is well known, the group SO(2, 1) acts on the
hyperboloid 2 - x% = x2=1, x,>0, with induced Lie
derivatives K,, K,, M, given by

Klz_xoaxz_xzaxo’ Kzz_x axl_xlaxo’

(1.1)
M,=x0,_ —x,0

%o 27%
and commutation relations (2. 3). Consider the eigen-
value equation

QS (%o, %y, %) = UL + 1) f (%o, Xy, %), (1.2)

where @ =K} + K2 — M2 is the Casimir operator of the
Lie algebra so(2, 1) expressed in terms of (1.1) and f
is a function on the hyperboloid. Olevsky' has shown
that Eq. (1.2) separates in nine orthogonal coordinate
systems and Winternitz and coworkers?-® have shown
that these coordinate systems correspond to nine
quadratic symmetric operators L in the enveloping
algebra U of SO(2, 1). Indeed, let S be the space of all
symmetric second order elements in U, let C be the
center of U and form the factor space 7=S/SNC. (In
this case SN C={aQ}, a any constant). Then SO(2, 1)
acts on T via the adjoint representation and splits it
into nine types of orbits. Choosing an operator L from
each orbit, we find that for each such L the pair of
equations

Qf =1l +1), Lf=Xf,

corresponds to one of the nine coordinate systems in
which (1.2) separates. In fact, A corresponds to a
separation constant.

(1.3)

We choose our nine operators L as M2, K2, (K, +M,)?,
Lg,Ly,Lyy, Lgyp, Lyp, Lp, where the last six are given
by (3.1). For the explicit derivation of these operators
and the orthogonal coordinates to which they correspond

see Ref. 2.

In the present paper, rather than study (1. 2) directly,
we employ the standard one-variable model (2. 6) for the
principal series representations of SO(2, 1) and
explicitly compute an L basis for the Hilbert space
corresponding to each of our nine L operators. We also
compute unitary transformations relating different
bases. Our results on the spectral resolutions of the
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L operators, though determined for the simple one-
variable model, are obviously valid for any model of
the principal series. The spectral resolutions for the
“subgroup operators” M2, K3, and (K, +M,)? are well
known, e.g., Refs. 4—6 and partial results for L and
Ly can be found in Ref. 3. However, the remaining four
cases are treated here for the first time. The operators
Lg, Ly, Lgy lead to expansions in Lamé functions, L,
to Bessel functions and the Hankel transform, and

Lo, Lyp to expansions in Legendre functions.

In Sec. 4 of this paper we construct models of the
principal series in terms of solutions of (1.2), thus
making explicit the relationship between the above
results and separation of variables. This is accom-
plished via the Gel’fand—Graev transform which maps
functions on the unit circle to functions on the
hyperboloid and is an intertwining operator for the
group action. We obtain a number of new results
relating solutions of (1. 2) in various bases.

Recently Patera and Winternitz” have introduced a
new basis for the representations of the rotation group
SO(3). Their basis consists of the eigenfunctions of the
symmetric operator E=—~4(L?+7LZ), where O0<r<1
and [L,, L,]=¢,,;,L,. In the two-variable model of the
irreducible representations of SO(3), functions on a
sphere, the eigenfunctions are products of Lamé poly-
nomials. However, the only one-variable model com-
puted in Ref. 7 was one in which the basis functions ap-
peared as complicated Heun polynomials. In Sec. 5 we
show that, in fact, by a suitable change of variable and
phase, one can construct a one-variable model in which
the basis functions are exactly the Lamé polynomials.
We show that there is a one-to-one relationship between
the results of Ref. 7 and the standard theory of Lamé
polynomials as presented in Ref. 8 or Ref. 9. This
permits the use of tabulated properties of Lamé poly-
nomials to implement the theory of Ref. 7. In general
our results show an intimate relationship between the
representation theory of SO(2, 1) and SO(3) on the one
hand and the theory of Lamé functions on the other.

We have not attempted to compute the matrix elements
for the principal series representations of SO(2, 1) in
any of the nonsubgroup bases. The practical computation
of such results awaits the introduction of appropriate

Copyright © 1974 American institute of Physics 1263
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coordinates on the group manifold such that variables
separate in the differential equations for the matrix
elements. Work is in progress on this problem.

This paper is one of a series analyzing the relation-
ship between Lie theory and separation of variables in
the partial differential equations of mathematical
physics. 10-12

2. SUBGROUP BASES

In this section we establish notation and review those
properties of SO(2, 1) that we will need in the sequel.

The group SO(2, 1) consists of those proper linear
transformations acting on a three-dimensional vector
x= (%, %1, X,) which preserve the infinitesimal distance

ds® = dx? — da? — dx?. 2.1

(These are the Lorentz transformations in the plane. )
The group SO(2,1) is 2—1 homomorphic to the group
SU(1, 1) of quasiunitary unimodular matrices

e=(5 &) lal-lel=1

3 (2.2)

The generators of the Lie algebra of SO(2, 1) are de-
noted by K,, K,, and M,. Here K,, K, are the generators
of the pure Lorentz transformations along the 1 and 2
axes, respectively, and M, is the generator of rotations
in the 1, 2 plane. The defining commutation relations

of this algebra are

(K, K,]==-M,, [K,,M]=K,, [M,K]=K,. (2.3)

All unitary faithful irreducible representations are
labeled by the eigenvalue of the Casimir operator @,
where

Q=K:+K:-M2=](1+1). (2.4)

All such irreducible representations are infinite dimen-
sional. We now give the spectrum of ! corresponding to
the unitary irreducible representations and the eigen-
values m of the operator iM, in each such
representation.

(i) Principal series: I==3+ip, 0<p<oo,
m=0, 1, +2, -~ or +%, +3, -,

(ii) Complementary series: Iml=0, —-1<7<0,
m=0, 1, £2, ---,

(iii) Positive discrete series: 2] =integer,
m=I1l+1, [+2, .

(iv) Negative discrete series: 2! =integer,
m==1=1, =1-2, -,

For the purposes of this paper we only consider the
single valued representations of the principal series.
For a more detailed treatment of SO(2, 1) we refer to
the standard references, 4, 13. The principal series
of SU(1,1) can be realized on the Hilbert space // of
square integrable functions f on the unit circle with the
scalar product

(fomy=[" f(e”) nie)as.

The action of a group element g on a function f is
specified by

(2.5)
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0y _ | a,i6 4 |21 ae‘9+E)
T@f(e")=|Be*+ a|* f(gomrg ) (2.6)
and the generators of the Lie algebra have the form

K, =Icos6 - sing 4,

de
K. —-—lsina—cose-i (2.7
2T g’ .
d
Ms_-ié-

Of the nine possible bases for SO(2, 1) as given by
Winternitz ef al.?, three are of the subgroup type and
have been treated in some detail in the literature. *~¢
We now give the explicit form of each of these subgroup
bases for the principal series. In the section on the
two variable model we also give the expansions in the
subgroup bases. These results are not new, ¢ but we
present them here in summarized form in the interest
of completeness.

1. Spherical system: The explicit form of the princi-
pal series in this basis has already been presented in
our definition of the principal series. The basis func-
tions of the spherical system are just the eigenfunctions
exp(im 0)/V21 of the operator M,. This is the canonical
or standard basis to which we will relate all subsequent
bases.

2. Equidistant system: The basis defining operator
for this system is K,.

The representation space of the principal series
splits into two spaces. The basis vectors in each space
are

£l =(coshg) exp(itq) C,, (2.8)
where €=+1 is a reflection label which distinguishes

the two spaces and C,;=(}), C_.,=(}). The variable ¢ is
related to 8 by

_co<7'<oo,

e?=tan;#, 0<8sm,

(2.9)

e '=tan}(0—-7), =s6s<27.

On each of the spaces K, is essentially the momentum
operator with a unitary continuous spectrum, the real
line. For further details concerning this basis see
Refs. 5, 6.

3. Horocyclic system: The basis defining operator
for this system is K, + M,. The representation space
of the principal series is then spanned by a single set
of basis vectors given by

=151 +2)] exp(isz), —w<s<w, (2.10)
where the variable z is related to 6 by
z=tan36. (2.11)

This basis has been considered to a limited extent in
Ref. 13. The choice of basis operator is more con-
venient but still equivalent to that used in Ref. 13.
(Similar remarks apply to the equidistant system.)

3. NONSUBGROUP BASES

Now we enumerate the six types of orbits in T which
do not correspond to subgroup bases. Choosing a
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standard element on each of the orbits, we obtain the
following list of six operators.

(1) Elliptic system: L, =M2+k* K2, kecR,
(2) Hyperbolic system: L, =K2 - 7°M2, 0<r<]1,
(3) Semihyperbolic system: Lgy =M.K, + K,M, + v KZ,

0<r<ew, - (3.1)

(4) Elliptic-parabolic system: Ly, =y K2+ K2+ M2
+ K My + MK,

y>0,
(5) Hyperbolic-parabolic system:
Lyp=-vK3+KI+ M5+ KM+ MK,, v>0,

(6) Semicircular-parabolic system:
Lop =K, K, + KK + KMy + MK,.

We will show that each of these operators corresponds
naturally to a symmetric operator on the Hilbert space
# =L,[0, 2] corresponding to the principal series
representations of SO(2, 1). Furthermore, we will show
that each such symmetric operator has equal deficiency
indices and can be extended to one or more self-adjoint
operators on //. Finally we will compute the spectral
resolutions of these self-adjoint extensions and relate

them to the spectral resolution of Ly =M2Z,

Recall that for the principal series the Lie algebra
generators are given by (1.7) and I=-%+ip, p>0.
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A. Elliptic parabolic system

For our first example we consider the operator L,
normalized so that y =1:

Lgp=2(1-sinf) d%;— +(21 ~1)cosd Zi% +[11+1) 2
(3.

- I sing].

This operator can be defined on the domain of all C~
functions on the circle which vanish near =17/2. 1t is
straightforward to show that Ly is essentially self-
adjoint on this domain and that the self-adjoint exten-
sion, which we also call Lg,, has continuous spectrum
only, covering the negative real axis. The normalized
generalized eigenfunctions are

FEP(0)= a,(singp)t/2+* Pl . (cosid),
(3.3)

4t sinh 7¢

1/2
s\ =1 ch<
% <cosh1rg+coshm> , =31+ ¢, 0sp<2m,

and the orthogonality relations are

[ FEr(o FrRo) o =o0(¥ - ¢). (3.9)
Here, Ly, F;7(0)=~ 2 F}P(6), 0<t<e, and P}(z) is a

Legendre function. ® A tedious computation for the over-
lap functions between the S and EP bases yields

n-l,n+i n,n+i

X oFy

(1+2n+it=0)/2, (14+2n=-it=1)/2, 1+2n

1 n~l~3, n+f,n+l,n
T

where the plus sign applies to the case n <0 and the
minus sign to n>0. The ,F, is a generalized
hypergeometric function. ®

B. Elliptic system

Corresponding to the elliptic system we have
L, =(1+Fcos?9) £ + k?(21 - 1) siné cosd 4
E a6 de

+ B2(1? sin%6 + 1 cos?6). (3. 6)

Initially we define this operator on the domain of C*
functions on the circle. However, it is easy to see that
L has a unique self-adjoint extension. Indeed, it cor-
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e T(-n+1+ 1) D((1-it+2)/2)T((- 2n— it -1+ 1)/2)

N +2moi+iny/2, 1+2m—1~it)/2, 2n

(3. 5)

in 22" (3¢ = 1+ 1)/2) T(( = 2n + it + 1)/2)
T((2] - 2n+ 3)/2) T~ = i8)/2) T((L + 2n — [ + i£)/2)

1

rresponds to a regular Sturm—Liouville operator on the

interval [0, 27] with periodic boundary conditions. Thus
the spectrum is discrete. To solve the eigenvalue
equation L, fF =2 fF, we set

£, (8) =(1+E? cos?8)! /2 g,(w),

6=¢~-1/2 and sin¢ = sn(w, ik), where sn(z, k) is a
Jacobi elliptic function (Ref. 8, Chap. 13). Then the
eigenvalue equation becomes

<a§ =PIl +1) sn?(z, )+ 11+ 1)7% = 1—}_;;) £,(2)=0,
(3.7)

Z2=(1+k\ 2w, »° - K(y) <z <3K(y),

k2
1Y
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with periodic boundary conditions g,(2)13£=0,
£(2)1%%£=0. This is the Lamé equation and the required
eigenfunctions are the periodic Lamé functions with
period 4K. We can divide the eigenfunctions into sym-
metry classes by noting that L ; commutes with the
unitary commuting idempotent operators R,, R,, where

R Y P)=f(=9), (RyfNP)=f(n—-¢)
with ¢ as in (3. 3) and f(¢) a function on the unit circle.

Since the eigenvalues of R, and R, are 1 the eigen-
functions of Ly fall into four classes labeled by these
eigenvalues. In terms of the notation given in Ref. 8,
Sec. 15.5.1, the results are

A1+ %) £,(2) period R, R,
a2’y Ec2™z,7?) 2K 1 1
a"HP)  Eci™Nz,7Y) 4K -1 1 (3.8)
B2™2(%)  Es2™?(z,77) 2K 1 -1
bimY)  Esi™Yz,7%) 4K -1 -1
for m =0, 1, 2,-.-. Here the multiplicity of each eigen-

value is one, and the superscripts m are related to the
number of zeros of the corresponding eigenfunctions in
a period. We normalize each eigenfunction fF to have

unit length in //, leaving a phase factor undetermined.

Note that the action of R, and R, on the spherical
basis functions f5(8) = exp(im 8)/ V27 = (- i) exp(im ¢)/V2r
is

R f5=(=1)"f%, Rofo=Fin (3.9)

The overlap functions relating the /%, basis to the fE
basis are the coefficients UE:$ in the expansion

fE=22 UESSS. (3.10)
We can obtain recurrence relations for these coef-
ficients by substituting (3. 10) into the eigenvalue equa-
tion L, fE=xfF and equating coefficients of 5 on both
sides of the resulting identity. For example, the basis
function k,(¢)=(1+ k2 sin?¢)'/2 Ec3"(z, +°) satisfies
R,h,=R,h,=h, so that the expansion (3. 10) takes the
form

() = §C, + 3] Ca, c08(2n).

Substituting this expression into the eigenvalue equation,
we find

[FP(1+1) - 2x] C, ~ K*(I2 =51 - 2) C, =0,
E3(n-1)(3 =20+ X1 -D]C,,.,

+ BRI+ 1) = 4n] - (A + 4n®)} C,,

+R[Lm+1)(1+2)+ 5 (1=-D]C,,.,=0.

(3.11)

These expressions are closely related (but not identical)
to recurrence formulas derived in Section 15.5.1 of
Ref. 8. There are similar formulas for the other three
types of periodic Lamé functions.

C. Semicircular parabolic system

The basis defining operator L, has the form
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L.p =2cosd(1 - sinb) ad;z— + (21 = 1)(1 ~ sind)
(3.12)

X(1+ 2 sind) Zdé +Icos8[1+ 2(I -~ 1)siné].

Before discussing the self-adjoint extension of L, it is
convenient to use instead of the functions f defined on
the unit circle, the functions g(v),

£(8)=[2v0/(1+ v9)]' g%(v),

where e=+1, v=vVeotip (0<dp<m), ande=—1,
v=vV—-cotlp (1< ¢ <27). The space of functions f(6) is
then replaced by the pair of functions (g°, g°), and so
we need to consider L., acting on the direct sum of two
Hilbert spaces which we call 4/* and /- (H=/"® 4").
On each of these spaces L., has the form

Lep= (L - 12 0),

dv? v

(3.13)

This operator has deficiency indices (1, 1) on each of the
two Hilbert spaces //* and //°. There is thus a two-
parameter family of possible self-adjoint extensions of
L, acting on the space of functions defined on H. We
choose one of these which immediately suggests itself
and relate it to the standard S basis. The normalized
generalized eigenfunctions we choose are

FERO) =[20/(1 + v v J,,, ,, (V2 A0) C,,

with C, as in (2. 8). This choice of basis corresponds to
the choice of eigenvalue ex? (0 <\ < ) for the basis
vector fP(6), i.e.,
LopfEP=ex2fLP,
The orthogonality relations are
[Freeleyreroyao=s(v -0, .. (3. 15)

The relation of this basis to the spherical basis can be
readily computed:

US:CP = g4+ N~ f: V2 H(V2 A)

(3.14)

=1ty A+

X (@A +EF" 1+ o) do

_ [2\/17 (%)H z; iZ"—'c(i")
I(-1-n) 1 3\ /1 a\""
“NCI=ATr+I+ D) (i H) <1—62_3 az>

8Z2 1+1/2-r
x<")rz‘> Jo1a /2+7(XZ)K-1-1 /2+r(\2)]

where 7> 0 and K,(z) is a MacDonald function.

(3.16)

2=17

For n<0 it is only necessary to make the substitution
! — —1~1. The only modification of these results for
the overlap function _,’,S}’_l is the replacement of the
%" term in the above expression by (- 7)¥*~,

D. Hyperbolic system

The basis defining operator L, has the form

+(1 - 21) sinf cosd 4

— (4 _ 20y 2
Ly=(r" -cos 9)d92 76

(3.17)
- I2 gin%0 - [ cos?6.
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v
P 2K ] g = e, 2T~k
K
O=T-x =T+t

FIG. 1. The 6 coordinate in the v plane for the hyperbolic sys-
tem.

This operator is defined in the domain of all C* func-
tions which vanish near those four points for which
|cosf| =v (»>0). It is convenient at this point to split
the space H into a direct sum of four spaces which we
label by a discrete index 7 (i =1, 2,3 or 4). The splitting
is achieved according to the prescriptions
H—(~a<b<a), 2~ (a<b<m=a),
Hi—(r—a<b<r+a), *— (1+a<8<271-a) so that
4

H:iz;en,qf. (3.18)
(note: we assume ¥=cosa, 0< a<7/2). The functions
f(6) are then replaced by functions #;(»), given by

f£:(8)=[ir’ /en(v, )] hy(v),

where 7’ =(1-+°)!/2 and cosf=dn(v, ¥)/en{v, 7).

(3.19)

The ranges of the parameters are shown in Fig. 1,
and it can be seen that as 8 runs from — o — 27 - @, the
parameter v describes a closed path as indicated in
Fig. 1.

On each of the Hilbert spaces 4/ the operator L, has
the form

£

=gF - 71+ 1) sn¥(v, 7).

Ly (3.20)
We are then concerned with four eigenvalue problems
each of which is such that the operator L, is singular

at each of the two corresponding end points. Let us first
consider the choice of basis for //'. For this space

ve (iK', iK' + 2K). Following Erdelyi, ® Chap. 15, we
choose the boundary conditions for a basis as

(i) [sn(v, ")]*/2 A(v) bounded at v=iK’,
AN (K +iK’)=0.

(3.21)

The corresponding solution is denoted by A = F™(v, )
and has 2m zeros in the interval (iK', iK’ + 2K)
(ii) [sn(v, »}}1/2 A(v) bounded at v=iK",

AK +iK')=0.
The corresponding solutions are denoted by FE™(v, 7).
In the above A(v) is the corresponding solution of the
equation LyA=x_ A. Here m is the number of zeros of
the eigenfunction A in the interval (iK’, iK’ + 2K). These
are the finite Lamé or Lamé Wangerin functions. The
solution of the corresponding boundary value problem
gives these functions as expansion functions with the
discrete spectrum of L, labeled by the upper index.
[This index is also the number of zeros of the solution
in the interval (4K’, iK' + 2K). ] The problem for the basis
of /{3 is exactly similar so that we then have the basis

(3.22)
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B (0)Y=FXv, ", (3.23)

i i=1,3.
The %; are 4X1 column vectors having 1 in the ith row
and zero elements elsewhere. For the choice of basis
in the spaces //? and //* the corresponding eigenfunction
expansion problem is similar to that considered already
but the variable v is now in the range (iK’, —iK’) or
(2K + iK', 2K - iK'). The corresponding boundary value
problem of interest is now given by the requirement that
(snv)*’2 A(v) be bounded at the end points v=+iK’ and
that A’(0)=0 or A(0)=0 according as A is even or odd
about v=0. The complete set of eigenfunctions are the
Lamé Wangerin functions F7(v, 7). The corresponding
basis functions are then given as in (3. 23) with i=2, 4.
In particular we have for each eigenfunction f ffl ; @
=1,2,3,4) as 6 varies from — a to 27— @, that v varies
continuously around the rectangle drawn in Fig. 1. The
corresponding eigenfunction [i7’ /en(v, 7))} f u; cor-
responds to a continuous differentiable function of 6 and
is therefore an element of the original representation
space. This requirement picks out this solution and
does not require us to consider the deficiency indices

in each subspace. (We have essentially periodic bound-
ary conditions). The latter procedure in general leads
to sectionally continuous eigenfunctions on H. The
orthogonality of the basis functions is written

(fois far 1) =038 N}, (3.24)

with N! a normalization factor. The eigenfunctions f! |
defined as above are nonzero only in the corresponding
Hibert space //'.

We now proceed to calculate a recurrence relation
for the overlap functions between hyperbolic and
spherical bases.

We consider in detail overlaps associated with the
spaces 4! and //3, As with the elliptic system it is
convenient to consider a number of discrete trans-
formations. The first of these is reflection R about the
line Rev =K., This corresponds to the transformation
6 -~ — 6. We have accordingly

sz,i(v):(_ 1)mfy£{,i(v)a i:17 3. (3. 25)

In addition, if we consider the reflection R:0—m- o,
then we have

RFE (0)=(= D"/ (v), i#j, i,j=1,3.

From these equations we can form the linear com-
binations FE*= f¥ (v)+ fE () [with 4, j as in (3. 23)]
having eigenvalues (- 1), x(- 1)™ respectively, of the
operators R and R.

(3. 26)

It is these functions for which we can form the over-
lap functions, i.e., instead of relating the normal basis
f&,i(v) to the spherical basis f3 via fB .=y~ _ ULSsS
we write each F&* as a Fourier series in 6 and find
recurrence relations for the coefficients. This involves
extending the domain of the functions FE* to be defined
on the unit circle, 0< 9 <27,

The symmetrized basis function GE =(+* - cos?)'/2 x
Fg,* has eigenvalues + 1 for the both the reflections R
and R and so can be represented by the series

GE(68)=13C,+ 25 C,, cos(2n6) (3.27)
n=1
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for a < §<u/2 - a. Applying the operator L, to both
sides, we obtain the recurrence relations

-+ +22,]c,+[2+1(31-1)]C, =0,
(3 -1)@1-2p-1)+ (I -1)]C,,,

+[2p%(1 - 2% - 211+ 1) -2, ]C,,

+ 3+ 1)(21+2p+ 1) + (I - 1)]C,,,,=0
forp=1.

(3.28)

Similar recurrence relations can be derived for the
other symmetrized basis functions. Identical arguments
can be applied to overlap functions associated with the
Hilbert spaces /4% and /4/*. In this case it is convenient
to introduce the same discrete transformations as
previously but with ¢ replaced by ¢(6=17/2+ ¢). With
this change the analysis goes through as before.

E. Semihyperbolic system

The basis defining operator Lg, has the form
dZ

ae

+ 7(12 5in%6 + I cos?8) - [ siné.

+ (21 - 1) cos8(1 + 7 sing) Zi%
(3. 29)

Ly, = (7 cos®d - 2sinb)

This operator is defined on the domain of all C* func-
tions which vanish near the two points at which sind
=1/7{(1+¥2)*/2-1]. It is convenient to split the space
H into the direct sum of two spaces //, and //, defined
according to the prescription 4/, ~ (<6< 7 - ),

Ho (= a< <21+ a) so that

H=},8H,.

The functions f(8) are then replaced by the pair of
functions &, (i=1, 2), where

N sn(v, s) dn(v, s) !
6= <[_ T+ P72+ 7+ 1] (v, ) = 27) In(v),

a<0<71-0,

— N sn(u, q) dn(u, q) 1
- <[(1 +r 24y — 1] s0(u, q) - 21’) o),

T-a<0<2r+a, (3.30)

where

yo BLEAE
v

(1+r23t/2-1]

2 (L4722 _y qz_(1+'rz)1/2+'r
=R T T T

and

21 - (1+73)2]+[(1+ 72221 — 7] sn¥(v, s)
(1+%-(1+72)2]sn’(v,s) - 27 ’

a<f<rn-a,

sinf =

_ L+ A2 o 147 en¥(u, g) - 2[(1 + )2 - 1]
[T+ 7H72 -1 +72] sn’(x, q) = 272 ’

T=-a<6<27+a.

(3. 31)
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The corresponding ranges of the variables are
0<wv<2K(s), 0<u<2K(q). Interms of the new
variables the operator L, assumes the forms

& cn?(p, s)
2y~1/2 [ [ 2
(1+7*)Y2 Lgy= (dvz +i(I+1) sn?(v, s) dn*(v, s)

rII+1)

& cn®(u, q)
=z "W+ sn®(u, q) dn*(u, q)

- (—11;1%%11,)2— . (3. 32)
It is possible to make further transformations and write
Lgy in the form of the standard Lamé operator as for
instance in (3. 20). The resulting elliptic functions then
have a complex molulus k= exp(iy) (i) real) and the range
of variation of the new variables is not parallel to either
of the directions of periodicity. It is more convenient

to consider the operator L, in one of the forms (3. 30).
The problem of the self-adjoint extension of Ly on each
of the spaces //; is exactly analogous to that considered
in each of the spaces //, of the hyperbolic system. In
particular we choose the boundary conditions which re-
quire that [sn(v, s)]"*/2 A(v, s) be bounded in the interval
(0, 2K(s)). Here A(v, s) is a solution of Ly A=X A,
More precisely the boundary conditions are:

(i) [sn(v, s)]*/? A(v, s) bounded at v=0, 2K(s) and
N(K,s)=0. The corresponding solution is denoted by
K%™(v, s} and has 2m zeros in the interval (0, 2K(s)).

(i1) [sn(v, s)]"*/2 A(v, s) bounded at v=0, 2K(s) and
A(K, s)=0. The corresponding solution is denoted by
K2™Y(y, s) and has 2m + 1 zeros in the interval [0, 2K(s)].
Similar remarks apply to the related problem on #/,.
The corresponding solutions are denoted by M7(u, g).
The spectrum in each case is discrete. A complete set
of eigenfunctions for the Hilbert space H is then

(V) =K7(v,5)C,,

myl
(W) =M7(v, g)C..

Satisfying the normalization conditions, we have

rsn?n’ frsr;t!’{m'):(smm' 8pes MmN =1,2.

The functions K7(v, s) and M7(u, g) that we have in-
troduced are closely related to the Lamé Wangerin func-
tions which appear in the hyperbolic basis. In fact if we
take the operator Ly, in the standard Lamé form we
have in the space //,

(3. 33)

[r+ @2+ 17212 L,

& 11 +1
= o7 = UL+ 1) s, B + [ Z;,z(++i)1)/2]1/2

(3. 34)

where k= [q-i(1-¢*)"/?]/[¢ +i(1~-¢*)"/*] and
w=[g+i(1- ¢ Jo— iK' (k).

The corresponding eigenfunctions of this operator are
then Lamé Wangerin functions. These solutions can be
represented in a series as Erdeyli has done for the
case of complex %2, e.g.,
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le”‘(w,k):Z_:OA,exp[— i+1+27)¢], (3. 35)
where cos¢ =sn(w, k) and the coefficients A, satisfy the
recurrence relations

[H-(I+172(2-#)]A,+ (20 + 3) kA, =0,
r-D(+n kA, +[H-(I+1+27)2(2-F)]A,
+(r+1) (2 +2r+3) k24, =0,

y=1 and H=2x, —I(I+1)#, (3. 36)
2m

In this way we can write a series expansion for each of
our basis functions K7' and M7. It is again straight-
forward to calculate recurrence relations for the over-
lap functions between the semihyperbolic system and
the spherical or canonical basis. This again depends on
the fact that a given basis function consisting of two
components represents a continuous function of ¢ for
6< [0, 27]. We merely note here that this can be done
and omit the calculation which leads to rather lengthy
recurrence relations.

F. The hyperbolic parabolic system

The operator Ly, has the form
2

. . d . d
Ly, =2siné(siné - 1) r I +(27 - 1) cosf(1 - 2 sinb) 10

~ 2% sin?f - 2! cos®g - [ sind, (3.37)

We consider this operator to be defined initially on the
C~ functions of § which vanish near the points 6 =7/2,

7, 3m/2, where Ly is singular. It is convenient to con-
sider the space H divided into four subspaces #/* as with
the hyperbolic system, i.e., H=2‘§=lep,t/". Each of these
subspaces corresponding to functions of ¢ defined over
an interval of length /2, e.g., H#'—(0< 9 <7/2) ete.

It is then convenient to consider the operator Lyp acting
on new functions %; in each of these spaces where

vy=1.

f:(6)=[V2 sinhd/(1+ cosh®s) ] h,(b), i=1,2,
=[v2 siny/(1 + cos?y)]* k,(¥), i=3,4. (3.38)
The variables & and iy are given by
. . 1/2 — s
[(1+ sin6)/2sing]t/2=cothd if 0<6<rt (3. 39)

=icoty if 7<6<27.

For i=1,2, Ly, acting on the functions %,(b) has the
form

&g+

db® ~ sinh?h

and for i =3, 4 it is just required to make the sub-
stitution & - Zy. For i=1, 2 the solutions of the eigen-
value equation Ly, k= p2h are the functions (sinhb)!/2
P37/2 (coshb). From this observation it is immediately
seen that a complete set of basis functions does exist if
we take = ~ip (p real and positive). The corres-
ponding completeness properties follow from the prop-
erties of the generalized Mehler transform. A complete
set of orthonormal basis functions is then

FEB(b)=[(p sinhmp/7) T(1+1+ip) T(1 +1 - ip)]*/2
X (sinhd)*/2p-}-L/2 (coshb),

-1/2+i0

Lyp=

(3. 40)

i=1, 2, satisfying the orthogonality relations
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ol fory=8(p=p").

The spaces //, and //, can be combined by defining the
variable ¢ as in (3.37) with 0 <y <7 but now taking into
account the sign of the square root. The corresponding
eigenvalue problem is singular at both ends of the
interval ¢ = (0, 7). There is a two-parameter family of
self-adjoint extensions of L, since the deficiency in-
dices are (2, 2).

Each linearly independant solution is square integrable
so that the spectrum is discrete for each self-adjoint
extension. The computation of an orthonormal basis of
eigenfunctions is straightforward but complicated and
unenlightening and so we omit it. Also, the integrals
relating these bases to the standard spherical basis
appear intractable.

4. THE TWO VARIABLE MODEL

The group SO(2, 1) acts on 3-space according to
x— L(g)x, where x=(x,, x,, %,) is a column 3-vector and
L(g) is the 3X 3 matrix representation of SU(1, 1) defined
as in Ref. 13, p. 289. This action induces a representa-
tion of SU(1, 1) on the space 7 of C* functions in
3-space, defined by operators T(g):

[T(g)F](x)=F(L(g™)x), F= 7.

To be precise, we choose the action so that the cor-
responding Lie derivatives are as in (1.1). Clearly the
quadratic form x2 - x% — %% is preserved by this action.
In this section we will construct models of the principal
series representations of SO(2, 1) in which the Hilbert
space consists of functions F(X) defined on the hy-
perboloid 42 - x2 ~x2Z=1, x,>0, and the group acts via
(4.1). In particular we will explicitly construct in this
space the various basis functions listed above. Further-
more, we will use the Gel’fand—Graev transform to
expand an arbitrary function, square integrable on the
hyperboloid, in terms of each type of basis. We note
that the basis functions are exactly those which appear
when one uses separation of variable methods to find
solutions of the wave equation

(4.1)

02 02 az
(57 - 57 - 3) oo

which are homogeneous in y,, y,, ¥,.

(4.2)

We use the Gel fand—Graev transform** to map func-
tions on the unit circle corresponding to a principal
series representation of SO(2, 1) to functions on the
hyperboloid. Thus, corresponding to fe 4 and the
representation ! =~ } +ip, we define a function F(x) on
the hyperboloid by the integral

F(x)= j:' (x,+ x, 8inf - x, cos@) 1 F(0)d6=I[f]. (4.3)

It is easy to check that the operator T(g), (2.6), acting
on f induces the operator T(g), (4.1), acting on F:

T(g)F =I[T(g)f].

It follows that the Lie derivatives (2. 7) acting on f in~
duce the Lie derivatives (1. 1) acting on F.

If {fS} is a basis for // corresponding to the operator
L, then
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(K3+KZ-MAfS=11+1)f8,
(4.4)
LGfS:)‘nfs'

1t follows that the functions F§=I(f$) satisfy the equa~
tions

(K2 + K& = M2) FS = I(1 + 1) FS,
LGFS:XnFs’

(4.5)

where now the operators K,, K,, M, are given by (1.1)
and L, is expressed in terms of these operators by one.
of the Egs. (3.1). We shall see that each choice of L,
in (3. 1) corresponds to a separation of variables in the
first equation (4. 5).

We can now employ any one of our bases {FS} to ex-~
pand functions on the hyperboloid. Thus, if H(x) is
square integrable on the hyperboloid 52 —x2 = x2=1,

%, >0, with respect to the measure dx,dx,/x,, then the
Gel’fand—~Graev integral transform yields the expansion
1 ~1/2+§
H(X)= 55— f I[f )l cotnldl, (4.6)
T

-1/2=~f
where f,(6) is a function on the circle defined by

f (%) (x, + %, sinb - xzcose)’%@L 4.7

0

Since f,(6) can be expanded in a {f¢} basis, we obtain
ft(e):;A?,"ff’ A;G'"=<ff,fz>,

or

1 =1/2+i®
Hx)= Frrs f Icotnldl ; ASm Fé(x),

1/2=iw

(4.8)

AG f f H(x) FS(x) %@2—

Formulas (4. 8) apply directly in the case L, has dis-
crete spectrum. When L, has continuous spectrum, it
is necessary to replace the sum over n by an integral.

Note: In the usual treatments of the Gel’fand—Graev
integral transforms, our [ f,] is replaced by an integral
over an arbitrary contour I' on the cone x% - x2 - 42=0,
which intersects every generator once. In this paper
that contour is always chosen to be the circle (x,, x,, x,)
=(1, —siné, cos#b).

We can view the transform (4. 4) in another way:
namely as the inner product of the functions %,(6),

F(0)= 4,

F(x)=(h,, [}, (4.9)
h () =(x,+ x, sind — x, cosh) = Jf,
Then the formula F¢=(h, f%) yields immediately the
expansion

hy(8) = 2. F&(x)f5(8) (4.10)

for the kernel function % (6). Furthermore, a direct
computation yields the result

<hx’ hy> =27 Pl(xovo — XYy = x2y2)’

where P,(z) is a Legendre function. Substituting (4. 10)
into (4.11), we find

(4.11)
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21 Py(%odo = %11 = %5¥5) = 2 FR(x) FE(y)- (4.12)
Finally, if two,L/ bases {fS}, {f£} are related by over-
lap functions U¢’

n m ’
fE=2UsX £,
it follows immediately that

F¢=3,US-XFk, (4.13)
m

n.,m m

We now list the functions F¢ for each choice of G. In
several cases the integral I[f S] appears not to be known,
and we have to make explicit use of the fact that, in
each of the appropriate coordinates tabulated in Ref. 2,
I[ff] satisfies a simple second order ordinary dif-
ferential equation. Thus F¢ can be expressed as pro-
ducts of solutions of such equations with coefficients
determined by evaluating the integral for special values
of the parameters x. We now give explicit expressions
for seven of the nine bases discussed.

A. Spherical system

Fola, $)
= " [cosha - sinha sin6 siny - sinha cosé cosy]™*
X expl{im 6) do (4.14)
=1 T(l+1=-m) . ;
= TU+D) L7(cosha)exp(ime)

with (x,, x,, %,) =(cosha, - sinhasiny, sinhacosy),
O<sa<w, 0sy <27
B. Equidistant system
FE4(a,b)
= f_ ‘: [cosha coshb coshqg ~ cosha sinhd sinhg
- e sinha] " exp(itq) dg

Tl+1+inT({+1-iT)
I(l+1)

Wexp[- in(l + 1/2)/4]

X P52 (~ etanha) exp(iTh) (4. 15)

with (x,, x,, x,) = (cosha coshd, - sinha, cosha sinhb),

—0<g< o ~w<h< oo,
C. Horicyclic system
Fa,7)= foz' [L(exp(~- a) + (+* + 1) exp(a)) ~ ve? cosd
- L(exp(~ a) + (¥* = 1) exp(a)) sing |}
% (2 cos?io)!
X explistanz6) d6

1+1/2

P(l {-;- | expl- a/2)K,, ;5 (e|s|) explisr)
(4. 16)
with
(%o %1, %5) = (3[exp(— a) + (v + 1)eq],
- slexp(—a) + (r2 - 1) e*], ve?),
0<r< oo —w<g<oo,
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D. Elliptic-parabolic system
F%®(a, 8) = a,[2 cosha cosp]'*!
1 4
x ]: [cosh?a + cos?6 — cos¢ (cosh®a + cos?g — 2)

-2 sin¢ sinha sing]"'"! (sin} o)’

xpit(cosio)de. (4.17)
Here,
. 1 (coshza + cos20> ,
°7 2\ coshacosé
1 (sinze— sinh2a> ,
*1= 3 \ coshacosé
= — sinha sind
2™ coshacos®
Using Ref. 2 and symmetry in ¢ and {6, we have
FE®(q, §) = A Pi¥(tanha) P!(itang)
+ B (P!*(tanha) @%‘(itand) + @}*(tanha)
x Pi¢(itan6)) + C Q!¢ (tanha) @¢(itanb).  (4.18)

Setting P,=P,(0), P,=[dP[(x)/dx],.,, etc., (these
values are listed explicitly in 8, Vol. 1), and com-
puting F}¥(0,0), 8,FF7(0,0), and 3,3,FEP(0, 0) directly
from (4.17) and from (4. 18), we obtain the equations

PoPy PyQy+Q.P, @R\ /A E,
PP, PLQ,+QP, @%@, X B =l 0|, (4. 19)
PP, PRi+ QP @@i/\C/ \E,

where

PR (1414 248)/2) {1 + 1 - 24£)/2)
T+ DTE) -2k + 2)/2) T((- 1 - 26t + 1)/2)’

E,

- 0, 2128y (1 + 2 - 2i£)/2) T((L + 2+ 2i£)/2)
T+ DT(D) (- 28 + 1)/2) T((~ [ - 2i8)/2)

E,=

Equations (4. 19) can be solved via Cramer’s rule to
give explicit values for the constants A, B, C.

E. Elliptic system
FE {(a,B)= foz'r {dnadnp ~ cna cnB siné

+(i/¥2) sna snp cosd] 1
X (1+ cos?6)!/2 Ep™(z)ds. (4.20)

Here for simplicity the moduli of all elliptic and Lamé
functions are chosen to be 7, where ¥=7'=1/v2, and
we have introduced coordinates «a, 8 on the hyperboloid
via the expressions

%,=v2 dna dnB, x,=-cnacnB, x,=-(i/v2)snasnp,
0<as4K, 0<sB<iK

(see Ref. 3). The letter p in Ep™(2) stands for either ¢
or s from expressions (3. 8). Finally,
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_=(+k)/c0osp 1
sn(z, 7)= 1 +Ecos?0)’> T3 k=1

Making use of the facts that FE  (a, 8) is symmetric
in @ and B, that it satisfies the Lamé equation in ¢,
and that F} (a,B)=F% (a+4K,pB), we easily obtain

F% .(a,B)=Cp ,EpT(a) EPT(B), (4. 21)

where the constant C p,m Can be determined by evaluating
the integral for a fixed choice of o and g.

Substituting this result into (4.12) and using the
orthogonality relations for the elliptic basis, we obtain
the integral

Ap nEPT(a’) EPT(B) EPT(B') =27 [ P,(2dnar dnav’ dng dng’
—cna cna’ cnf cnf’
-+ sna sno’ sng snf’)

X EpF(a)da, (4. 22)
where A, , is a constant,

F. Semicircular parabolic system
FPR(E,M)

) © J . (\/2_7\1))1)“3/2(11)
=2Va (28&n) 1[ {[vz+(lgl_/:n)2][vz+(£ +in )P

_ 921y 111 (ann)1/2
- (l+1)

J 1172 A K 4y 40(0m). (4.23)

The remaining integral is given by interchanging ¢ and
n, i.e.,

FP(E,n)=FgPn, £);
the coordinates on the hyperboloid are

_(B2+n)P+4 _1fMm £ _ (B +n?P -4
PE T8 MTI\E ) 2T ek
with £,17>0.

G. Hyperbolic system
Flm{,i(a, B)

B
=(ir’)* f Fr(v, 7)

i ,
ST cna cnfenv + 77’ sna snB snw
A

i -1-1
+ pors dna dnB dnv dv

=X, Fa, v) F7(B,7), (4. 24)

where the integration region is over the appropriatc ‘de

of the rectangle in Fig. 1 corresponding to the Hilbe..
space /¢, e.g., ifi=1, (4, B)=(iK" + 2K, iK').

The coordinates on the hyperboloid are
x,=(ir/7") en{a, 7) en(B, 7),
%, ==ir sn(a, 7) sn(8, 7),
%, =(i/r")dn(a, v) dn(g, 7),

where a= (iK', iK’ + 2K), B (iK', —iK’). The constants
appearing in (4. 24) are numbers which can in principle
be determined by calculation in special cases of the
integrand.
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5. THE ROTATION GROUP IN AN ELLIPTIC BASIS

There has recently been an investigation by Patera
and Winternitz’ of the rotation group in a basis alternate
to the usual one in which the component of angular
momentum in a fixed direction is diagonalized. If the
components of angular momentum are denoted by
L, (i=1,2,38), satisfying the usual commutation relations
[L,,L,]=¢,,L, the operator which is diagonalized is
E=-4(L}+r2L}), where 0<72<1. In their work
Patera and Winternitz examined the two variable
realization on the sphere of SO(3) and showed that in this
basis the corresponding basis functions are ellipsoidal
harmonics or products of Lamé polynomials as opposed
to the conventional spherical harmonics in the canonical
basis. The two-variable realization was discussed in
detail in that paper together with the properties of the
matrix relating the two bases. In that paper the authors
were not, however, able to produce a realization of the
single-variable model in which the basis functions were
single Lamé polynomials. It is the purpose of this sec-
tion to show that this can be done in a quite straight-
forward way. We also show how to relate the overlap
coefficients to the coefficients of the Lamé polynomials.

The one-parameter model of the representations of
the rotation group is realized on the space of poly-
nomials f(z) of order less than or equal to 2J (J
—angular momentum) in the complex variable z. The
invariant scalar product is so defined that

(274, 27 M) = (I = M)L(J + M) B .1

A canonical basis in this realization (i. e., one in which
L, is diagonal) is

J=M
g — Z -— = =
fM_[(J—M)!(J+M)!J”2’ JsM <dJ. (5.2)
The generators of SO(3) are
L —li(l—zz)—d— +iJz, L,=%(1 +zz)-i -Jz
L dz voTeT e dz ’
.od o
L,=iz = -idJ. (5. 3)
The operator E can then be written
2
E=[1-n22-1+n][(1 +r)z2—(1—r)]?jz—2
2 5 2.1 d
+(2J - 1)2z[1+ = 22(1 = ¥*)] —
dz
+2J[1+ 72+ (1 = 72)(2J = 1)2%]. (5.4)

If we now write the eigenfunctions f of E in terms of new
functions k, where

F@) = (1) [(b - ) (1 =522 /2 z), b=t
1=7 (5.5)
and make the change of variable
-i{1+b)z
Sn(wy ’V)Z [(b_ZZ)(l_bZZ)]l—/f’ (5' 6)

the operator E acting on the 2 functions has the form

LE= %; —72J(J + 1) sn®(w, 7).

7 (5.7
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The eigenvalue equation for E acting on the & functions
is then the Lamé equation. The corresponding solutions
are the Lamé polynomials. There are two cases to con-
sider, viz., when J is even or odd.

Arscott® has shown that there are eight species of
Lamé polynomials, four corresponding to even J and
four to odd J. We shall consistently use his notation for
the Lamé polynomials as it is very suggestive of the
corresponding expansion of the Lamé polynomials in
terms of Jacobi elliptic functions. In each case (J even
or odd) the four corresponding polynomials form a
complete basis for representation space. We now make
these statements explicit.

Case 1,J=2N(N=1,2, ")
The complete basis set is
AymziaNuEg‘mz(w)r A;;:FZNSCE;IN&(W)’

A}-m:FZNSdE;"N#z(w)’ A :FZNCdE;"mz(w): (5.8

where F=v'[(b - 22)(1 - b22)[1/2,

F can also be expressed in terms of w via Eq. (5.6),
but we not do this here. The pair of discrete indices
labeling the A functions are the eigenvalues of two
discrete operators. The first of these is the reflection
operator R which acts on functions f according to

Rf(2)=f(-2)

so that R A%2=p A%Z. The second discrete label is related
to the inversion operation I which acts on functions f
according to

1f(z)=2% f(1/2)

so that IAY, = gA%, . This method of labeling basis func-
tions has been employed by Patera and Winternitz. The
index m in each case labels the number of zeros of each
Lamé polynomial appearing in the basis and hence also
labels the basis vectors of a given type. For the basis
function AY,, m lies in the range 0 <m <N +1; for all

Im>

other basis functions we have the range 0 <m <N,

Case 2, J=2N+1{(N=1,2," ")
The complete basis set is

Ay, =Nt cEr. (W), Af,=FY1dED, (w),

.9
A7, =F" scdE, .. (W), A;,=FN¥1gER (w). (5.9)

Here m varies between 0 <m <N for A7, but varies
between 0 <m <N +1 otherwise.

The calculation of the nonzero elements of the overlap
matrix relating the E or Lamé basis to the canonical
basis can be achieved by writing down the equation

T 1
M=, WDmu T IO

ZJ—M +sz*M),

(5.10)

where the summation extends over those M for which

(= 1)7*¥=¢q. All that is required is then the writing out
of the left-hand side as a polynomial in z and equating
coefficients. We shall illustrate this calculation in the
particular case of the coefficient (X ,,,)m'2 e corresponding
to the basis function AJ},, on the left-hand side of (5. 10).
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r,Rez €1 L4
ImzLO Imz>0
K’ O<Rez< B)2Imz=|0

! ] 20

1
Rez=0,Imz« \//: o of
Indegration

2K

FIG. 2. The mapping snw=—i(1+5)2/[(1 =62} (6~ 221V in the
w plane. In order to make this a single valued map, the z
plane has two cuts along the intervals I, =[6"Y2, /2] and I,
=[~ b2 _pV2?], The lines w=2K+iv and w=— 2K +iv with

- K <Imv< K are identified.

Written in terms of the variable z the basis function
> wm can be expressed in the form

N
Sm =T (- 1) (1+0)* af,
»=0

x[(b - 2%) (1 = b2*)]V" 2%, (5.11)
where uE, ,(w)=3 ¥, af, sn**w and the coefficients
satisfy the recurrence relations

Aal+2ar=0,
(2N =-2p+2)(2N+2p-1)7%al,,
+[4(1+ 3PP =nylan - (20 + 1) (2p + 2) afl,, =0, (5. 12)

where 4\’ is the eigenvalue of the operator E. Equating
coefficients on both sides of (5.10), we obtain

N
(X3 ) 00 = [(2N = 20) 1 (2N + 2q) 1 /2 25 2% g,

»=0

X235 (= 1) C(N—P> (N‘p>(1 + PN (L =)o,
u,v u v
(5.13)

For 0 sp <N - ¢ the u, v summation is over integers
u,v such that 0 su+v<N-g—-p. For N—-g<p<N,
u=v=0. This expression then relates the overlap
matrix to the coefficients aj, of the expansion of Lamé
polynomials in terms of Jacobi elliptic functions as
given by Arscott. Similar calculations can be made for
the other nonzero elements of the matrix (X%),, ,.

It is also possible to map the one-variable model we
have examined thus far, into the two variable model of
the rotation group realized as square integrable func-
tions on the three-dimensional sphere. This is achieved
by the following means. With each function f(2) we
associate a function on the sphere given by

. J
rw=2 [ () 0%
c

271 z z (5.14)

Here x is a point on the two-dimensional unit sphere,
ie., X=(x,,%,%,), Xi+x5+x2=1and v

=[4i(2% - 1), $i(2® +1), z]. The contour of integration is
any closed path around the origin.
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1. Canonical basis: Substituting the basis vector /7 in

this expression, we get

J1y

Fru(6, )= TG T i Py, (cos6) exp(—iM ¢),

(5.15)
where Py, (cosf) is the matrix element of a rotation

about the x axis in the canonical basis. The point x on
the sphere is parametrized as

x=(sinf cos¢, sinfsing, cosd).

2. The elliptic basis: In this case it is convenient to
make the change of variable indicated in Eq. (5.6). The
resulting integral is then

!
F?e (@, B) = —‘-]—-f (1= 7) [iK sne snB snw — dna dnB dnw
27
c (5. 16)

J -2 b
— v cna enB cnw 20 E®¢
B 17 (snw) e (w) s

where Ef2 (w) is one of the Lamé polynomials which form
the particular basis for given J, e.g., E;%, (w)
=uEyy.(w). The integration is over a contour which
encloses the origin in the w plane and lies strictly inside
the square in the complex w plane with vertices

(2K, +iK’) and (2K, +iK’). The situation is illustrated

in Fig. 2, where the details of the mapping are shown
together with a possible contour. The coordinates on

the sphere are given by the relations

x=((1/r")dn(a, v)dn(B, 7), - (ir/r’)cn(a, ¥) cn(g, 7),
- 7sn(a, 7) sn(B, 7))
with a & (- 2K, 2K), 8= (—K, ~K +2iK").

In each case the integral (5.16) and hence F?2(a, B)
is expressible in terms of a product of Lamé poly-
nomials of the type appearing in the integral, e.g.,

F;;Vm(a’ B) = h’]’ﬁ;uE;nzNa-Z(a’ B) =2 uE;‘N-r-Z (a)uE;nN+2(6)!

where we have used the notation of Arscott for the pro-
duct of two Lamé polynomials. In each case X is a con-
stant of proportionality which can in principle be calcu-
lated. This result can readily be obtained by con-
sidering the properties of the integral under the dis-
crete operators R and I as well as using the fact that the
integral satisfies the Laplace equation and is symmetric
in a and B.

In order to make this a single valued map, the z plane
has two cuts along the intervals I, = 571/, p1/2] and
I,=[-b"1/2, ~p'/2], Because of the periodicity of the
elliptic functions the lines 2K +iv and - 2K + iv, where
- K’ <y<K are identified.
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Clebsch—Gordan coefficients for the . U(2) group are computed in the coherent spin state basis

introduced by Radcliffe.

Coherent spin states have previously been defined by
Radcliffe.! This note is devoted to the calculation of
Clebsch—Gordan coefficients in this new basis.

As is well known, coherent states for boson systems
are defined according to

|e) =kexplaat)|0), 0]

where % is a normalization factor, @ a complex number,

where p runs over the entire complex plane. S™ creates
spin deviation and | 0) is the ground state |s,m=s). It is
convenient? 3 to introduce the Fock space built in the
two-dimensional complex space €2 which is isomorphic
to a space 7 of square integrable entire analytic func-
tions® of two complex variables z and z':

flz,2)= T C,, (2*/Vp1)(e /VFD)
PEN

and a* the boson creation operator. In very much the PEN
same way Radcliffe has defined coherent spin states fe je=
|'s, u) with total spin s according to 1£]17= Y C.2 (4
N ' *
|s, uy=expps-|0), (2) YEN
TABLE I. Particular values of (si53,5,Als153, Rt y).
s=0 s=1
1®% A/NZ) (py — py) (L+ g (1 +2%,)
s=% s=2
193 G2 (g — p) (L +A%p) (142 21+ A %py)
s=1 s=2
%@% (%)1/2 (“2—”’1)(1'*‘}\*[1-1)2 (1+7\*F1)3(1 +ARp)
$=8¢ _% s=8 +%
5103 [251/(281+ DIY/? (up — s (L +2%pg) 2oyt (1+2%pq) 285 (1+2%uy)
s=0" §=1 s=2
1®1 (1/V3) (py — p)? (g = ) (1 +1%pg) (1 + Apay) (1 + 0 )31+ A*py)?
s=% s=% s=3
ie1 (1/V2)(py — p) 21 +2%py) (6/5) 12 (py ~ p) (1 + A%y 21 +A*p,) (1 4+ 2% )31 + A %p,)?
s=1 s=2 s=3
2®1 (3/5)12 (g — py)2(L +%py)? (4732 (g — p) (L + A% p )3 (1 +2%py) (1 +2%u )4 + axpy)?
s=0 s=1 s§=2 s=3
i®s 3y — ) (F5) L/ 2y ~ ) ML+ 2% py) BV 2y = pg) M1+ 2% A1+ 2%py) 2 (T+2%p )31 +2%pg)3
X (1+1*py)
s=% s=% s=% s=%
2©% (279172 (py —p) ML+ 2*py) (6/5)1/% (uy —pu)2 X+ 2% (12/1)M 2y —pg) (1 + 2% P (14 1%py)? (1 Fpug) 4L+ A%pp)®
X(L+A%p,)
s=1 s=2 s§=3 s=4
=2 (1/V2) (s — 1) (1 + 1 ¥py) (10/T/2 (up —pup L +2%pu)®  (15/8)1 /2y — g (L +1¥p ) (1 +2%py)? (L2500 (1 +A%py)®
X (1+A*py)
s=3% s=% s ='% s =§
3®% 4/ gy — p)3(@ + 2%y (45/28) 2y — p) 2L+ pp)? V2 (1t — pig) (1 + %) (L + A ¥p1g)? (110 81+ axp g
X (1 + A% y)
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In 7 the generators of SU(2) are
i 0
S=-3 b -7'55) ®)

with N=2(2/92) +2/(3/22') and §2=iN(iN+1), where
N is the operator “number of particles.”

With this notation the states |s, m =s) such that

S?ls,s)=s(s+1)|s,s), 4)
S*|s, s)=0 (S*=S, +iS,), (5)
(s,s|s,s)=1, (6)

can be chosen as the homogeneous polynomials V, =
z'?¢/y2s1, A coherent spin state is then defined accord-
ing to

|s, Wy =exp(us) [s, s) = (2’ = na)®/V2sT M

where $" =S, —iS,=~2(3/0z’) . Two such states |S, u)
and |s, A} are not orthogonal to one another. Their scal-
ar product is

(s, |8, py=(1+21*xp)2s, (8)

The essential property of such a set of states is its
completeness

fcz |s, w)s, p|dM(u) = mis |s, m)s,m|=1,, (9)

where the weight is given by
aM(p)=[(2s +1)/7][@u/(1 + | p P)?2]. (10)

The integration is carried out over the whole complex
plane.

We now consider the addition of two spins S, and S,. In
the tensor product of two Bargmann’s spaces 7,(z,,z',)
and 7,(z,,z’,) the infinitesimal generator of SU(2) is

S=S, +85,. (11)

Looking for the vectors |s,s,, s, s) satisfying the rela-
tions (4), (5), and (6) among the eigenvectors of 82 [with
the eigenvalue s,(s, + 1)] and sz [with the eigenvalue
sy(s, +1)] one finds

|12y 8, S) CC2[S1S2 Sz 2%z 2, — 2, 2" )12 . (12)
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The corresponding coherent spin states are calculated
from the relation

exp(As)| 5,55, 8, 8Y = 5,855 8, )« (13)

‘With the notation |s,, k) ® |8, by)=15,S,, L[y}, OnE

finds
(8152, 8,2 |S132: Bybg) =R(ly = 1y)o178275(1 + M*p )sumsars
X(1+a*p,)s2m50s (14)
with

B= (25 +1)1(2s,) 1(2s5)! 1/
—((sl+sz—s)l(sl—sz+s)!(s2-sl+s)!(sl+s2+s+1)l) :

These polynomials are the coefficients of the expansion

S1+382

|S132; Byktg) = 2 fdM(A)]Srgz, S, A)(s, 85, 37\’3132’ Mykg) .

s=lsy=s2l

(15)

They are the “coherent” analogs of the well-known
Clebsch—Gordan coefficients (s;s,, s, m|s,s,, m;m,). The
connection between these two kinds of coefficients is
given by the relation

(8,83, 8, 7\] 1Sz Mybg)

+s +s
2s 1/2 2s 1/2 2s 1/2
=% 5 : :
m==s my==s;\S ~ MW, Sy = ny Sy =M,

i=1,

XA*S-muxsl-ml“zsz-mz(sﬁz’ S, m I 8185, MyMy) . (16)

Particular cases of formulas are listed in Table 1.
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The paper investigates the solutions of Maxwell-Einstein equations for null electromagnetic fields
with or without matter in case of spaces of high symmetry. For the spherically symmetric space no
such solution exists, while for cylindrically symmetric spaces, there arises a wide variety of
situations. In reality, for the solutions that emerge, the spaces should more appropriately be termed

plane symmetric. Some solutions are exhibited.

I. THE SPHERICALLY SYMMETRIC SPACE

It is well known that if one assumes the space to be
spherically symmetric, then one cannot have a solution
of the Einstein—Maxwell equations corresponding to a
radially expanding field of pure electromagnetic radia-
tion. Thus with the line element

dz?=~ erdy? — y2dQ0° + e¥di?, (1)
where A and v are functions of v and £, the equations

R,,~}Rg,,=-81l(1/AT)F , F*], @

SFAE =F4% =0, *FUOF, =F“F, =0  (3)

do not have any nontrivial solution. Vaidya' by relaxing
the Maxwell conditions for a charge free space did ob-
tain a solution in which the current vector is null. Such
a current may be interpreted as a charge moving with
the velocity of light.?

A charge moving with the velocity of light and having
no rest mass: This may not conflict with the equations
of Maxwell and Einstein; nevertheless, the idea is un-
conventional and foreign to physics as we know it right
now. It seems therefore interesting to investigate
whether other solutions exist where the Einstein-Max-
well equations are rigorously satisfied but the energy
tensor may be modified in a more conventional manner
by the presence of ponderable matter.

For the discussion of null fields it is more convenient
to take the line element in the form

dz® = Bdu® + 2Adudy — v?dQ2, (4)

where 7 is now a null coordinate and A, B are functions
of # and ». It is easy to verify by direct calculation that
the null vector K* =05} is geodetic and shear free.
Hence from Robinson’s theorem® we may construct a
null electromagnetic field tensor of the form

F,,=alK,(a,cosB+b,sinB) - K, (a,cosB+b, sinf)]
(5)

which will satisfy the Maxwell equations. @ and 8 in the
above expression are the “amplitude” and “polarization”
factors and the unit spacelike vectors a” and b* are

given by
a’=r718, b =(rsind)o},

where we have numbered the coordinates u, 7, 6, ¢ as
0,1,2,3, respectively. The Maxwell equations now give
after some algebraic simplifications

sinf , + (@, /a) =0, (6)
(@ ,/a)siné +cosé +8 =0, M
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The above two equations do not possess any solution
with @ independent of the angle coordinates. Thus the
only nonvanishing energy tensor component of the field
Ty (=20%K2) would be angle-dependent. Thus if the
Einstein gravitational equations are to be satisfied
there must be an angle -dependent matter distribution
compensating for the above dependence. However, the
actual situation is even more complicated. The general
solution of Eqs. (6) and (7) is given by

o sind =expl flu ~ ) + glu+ ¢)],
where

B=f(u-9)-g'u+9)

u=logtan8/2,
and f and g indicate arbitrary functions of their argu-
ments, The radiation energy tensor will thus have
singularities in particular directions.
Il. THE CYLINDRICALLY SYMMETRIC SPACES

(A) The simplest case of cylindrical symmetry cor-

responds to the Marder metric

dz2=expl2(y - P)(dt? - dr?) —exp(~ 2¢)r 2de?

—expl2(y + w)]dz2. ‘ (8)

The above line element may also be written

dz? =2 expl2(y - ¥)]dndE — exp(— 29)(n ~ £)?*dp?
-expl2(p + p)]dz?, . ®

where 17, £ are both null coordinates. We shall number
the coordinates &,71,¢,Z as 0,1, 2,3 and consider the
null vector K* =6, The vector is geodetic and the con-
dition of vanishing shear gives

24, + 1y - (0 - )7 =0, (10)

where the subscripts indicate differentiation with
respect to the coordinate concerned. Equation (10) in-
tegrates to

exp(2y + u) A - &) =£,(8), (11)

where fl(E) is an arbitrary function of £. The nonvanish-
ing R, ’s are

Ry =[ = (=P + (9 + 1) =20r, =9, + (0= 9]

+lpy +(m =81, (12)
Ry = [ZPO +(n~- g)-l]z + (¢o + I»‘-o)2 -2(v, - Zpo)[“o ~(n- g)-l]
+[#o—('n— g)-l],o’ (13)
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R01 = [d)o + (71 - %)’1][% - (71 - g)-l] + (d)o + ""0)(¢1 + IJ‘l)

+{2v, =296+ 1o = (-9, (14)
Ryy[exp(29)/(n = £82]= 244 + poly - (n - £)7]
+iolpy + (= 2]+ (n-£)
X1y =), (15)

Ry eXP[— 2(24) +tu- 7’)] == Z(ZPOJ. + “01) - ‘po[”'l +(n- E)-l]
- tolthy + (M= 8] = 24,1,

+(n =87 (Y + uy). (16)
111, THE ENERGY STRESS TENSOR AND THE .
FIELD EQUATIONS
We have
Tuv:(Tuv)rad+ (Tuv)mat’ (17
(Tu.v)rad: + 2(! 2’(%6”06:;0’
(18)

(Tuv)mat = (p + p)vuvv -Pgu.,,

where we have assumed the matter to be a perfect
fluid. I now the only nonvanishing v*’s are 1° and ¢!,
we get

vy, =00, =3, (19)
(T3 )mas = (P + )%, (20)
(TDmat = (T par=="1s

(T8) ey = (T = H0 = 9), 1)

so that finally

RZ=R}=(87/2)(p - ¢), (22)
g% Ry, =R} =R}=~-8mp, (23)
Ryo= — 202K = 87( p + p)v2, (29)
R, ==81T,,=-8n(p+p)i. (25)

The null electromagnetic field is given by
F,, =alK (a,cosB+b,sinp) - K,(a, cosB +b, sinf)],
where
a,=exp(- )1 = £)0,,,
b,=exp(y + u)s;,.
The Maxwell equations give
(i) B is an arbitrary functions of £ alone
(ii) @ =G(&) exp(y) /(n — £) exp(2y - 2y),
where G(£) is an arbitrary function of £.

The electromagnetic energy-stress tensor T, has
only one nonvanishing component:

Too=H(E) exp(29) /(1 = £)?,
where H(£) is a positive function of &,

The condition R2= R} gives, using (15), (16), and (10),

[, = (= &) lwo +2¢ + (1= £)2]=0, (26)
so that either
h-Mm=-£"*=0 (27a)
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Bo+ 2%+ (n =+ £)* =0, (27b)

With (27a) satisfied, RZ, RS, as well as R,, vanish so
that this is consistent only with a pure radiation field as
is evident from equation (22), and (25). The complete
solution in this case can be easily obtained. From equa-
tions (27a), (10), and (11),

e =£,(8)(n-8),
et =f(B(n=8), fO=f/f2

From Eq. (23) R, would vanish for the pure radiation
field and this gives

ev=(n - £) f,(E)g (n). (30)

Substitution into (24) and (13) gives a2 in terms of the
functions of &.

(28)
(29)

In case (27b) is satisfied, Eq. (11) becomes
exp(2¢ + u)/(n - £)=const.

The field may now be either a pure radiation field or be
associated with matter. For the pure radiation field
R:=R}=0and RZ+R3=0 gives

(31)

po +le/ (1= )1+ poy =, /n-8)]=0, (32)
which integrates to '

e*(n— &) =1,(&) +g.(n), (33)
so that from (31)

e=-8/f,+g)" (34)

The vanishing of R,, and R, gives, using Egs. {10) and
(2b)

A 20y = 9y) = (4, /A) =0, (35)

Ary F Ly =29 + (- £)7] =0, (36)
where
A=y -log(n - £). (37)
Eliminating ¥, from Eqs. (35) and (36), one gets

Agdy t+ [ '%)‘1 +%(7‘11 /7\1)],0=0- (38)

In view of (34) and (37), Eq. (38) is identically satisfied
and Eq. (35) gives

e =[( g *f N fs+ ) 1 - £).

We then get from (24) and (13) a? in terms of f,, f, and
their derivatives.

In case there is a fluid along with radiation, the field
equations may be written as

—87TH(£) exp(22) - 87(p + p)od

=Ry =222 =4(vy = X))y = 2Ny, (39)
~8m(p +pli=Ry, =212 +4(v, =\ )A; —2),, (40)
an(p - p) = R2= - 2expl2(r = )]0y - 2001,), (41)
28 (Aohy + 10— 20, 0) = = 87D, (42)

where

v=y —log(n - £).
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Physically the integration of the set would require a
knowledge of the equation of state—in any case the in-
tegration looks difficult. We have been able to find a
mathematical solution which however gives a value of
p/p greater than 3. The solution is as follows:

p=(srm, em(Ernn
Bmp=2(5+ M) 2> (1+a),
8mp=2(£+n)* (3 +a),
vi=[(a+ D/(2+ @] (£+ 020,
vE=3(2+ o) (a+ 1)](£+ g
8TH(E) = o(3a+4)/(a+1)
so that for H to be positive  must be greater than 0.

(B) Dutta and Raychaudhuri? considered stationary
null fields for which they took the line element in the
form

827 = fdt? - exp(2¢)(dx® + dy®) ~ 1dZ% + 2mdZ di, (43)

where f, ¥, I, m are considered functions of x alone, We
shall number the coordinates 4,x,y,z22a8 0,1,2,3,
respectively. The null vector is taken to have compo-
nents K° and K* only. The condition that the vector is
null gives

-l +2mo +f=0, {(44)
where

a=K%/K°, {45)
Thus

a =[m = (m® + 1?11 (46)
Again the condition that the vector is geodetic gives

-Lat+2mea +f, =0, #n

As the quadratics (44) and (45} must have a common
root, this root may be written as

a = —4{v, /i), {48)
where we have written
v=f/l, u=m/l, (49)

Differentiating (46) and eliminating », with the help of
(48), we get @, =0 so that Eq. (48) integrates to

fl=~2a(m/)+b. (50)
Substituting from (50) in (46), we get
F/l==~2a(m/I)+a?, (51)

If now the energy-~stress tensor be due to this null field
alone, Ri=R2=0 and we get

el =Ax? (52)
and

fil, + mE=—4b. (53)
Substituting from (51) in (53), we get

(f, +am,)? = ~4ba*

so that b must be negative, say - c?. Integrating we get

F+am=2cax+d. (54)
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Combining (51) with (54)

m=al=2cx ~{d/a), {55)
f=dcox+2d~-a?l, (56)
so that

fl+m?=[2ex +(d/a)P.

Making a suitable transformation, we may now write

fl+m?=x2, (57)
m=alzx, (58)
f=-a?lF2ax, (59)
e = x4, (60)

IV. THE ELECTROMAGNETIC FIELD AND THE
FIELD EQUATIONS

The vector K* is already shear free and the null
electromagnetic field is of the form

F,, =K, (a, cosB+b,sinf) ~ K (a, cosf+b,sinf), (61)
with

a,=e*d,, b,=e%,,. (62)
The Maxwell equations give

B=By+C (63)
and

K®=Aexp(Bx)/x*/4, (64)

where A and B are constants and C is an arbitrary func-
tion of the argument (z —af). The Einstein equations
now give

Xy = = (20)(fily +m]) =0, (65)
%y + =0, {66)
(2(- " =1 ft, +mmy) /2] | =2K°K,, (67)
[2(- g 212y, + mom,) /x] | = 2K °K,, (68)
[2(= g7 721 (mf, ~fmy) /x] , =2K°K,, (69)
[2(- g 2 (tmy ~m1) /x] | = 2K°K,. (70)

Equations (65) and (66) have already been dealt with.
Equation (67) gives, using Eqs, (58), (59), and (64),

1/x =~ (442 /a®)f(x) + blogx + ¢, (71)

with
fix)= [ lexp(2Bx) /2Bx]dx if B#0
and
flx)=x ifB=0,

The solution (71) was given by Dutta and Raychaudhuri
for the case B=0,

The solutions as given above break down for =0,
In that case one gets

K3=A/x%/%,
Ky=Ax'/%)
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and the field equations give
f/x=4A% + Blogx +c,

m=Xx.

V. CONCLUDING REMARKS

While in the usual cosmologies, one either considers
a pure matter universe or one which has besides a dis-
tribution of blackbody radiation; it seems plausible that
in the earlier epochs nonequilibrium processes led to a
directed flux of radiation in a background distribution of
matter. The present investigation was motivated by a

J. Math, Phys., Vol. 15, No. 8, August 1974

desire to throw some light on such situations. However,
so far we have been able to present only pure radiation
solutions and they too exhibit unwelcome singularities.
It seems that the solutions that we envisage would re-
quire space—times of lesser symmetry.
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In this paper we give a rigorous analysis for defining a class of superpropagators as boundary values
of analytic distributions and discuss the ambiguities connected with this definition.

I. INTRODUCTION

Ambiguities! are inherent in the construction of
superpropagators of nonpolynomial Lagrangian field
theories, ' ? and in the many approaches that have been
proposed for evaluating the superpropagators the
sources of the ambiguity appear to be different. For
example, in the Mellin transform approach?? there is
nonuniqueness in interpolating the Taylor coefficients
of the superpropagators by an analytic function or in the
continuation of the coupling constant which is employed
when the Mellin transform does not converge. In gen-
eral, to fix the arbitrariness it is necessary to impose
physical requirements, one of them being unitarity
which fixes the imaginary part. For the exponential
interactions® the arbitrariness in the real part is elimi-
nated by demanding “minimally singular” behavior of
the solution.

In this paper we should like to examine the problem
of the definition of a class of superpropagators as
boundary values of analytic distributions and discuss the
ambiguities linked with this procedure. We analyze the
superpropagators rigorously in the correct distribution
theory framework, thereby avoiding difficulties con-
nected with the Euclidicity postulate® and methods like
the Mellin transform approach. We show that the
ambiguities arise because of the existence of a brach
point in the analytic distribution whose boundary value is
the superpropagator.

I1. SUPERPROPAGATORS AS DISTRIBUTIONS

The superpropagator of a massless theory with
Lagrangian of interaction L, (¢) is given by

®[k2D(x, = %)= (0] T{L ., [d(x )L, [6(x,)T}] O)
@2.1)

)

=§; C,[x*D(x, -~ x,)]",

where D(x) =1/(~x* +i0) is the causal propagator (the
numerical factor 1/47% has been absorbed in the coupling
constant «2),

As a distribution &[«?/(~ 2 +i0)] is by definition the
boundary value {as ¥ —0°) of & [k2/(- 22 +iY)] on the real
axis of the plane P=~x* +{Y, where Y is a positive
definite real form. The distribution ®{x?/(- x% +iY)] can
be obtained in the upper half-plane of P by the analytic
continuation of its values on a half-line of some argu-
ment 8, where 6=86,+2mm and 0 < 8, <7 (m integer).
Thus the problem reduces to defining &[«2/(ef®7)] as a
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distribution, where 7=a,,x,x, is a positive definite real
form. This can be done under the following two

conditions:

(a) ®(2) is an entire function of z, of order of growth
p>0 and type 0.

(b) There is a 8, as specified before, such that
727 [x?/(e*7)] is continuous in x, €>0).

The exponential-type interactions satisfy these con-
ditions whereas the rational interactions violate the
first condition.

The procedure for evaluating the superpropagators is
thus split into three steps, shown schematically as
follows:

Step 1: Step 2:

K2 K2

(q> e”7> @(—xz +iY>
Define and Analytically
evaluate continue
Step 3:
K2

¢ (— x2+1i0 > )

Boundary

value as Y—0*

Step 1: Since &[«?/(e!?7)] satisfies condition (b), it is
locally summable and therefore defines a regular dis-
tribution by

I=(@(k2/e’1), ¢) = [ dx®(x*/e**T) o(x), 2.2)

where ¢ belongs to some test function space (e.g., the
S-type spaces).®

Let x,=b,,x, such that

buvaupbm
then

I={(det b) [ dx® (&% /r?)f(x),

where 72 =ux2 +x% +a2 + 42 and f(x) = ¢(bx).

— g2 .
=K 6110’

2.3)
(2.4)
For convenience, in the following we write A =¢-19/
72 and consider
E= [ dx®(a)f(x)

= [ ad®(a) ~ C,a?)[ f(x) = A0) O - )]
+£0) [ dx®(a)O(1 -7)
+C, [ dxa?[ fiz) - FO)O = 7)]
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= [ ad#(8) - C,8% - C;8%][ f(x) - A0) O - 7)
- (1/20)x,x,£,,000 -7)]
+£(0) [ dx®(8)O1 —7) +(1/2!)£,,(0)
X [ dxx,x,[8(8) -~ C,0%]@1 ~7)
+C, [ dx?[ f{x) - F0)OU - 7)]

+Cy [ axt®[ flx) - O)O - 7)
-(1/2Dx,x, £, 0001 -7)],

where f,,...,(0)=3,9,°*:3, (0).

Continuing in this way we obtain

—_—fdx (@ -3 C,,A"> (f(x) Laa CrEn]
. “2"-4(0)(9(1 - r))

2.5)

xx“l.c-xuzn-4f“1-

+"E=2 CnfdxA" (f(x) -17;)2(—2-1—_1747
X x“1"'x“21-4f“1'"“21-4(0)@(1 =) )

+§2(2n 4)!f“1 (O)_/ dxx " Xgp-g

X(@(A)-iC,A’). (2.6)

The first term in the above equation is defined as

lim < $(a)- Z) C A") (f(x) E (2n 4)!

_ea- 7))

Xx“xn x“z 4f

=lim f dx(d)(A) -Zt%qy) fx)

+11m/ dx(d)(A) ECA>(2 1 2T

X X, X f (xx),

81 BaN-z7 H1°ctbaN-2
where 0<A<1. 2.7

Condition (a) ensures the vanishing of the first term in
Eq. (2.7) as N— =, For the second term we consider

¥ Z/,sl dx(d)(A) ‘,,Zt% C..A">12N—1_2ﬁ
f (ax)

HaN-g” #1°* BNz

N
d'rrz”” a(% e —27 C e tnoy2n| F (r2) (2.8)
r=0 1.2 n=2 " " ’ )

where Fy(r?)=[[dQ/@N-2)!]n, - . fu1 i 2()wc) is
the integral over the angular variables and 7, are the
direction cosines.

X%y,
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If ¢ $5,5 then
l f(zN-m(x)l < AB*N-2(2N - 2)8(2N-2) , (2.9)
where f® (x) is a «th derivative of f(x). Thus
| Fy(r?)| < CB2N¥-2 (2N - 2882 /(2N - 3)1. (2.10)

By condition (b), splitting the range of integration in Eq.
(2.8) into (0,N"'/?) and (N-'/°,1) and applying the first
law of mean for integrals, we obtain

(=)

|C,| £,

N
316, w ]

(2.11)

] < 3re| £y ) [w
FHL =N Fy(e)] 23 27

where 1 and £ are obviously N-dependent and satisfy
O<S usNlrggsgl,

By Eq. (2.10)

| \I/I < CrBzN~2(2N_2)B(2N -2) [“N '{)(e-w)
u

-1/
@N—3)! N

N
+Neg | w2 | C,| gN-"] . 2.12)

Condition (b) implies that

u¥

-16
) (__e ) ‘N-llpsMNuu/p)m-ue) < MN-(/P (-0 goN
I

and

N N
N—UnﬂZ}=2 IC"‘ “N-,"SN”",,Z:; lcnlN-(l/n) (N-n)

SFN—(I/B) (N*l)eoN SFN'(I/") (N-l)euN’

and

|C IEN-n<N-(1/o)N w

n=Nel

IC an/n
n=N+1
( N ,oN « (N-1) ,oN
< FN-QU/0 N goN < pPN-(1/p) (N-1) o ,
where M and F are constants.

"I’l < DN@2N = 2)@N-2)18-1-01 /201 o3y N[2 + o +In{B?21/7)],

(2.13)
where D is another constant.
We therefore see that for
B<B,=1 +(2p)" (2.14)

the second term in Eq. (2.7) vanishes as N— », Even
when B8=8, this can be made to hold by choosing an ap-
propriate B which is equivalent to restricting ¢ to a
countably normed subspace of S0, By a similar analysis
it can be seen that the last two series in Eq. (2.6) con-
verge under the same conditions for 8.

Thus for every ¢ € S8, B<§, or ¢ SPo? with B ap-
propriately chosen, E is well-defined and equals (see
Appendix)

@ 1 n
2 1 r? assoc () ’ f

< 272

+L FTwra-D*® < D"'zﬁ(x),f>,

(2.15)



1283

where
nel
An) f dr r?n E c, A+ f drw’"“(@(A) Z)c A‘)

From Egs. (2.2) and (2.4) we get

I=(®(x2e"'%/7), ¥) = (det D)E. (2.16)

From Eqgs. (2.15), (2.16) and the Appendix it can be
easily seen that the Fourier transform of the distribution
&{k%e"1?/7) is equal to

(o)) Bz (-4) e

X {pn) + ¥ = 1) ~In[(bp)?/4] +[20@)/C, 1 ete } .
2.171)

The Fourier transform clearly® converges to a distribu-
tion in §j(8 < 8,). It should be noted that this convergence
is umform with respect to b,, and therefore allows us

to continue the parameters b“, under the summation in
Eq. {2.17).

Step 2 and Step 3: So far we have defined &{x*/(g,,x,%,)]
for g,,=e¢'a,,. We now continue this result to g,,=~1,,
+i€,,s where 7,, is the usual Minkowskian metric and
€,,=t1, €>0and 0 <arg{~n,, +i,,)<7.

From Eq. (2.3), as ¢ ~0*, we obtain
(5p)P — ket¥(—p? - 10),
det b~ ~ ixiegt?,
and
log{(bp)? /4]~ logl(x2e*®/4)(~ p* - 10)],

=1In[(x?/4) | p?| ] +4(8 - 1),
=1n[(x*/4)|p?|] +i8, for p?<0.
(2.18)

-0 [o{ ) - B (42

x{p(n) +pln 1) =1n[(xk*/4)|p?| ] +i@ )7 = 16
+[2A()/C,)e"}. (2.19)

From the equation for Afn) [Eq. (2.15)] it is easily
seen that the last term of Eq. (2.19) depends on 6§, and
not on m{6 =16, +2m7u). From the uniqueness of the
analytic continuation 7 {&[x2/(~ 22 +40)]} cannot depend
on 6,; however, it does depend on the arbitrary integer
m. For example, for the exponential superpropagator
for which n/2< §,<m,

for p* >0,

iy 1851
Aln) f drv? E l—'z——?)—; d‘r’)"z"lzm%l-
1 ~§ 8,
+f drrirlexp (e ;) y
y=0 r
13 et 0
_Zg?}l'(l n) ,,1("“8 0)

where E, is the exponential integral function.®

SAmY =4{e P/ nl )~ ilm - 8,) + pln +1)]. (2.20)
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Hence
v [exl)(-x:iio) -1- (-xiio) ]
B (28) e

€171

4 +iw(®(p’)-1-2m)].[(2.21)

+gp{n+1) —1n

By suitable averaging over some values of m, itis
possible to obtain a unitary result. A claim has been
made in Ref. 7 that a unitary and unambiguous resuit
can be obtained by a method analogous to ours. This is
contrary to our result. The averaging procedure, how-
ever, introduces an ambiguity in the real part of the
superpropagator and this is eliminated by demanding a
“minimally singular” solution.*

HI. CONCLUSIONS
We have shown that under two conditions—

(a) ®(z) is an entire function of z of order of growth
p>0 and type o;

(b) there exists a §,, 0 <8,<7, such that 7-&[(x2e"1%),
7] is continuous in 7{ >0)—

the superpropagator &[«*/(~ x? +i0)] can be defined as a
boundary value of an analytic distribution in the space
(S%), where B<fB,=1+1/2p or in the space (S*0*Z) for a
suitably chosen B depending on p and ¢. We obtain a
series representation for the superpropagator and this
representation converges as a distribution in the space
above. The ambiguity in the result is due to the exis-
tence of a branch point in the analytic distribution which
is a reflection of the fact that the function ®(z) has an
essential singularity at infinity.
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APPENDIX®

We briefly consider the distribution {1/#2)% and the

3 3 2 2.2 2 2
ass;)mate function (1/73)%,, .- Here 2 =x2+x% +x2
+x3.

The function (1/7?) is locally summable for Re z <2
and therefore defines in this region a regular distribu-
tion which is also analytic in z. By analytically con-
tinuing (1/7%)* beyond this range, one obtains for
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n—-1<Rez<n+1, n=2,3,-,
(3 o foel) (e vt
1

KXY - vee = ey ¢“1... “2n-4(0) KBLeeexP20-40(1 = 1’))

™ o\ 1
+F(n)l"(n—1)(4_) ¢(0)n—z

() ) T ()00
TN\ noetm T(n)Tn-1)\\4 *in-z’

(A1)
where ¢ is a test function in an S-type space® (S in our
case).

The distribution (1/72)¢ is therefore meromorphic in z
with simple poles at z=n, n=2,3, ... Equation (Al) also
defines the associated function (1/72)%, ., in the range
n=-1<Rez<n+1.

The Fourier transform of (1/72%)* is given by
_1_ =] ﬁ) z~2r(2_z)
}[(72> ] 472( 4 T(z) °’ (a2)

which has the same analytic structure as (1/#2)%.

In the neighberhood of the pole at z=n, n=2,3,:-- the
Laurent expansion of 7[(1/7%)*] is

d. Math, Phys., Vol. 15, No. 8, August 1974

5‘[(—1')] - FTeD ("%)M

Kot + v -1 =10 B ee). (a3)

Thus the Fourier transform of the associated function
at z=nis

}[(_:—2> :ssoc(n)] - IT(-n)TZ_—_l) (-j;_z) m(‘l’(n) +9n-1)

—~1n 1;—2) . (A4)
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A boundary value problem of a linear differential-integral equation is converted to a Cauchy system
by means of parameter imbedding. Numerical results are shown for an equation from nuclear

physics.

1. INTRODUCTION

In the mathematical description of physical processes,
boundary value problems for integro-differential equa-
tions frequently arise. Example of such processes are
the distribution of a drug in the body! and elastic
scattering of nucleons, such as « particles and protons,
from medium sized nucleii.2 The conversion of such
problems to Cauchy systems has previously been dis-
cussed,3-4 and numerical experiments have demon-
strated that such Cauchy systems can feasibly be
solved.5.6 In this paper we show another method of re-
ducing integro-differential equations to Cauchy systems
by means of parameter imbedding, and we show numeri-
cal results for a degenerate kernel.

2, DERIVATION OF CAUCHY SYSTEM

Let u(r) be a solution of the linear differential integral
equation

w'(r) + Aglrhulr) = [F K, 7" yulr)ar,
O<r=<L,0=sXx=A4A, (1)
with boundary conditions

u(0) = 0, (2)
w(L)=c. (3)
We shall consider a degenerate kernel of the form
N
K(r,v) = Zi fir)g,r). (4)
i=

We regard « as a function of both » and the parameter A,
50 we write, where necessary,

u=ulr,r). (5)

Introduce the auxiliary function z(r, ) that is a solution
of the linear differential equation

2"(r,A) + 2qlr)z(r,)) =0, O=sr=<L, 0=x=<A4A, (6)
with the boundary conditions |
z(0,x) =0, (7
2" (L) =1, (8)
Next, consider the differential equation

w'r,\) + Mgrwr,\) =), O0=r=<L, 0=<x=<A,

®
w(0,2) = 0, (10)
w'(L,x) = 0. (11)

Introduce the Green's function, G(r,7’, 1), in terms of
which the solutions of Egs. (9)-(11) can be written

1285 Journal of Mathematical Physics, Vol. 15, No. 8, August 1974

wlr,)) = [° Gl et (12)

In terms of the auxiliary functions z and G, the solution
of Egs. (1)~(3) can be written

N

ulr,)) = czlr,A) + 5 m) JF Gl v N fyrar', (13)
i=1

where

m,0) = " &', Ndr', i=12...N.  (14)
Using the two auxiliary functions z and G, we have con-
verted the differential integral equation of Egs. (1)-(3)
into a linear integral equation. We next shall obtain a
Cauchy system for these auxiliary functions, and then
we shall obtain a Cauchy system for the integral equa-
tion,

Differentiate Egs. (6)—(8) with respect to A to obtain

2{(r,A) + Aq(t)z,\(r,A) + q(8)z(r,r) = 0, (15)
2,(0,2) = 0, (16)
24 (L,)= 0. )

Here we regard 2z, as a new function of  and A. Interms
of the Green's function, the solution of Egs. (15)-(17) is

a0, =— [ 6,7 Nl )zl Nar. (18)

This is a differential equation for the function z(r, ).
The initial condition at A = 0 is
zr,0)=7r, O=7r=1L, (19)

Next, differentiate Egs. (9)-(11) with respect to A to ob-
tain

wi(r,A) + \g(w, (r,)) + g(r)wlr,x) =0, (20)
w,(0,2) =0, (21)
w)(L,A)= 0, (22)

In terms of the Green's function, we can write
L

wyr,)) == [ G 7, Nalrwlr, Nar'.  (23)

Next, differentiate Eq. (12) with respect to A to obtain
L

w,(r,A) = fo G\, v, N )dr'. (24)

Using Eq. (12), we can write Eq. (23) as
L L
w,r,\) =— fo G(r,r' ,A)g(r’) fo G, ", N)p@")dr"dr’,
(25)

Since Egs. (25) and (25) must hold for all arbitrary func-
tions ¢(7), it must follow that

Copyright © 1974 by the American Institute of Physics. 1285
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L .
GAtr, 7', 0) = [, Glr, 7", \)alr")Glr", 7", Ndr",
0=x=A. (26)

This is a differential equation for G(r,r’,A). The initial
condition on G is

-7, O0=svr =7,

G(r,r,0) ={ (27)

-7, r=s=r'=<1L

Equations (18), (19), (26), and (27) comprise the Cauchy
system for the auxiliary functions z and G. We now con-
sider the integral equation Eq. (13). To evaluate u(r,2),

we need the values of m; (A). Substitute for u(r,1) from
Eq. (13) in Eq. (14) to obtain

¥4 N
m(A) = fo g [ez(r' ,A) + jZ_)l m ;)
X fOLG(r’,'r”,A)fj(r")dr"]d"', i= 1, 2’ e ,N. (28)

This we recognize as a set of linear algebraic equations
for m (A),myQA), ... ,myQ\).

It is expedient to adopt matrix notation. Let a be the
N x 1 vector whose elements are

L .
a,(\) = fo g,z Ndr', i=1,2,...,N. (29)
Next, let B be the N X N matrix whose elements are
L 14 L 14 n " n ’
b0 = [ &) [ Gl v N yrarar,
i,j=1,2,...,N. (30)

If m is the N X 1 vector whose elements are m; (), we
can write Eq. (28) as

m@) = ca(r) + BQ)m(\). (31)

Introduce the resolvent matrix R(A), in terms of which
the solution of Eq.(31) is

m(\) = ca(r) + cR(A) a(r). (32)
The matrices B and R are related by
R(A) = B(A) + BQ)R(r). (33)

We now obtain a Cauchy system for R. Differentiate Eq.
(33) to obtain

R,(\) = B,(A) + B, )R(A) + BA)R, (), (34)
which can be written

R,(\) = [B, () + B,()) R(MA)] + RQA) [B,(A) + B,\(h)R()\)(]as)
or

R, () = [I+ RQ)]B, (W) [T+ RM)], (36)
where I is the identity matrix. Equation (36) is the de-
sired Riccati equation for the matrix R. The initial con-
dition on R is found from Eq. (33),

R(0) = [T — B(0)]"1 B(0). (37)

Expressions for the elements of the matrix B, (2) are
obtained by differentiating Eq. (30),

L L
G =S, &) J, 6\’ v N yryarar,
i,j=1,2,...,N. (38)
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The functions g,(r),g,(),...,g5y ) and f,(r),fo,(r),...,
Sy (r) are known functions, and G,(r,7’,)) is given by Eq.
(26).

3. SUMMARY OF CAUCHY SYSTEM

The functions z,G,and R are defined to be solutions of
the differential equations

2\, =~ [© Glr, 7, gzt Nar, (39)
G)‘(r, 7", A) = fOL G(’V, 7”) A) q(r”) G(T”, T’, A)d”'”, (40)

R,\0) = [T+ RM)]B, () [I + RM)],
O<r=L,0=sasA (41)

with initial conditions

z2(r,0) =7, (42)
-7, O=s7r' =7,

Gr,r’,0) ={ (43)
-7, r=r'=<1L,

R(0) = [~ B(0)]"1 B(0). (44)

The elements of the matrix B, () are defined by

L
Byh=J, &) [ 6\, N f0marrar,
i1j=1127"'1N' (45)

At the points A* where the values of u(r,\*) are desired,
we evaluate the vector m(A) by

mQ@A*) = c[I + R(")]a(r™), (46)
where the elements of the vector a are given by
a0 = [° g2 A Nar,  i=1,2,.. N. (47
To evaluate u(r,1*), we use Eq. (13),

N L
ulr A*) = cz(r,2\%) + Z} m;(A) fo G, v, A% f,(r")ar’,
= O<7r =L. (48)

4. COMPUTATIONAL TECHNIQUES

One numerical technique that has been shown to be fea-
sible5~7 is that of semidiscretization, or the method of
lines.8 In this method, the Cauchy system of Eqgs. (39)-
(44) is integrated numerically from A = 0 to A = A along
lines of constant values of . At each step in the nume-
rical integration, the right-hand sides of these equations
are evaluated by an appropriate quadrature formula
using the values of the functions z, G, and R at each of
the lines of constant 7. It is clear that the type and
order of the quadrature formula dictate the locations of
the lines of constant 7.

In the numerical example to follow,Simpson's rule with
twenty intervals is used to evaluate the definite integ-
rals, and a fourth order Adams-Moulton procedure is
used to integrate the differential equations. Computa-
tions were performed using an IBM 360/65 digital com-
puter.

5. A NUMERICAL EXAMPLE

To describe elastic scattering of nucleons, such as «

particles, protons, etc., from medium size nucleii, such
as Fe54, Pb208 etc., optical model potentials can be
used.2:? In this model, the complex many-body effects
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introduce a nonlocal potential in the Schrédinger equa-
tion governing the motion of the particle.10.11 The re-
duced S-wave Schrddinger equation is a one-dimensional
differential-integral equation where the kernel of the
integral term represents the nonlocal interactions. The
equation is11

u'lr,2) + [\ + Vo) lu@r,n) = fOL Kr,»)ulr' \)dr,
O<r=1L,0=x=4A (49)
with boundary conditions
u(0,)) = 0, - (50)
w(L,A) = AVX cos(X L + o). (51)

We here consider the special case of a degenerate ker-
nel of the form

K(r,r') = vr'[exp(— 372 — 37'2) + exp(— 472 — 37'2)].
(52)
The local potential, ¥(r), is given by
Vir) = — exp(— $72). (53)

The coefficient A is a known constant.

In the second boundary condition, Eq. (51}, the phase angle
& is unknown. An additional relationship exists at the
boundary, namely,

#(L,)) = A sin(AL + 6). (54)

We now show how the value of 6 is determined. The
values of the function u(r, 1) are given by [Eq, (48)]

x L
ulr,\) = cz(r,A) + 23 m;Q) fo Glr,v' N f,r")ar,
i=1
and the values of m are given by [Eq. (46)]
m@) = c[I+ R(\)]ar). (56)

In Egs. (55) and (56), ¢ represents the value of u'(L, ),
or

c = AYX cos(Vx L + o). (57)
In view of Egs. (55) and (56), we can write

u(L,)) = co(r), (58)
where ¢(A) is a function of 2(L,A),G(L,7’,1),R(p), and
a(\), all of which are being computed in the' Cauchy sys-
tem. Next, using a trigonometric identity, we write

u2(L,\) + u'2(L,\)/A = A2, (59)

which can also be written, using Eqgs. (57) and (58),

€292 + c2/x = A2 (60)
or

c =z [A2 /(02 + 1)]V/2, (61)
The phase angle 6 is given by

6 = tan1(/X¢) — VA L. (62)

A Cauchy system was developed for Eqgs. (49)-(53), and
a computer program was written in the FORTRAN lan-
guage. Several sample cases were run, and we present
here some results. Table I shows the phase angle & for
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TABLE I. Phase angle (6) for various values of ML = 1,A = 1).

6 (degrees)
0.0 180. 000
0.05 176.393
0.10 174,919
0.15 173. 802
0.20 172,872
0.25 172.063

TABLE II. Values of u(r,A) forAx =0.1and 0.25 (L =1,A=1)

u(r,)

¥ A=0,1 A=0,25
0.00 0.0 0.0

0.10 0.018 25 0.029 29
0.20 0.036 78 0.058 98
0.30 0.055 85 0.089 44
0.40 0.075 73 0.121 07
0.50 0.096 69 0.154 22
0.60 0.118 96 0.189 23
0.70 0.142 78 0.226 41
0.80 0.168 36 0.266 05
0.90 0.195 90 0,308 40
1.00 0.225 59 0.353 65

various values of A, Table IT shows values of u(r,1) for
A = 0,10 and A = 0. 25. In all cases, the parameters A
and L were both arbitrarily set equal to 1.0. Numerical
quadrature was accomplished via 20-interval Simpson’'s
rule, and integration of the differential equations was
performed using an Adams-Moulton method with a step
size of 0.01,

Other methods, such as effective mass approximations
and iterative techniques,11.12 have been used to solve
equations involving nonlocal potentials. These values
compare favorably with the values found using the im-
bedding approach, as indicated in this paper. The im-
bedding approach has the advantage of giving the wave
solution inside the potential region. This is useful in
understanding such phenomena as the Perey effect.12

6. DISCUSSION

The imbedding approach, as used in this paper, yields
numerical results consistent with those found by other
methods. In subsequent papers, we shall extend these re-
sults to problems with general (nondegenerate) kernels
and problems with nonlinear boundary conditions.
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Health under Research Training Grant GM-01724.
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The zero-mass Dirac equation admits a simple generalized covariance group which is an
inhomogeneous Lorentz group G different from the Poincaré group. Its mathematical structure and
unitary irreducible representations have been studied by Flato and Hillion [Phys. Rev. D 1, 1667
(1970)). Physical consequences concerning neutrino physics were then obtained by introduction of
the Stokes parameters. The present article is divided into three parts: (1) Introduction, in which we
present briefly the idea of generalized convariance, summarize the main results obtained by Flato
and Hillion, and introduce the 14-dimensional unification group proper for the generalized
convariance of the free neutrino equation. (2) In the second part, we study by the well-known
method of induced representations all the strongly continuous unitary irreducible representations of
the 10-dimensional Dirac group G as well as of the 14-dimensional unification group G'.

(3) Physical applications: in this chapter, we concentrate on particular zero-mass representations of G’
which are of interest at least for the study of the neutrino free-field theory. These classes of unitary

irreducible representations of G’ permit us to have two possible physical alternatives which are

discussed.

I. INTRODUCTION

To begin with, we summarize the essential ideas in
Ref. 1: In classical theory, the field belongs to a cer-
tain linear space of functions on Minkowski space with
values in €". This tensor or spinor field satisfies a
classical field equation of the type A(8) ¥(x) =0 where
A(9) is a differential operator. €" is also a representa-
tion space of a finite-dimensional non-unitary represen-
tation of SL(2, @), the universal covering of the connect-
ed component of the homogeneous Lorentz group. The
equation A(3) ¥(x) =0 is said to be relativistic covariant
if when we make the transformation x - x’'=Ax+a in
Minkowski space (where + A~ in the covering map)
and, at the same time, cotransform the field ¥(x) ~ ¢'(x’)
=S(A)¥(x), our original equation A(3)¥(x)=0 goes into
AQ@NY'(x")=0.

One can ask what are the most general transforma-
tions of the field ¥(x) compatible with the Poincaré
transformation x - x’= Ax + a, which lead to the equa-
tion A(8")9' (¥')=0. A general cotransformed field which
meets our purpose is, e.g., of the form ' (x")
=S(A)¥(x) + ¢'(x"), where ¢'(x") is a solution of the
field equation A(3')¢’(x’)=0. Thus, we have to introduce
a generalized covariance group which is, e.g., a semi-
direct product of SL(2, €) by the space of solutions of
the field equation. The multiplication law is directly
obtained by

(A, €1(0))A, o(x)) = (AA, ¢(x) +S(A-l)§01(x))-

The space of the solutions of the field equation is in
general infinite-dimensional and the mathematical study
of this kind of groups sets some yet unsolved problems.
In particular, the exhaustive classification of its uni-
tary irreducible representations (UIR) in unknown. How-
ever, the special case of zero-mass Dirac operator
A(9)=7"9, can be partially studied by considering only
the subspace of constant solutions. We obtain a gener-
alized covariance group which is the Dirac group G
=SL(2, C)R*, with the multiplication law (A,, a,)(A,, a,)
= (AA,, @, +S(A3Y)a,) which is equivalent to

(Ap, a1)(Ay, @) = (A Ay, @y + S(Ay)a,) and where S is a real-
irreducible representation equivalent to

D(3, 0)©® D(0, 3):
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ReA ImA
AeSL(2,C),A~S(A)= .
-ImA ReA

The faithful UIR (which belong to the principal series)
can be obtained by direct methods!;

UAZ)= a(Z,8)f(Zg), where Z=(Z,,Z,) c €% f(Z) e L¥C?),

g=(0,0), a=(7 {)eSL@O), a= (i, bt h) <R

)

Zg=(aZ,+vZ;, 0Z,+BZ,),

a(Z, g) = expli(tBZ;1(6Z, + BZ,)" + CC)]
xexpli((hy +ihy)Zy + (hy +ihy) Z, + CC)].

Next, we introduce the Stokes parameters as a kind
of internal variables like in Ref. 1. Either in terms of
two perpendicular plane polarizations or in terms of
two circular polarizations, the state of polarization of
a beam of photons is described by a linear superposi-
tion of two states x=C,x; + C;X; and we have |C, |?
+1C,1%=1. The Stokes parameters P, are then defined
by the relations:

B= |C1‘2+ |Cz‘2: P = ‘C1|2— 'Czlz,
P,=C,C,+C,C;,  P=i(CyCy - CyCy).

It is quite interesting to notice that they define a map-
ping of the unit ball in €2 ~SL(2, €) - C¢/SL(2,C) on the
“Stokes cone” P,P*=0, a thing related to the fact that
we deal here with zero-mass particles. This formalism
works with the electromagnetic field as following: Let
F,, be the electromagnetic field and £,(i=1, 2, 3) a com-
plex vector defined by ¢,=F, + V=1F,, where (i, j, k)

is a cyclic permutation of (1, 2, 3). For plane waves,
this vector is isotropic: £+ &% +¢2=0, and there exist

(%1 2
¢ <§0a) ¢
such that £;= @19, L= 2(¢3 - ¢]), & =3i(¢i+¢}). Then,
one can verify that a sufficient condition for having en-
ergy conservation with time is ¢*3,¢=0 where ¢° is the
2X 2 identity matrix and ¢’ (i=1, 2, 3) the Pauli matri-
ces. Conversely, for fully polarized plane waves of a

Copyright © 1974 American Institute of Physics 1288
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time-independant electromagnetic field, in virtue of
Maxwell equations, the Stokes spinor ¢ is shown to sat-
isfy the equation 0*8,¢=0.

We know that the two~component free neutrino Weyl
equation ¢* 9,9 =0 can be derived from the zero-mass
Dirac equation by adding subsidiary conditions and anal-
ogously, we may consider the two-component spinor
field as a Stokes spinor. The differences, from our point
of view, between neutrinos and photons, which are a
natural consequence of the formalism developed in
Ref. 1, are

(1) For neutrinos, the Dirac group is the covariance
group of the field equation while for photons, it is only
the covariance group of the polarization equation.

(2) In terms of Stokes parameters, neutrinos are al-
ways fully polarized while this is not the case for
photons.

In the internal space of the neutrino Stokes param-
eters, one then distinguishes like in Ref. 1 among four
principal types of operations extendible to four types
of automorphisms of the Dirac group (the identity auto-
morphism plus three different ones) which are identified
with the four types of neutrinos existing in Nature.

Thus, in the example of neutrino physics, we use two
groups: the Poincaré group acting on the “external
space” (which is the Minkowski space 7T'*) and the Dirac
group acting on the “internal space” of the Stokes pa-
rameters R'. The natural idea is then to look for a for-
malism which could describe these two aspects. The
simplest mathematical unification (in the sense of
Ref. 2) of the Dirac group and the Poincaré group which
acts as it should act separately on R* and on T* is the
semidirect product SL(2, C)(R*x T*) denoted by G’. For
what additional reasons are we led to the unification
group G'?

The first reason is that space-time translations
should commute with the field translations since these
two types of translations act on two different and dis-
connected spaces R* and T*,

The second reason is that in Ref. 1 a generalized
covariance principle for the second-quantized neutrino
equation was obtained.

This principle was compatible with the usual
Wightman covariance principle (which is also postulated
by us) only if the reduction of the representation of the
Dirac group on SL(2, €) coincides with the reduction of
the representation of the Poincaré group on SL(2, €).
This fact is ensured if we take a unification group of the
Poincaré and the Dirac groups with SL(2, C) as inter-
section. The preceding two reasons determine uniquely
the unification group G’.

Therefore, our first aim in the second chapter will
be the study of the UIR of the 10 dimensional Dirac
group and its 14-dimensional unification with the Poin-
caré group. These groups are semidirect products of
a semisimple group by an abelian normal subgroup and
the complete classification of their unitary, strongly
continuous, irreducible representations is obtained by
the Mackey theory of induced representations. Among
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the UIR of G’, we are certainly a prio7i interested only
by those representations for which the Poincaré Casimir
P*P, =0 since the one-particle neutrino states are mass-
less. Among these, of particular interest for us are two
classes of UIR of G': the first class consists of such
UIR that, when restricted to the Dirac subgroup, remain
irreducible and when restricted to the Poincaré sub-
group are reducible into two continuous-spin irreducible
Poincaré representations. The second class is com-
posed of such UIR (obtained as a limiting case of the
first class) which are irreducible with respect to the
Dirac subgroup but reducible with respect to the Poin-
caré subgroup giving rise, after decomposition, to all
possible discrete spin representations with multiplicity
one. Finally in chapter three we utilize these classes

of representations to sketch briefly two possible physi-
cal alternatives for the construction of a neutrino Fock
space and a free field theory incovporating both exter-
nal and internal symmetry groups.

Il. UNITARY STRONGLY CONTINUOUS
IRREDUCIBLE REPRESENTATIONS OF G
AND G’

Let G=SL(2, C)R* be the Dirac group and (A, k) its
elements. Let R* be the dual space of R*. The dual ac-
tion of G on R* is: 7~ TS(A™) where £ is a “four spinor”,
AeSL(2,C), Sthe representation of SL(2, C) defined
above and TA denotes the transposed of A. This action
determines two orbits in R*: the trivial one {0}, and
R*-{0}. The stabilizer of the first one is SL(2, C) and
the corresponding induced representations, with ker
nel lR*, are the unitary continuous irreducible repre-
sentations of SL(2, C). On the second orbit, we choose
the stabilized point (1, 0, 0, 0), the stabilizer of which is
the nilpotent group of the 2X2 complex lower triangular
matrices N. The irreducible unitary representations of
this group form the one complex parameter class L(#)
of the unitary characters of the complex plane. Almost
everywhere, we can choose the matrix

. 08 iy ./t
Alh)y= so thatf k, =Ts(A'1(h))/o .

"B.l 6 B=i2"“;4 @3 \0

5=31+iii3 4 0

The Hilbert space of the induced representation ,UL¢?

is L3 R* - {0})(the space of square integrable functions
defined on the orbit R — {0} with values in the space
C of the representations L(¢) of the little group).

Let
@y By

Ap= eSL(2, C);
Yo &

by a straightforward calculation, one gets
1 0

A YR AA (NG R) =
=Bo(8oB — Bed)™* 1

and the standard form of Wigner of the induced repre-
sentation is then

[cUE (Mg, YF)(R) = (B, WL () (AL () AgA (AR F(AGR)
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TABLE I. Nontrivial orbits for G'.

Orbit (X, 2) Stabilized point (h;,2;)  Stabilizer group
(E,, Q™) (#,0,0,0) (m,0,0,0) {n
(Ey, &™) (#,0,0,00(~m,0,0,0) {1
(0,, im) (p,0,0,1)(0,m,0,0) {1}
(O, ™) (1,0,2,0(0,m,0,0) N,
(0gr ™) (0,0,1,0}(0,m,0,0) N,
(C,, 20 (0,%2,0,01(1,0,0,1) {1}
Co, Y ,0,0,00(1,0,0,1) N
(C,, QY 0,%2,0,00(-1,0,0,1) {#
Co1, 2% #,0,0,00(~1,0,0,1) N

= exp[i(ﬁlhl + ﬁzhz + ﬁahs + 24}14)] eXP[i(— tBoB-1(5oB - 305)'1
+CC)IF(AGtR)

with Fe L¥3(R* - {0}).

By a straightforward calculation, these representa-
tions are shown to be equivalent to those found in
Ref. 1.

Next, we are interested in the UIR of the unification
group G'=SL(2,C) (R*XT*. The dual space is (R*
X T*)and the dual action of G’ is glven by: (&, %)

~ (TS(A™Yh, TA"'2) where + A~ Ke L]. Except for the or-
bit {0} x{0} which leads to the representations of
S1(2, C), we find three kinds of orbits:

(1) The first ones are the Cartesian products of the
trivial orbit {0} in R* by the well-known orbits of the
Poincaré group. It is clear that the corresponding in-
duced representations of G’ are unfaithful, with kernel
R?, and coincide with the usual UIR of the Poincaré

group.

(2) The second type consists of the unique orbit {&*
- {o}} {0} and the corresponding UIR are those of the
Dirac group discussed above.

(3) We are interested in the third type of orbits which
will give us the faithful UIR of G’. These are subsets
of the products {R* - {0}} X2 where @ is a nontrivial or-
bit of the Poincaré group P, which are not express1b1e
as Cartesian subproducts. Let (ho, xo) be a point in {R“
- {0} xQ, where Q is a fixed orbit of P. All points be-
longing to the orbit generated by the point (ho, %p), that
can be written as (f, %;), verify (&) = TS(A"Y)(f,) where
A belongs to the stabilizer of %,.

Therefore, it is clear that there exist in {R* - {0}}
X as many orbits as in &* - {0} under the action of the
stabilizer of £,. Thus, we have to choose one fixed
point % on each orbit © of P and next to determine the
orbits in R* —{0} under the action of its stabilizer. No-
tice that we could have chosen first a point in & - {0}
and then look for the orbits in . This way is clearly
equivalent but leads to a different parametrization of
the orbits. Our choice is made so as to put an accent
on the space-time parametrization of the orbits. Of
course, for the study of the reduction of the UIR of G’
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on P and G, it will be quite important to be able to pass
from one point of view to the other.

Let Q7 (positive mass), Q" (imaginary mass), ©
(mass zero) be the orbits in 7* and (xm, 0, 0, 0),
(0,m,0,0), (x1,0,0,1) respectively, be the correspond-
ing stabilized points on each one. The corresponding
stabilizers are SU(2), SL(2, R), Ez (E2 being the two-
fold covering of the Euclidean group E, in two dimen-
sions). By an easy calculation, the orbits in R* - {0}
are found to be:

under the action of SU(2),
Ey={is 8 +ig+Rg + =1, kelo+=,
under the action of SL(2, R),

0, ={h; ihy - hohy =0}, pe R-{o},

O ={7; fiy = Ny, hy=2hy}, AeR,

Op =l 7y = Fi;=0},

under the action of Ej,

Cy={hi g +hi=r%, kelot=l,
Cor={hshy=hy=0, B+ =12}, Ic]o+=].

We shall denote by (X, Q) the orbit generated by the
point (h %.) where £, is the pomt chosen on © and X is
one of the orbits in R* - {0}, (k¢ X).

At this point, a Borel set having only one intersection
point with each orbit can be easily built up and we know
that this is the only condition needed for the UIR of G’
to be obtained by the Mackey method.

_On each orbit with a nontrivial projection on R* and
T*, we need to choose a particular point and to deter-
mine its stabilizer. This is what we do in Table I,
where N, denotes the real lower triangular matrices:
Let L be a representation of the stabilizer of the orbit
(X, Q) in the Hilbert space/{. The induced representa-
tion can be written formally

[G'UL(A(]} hO; xO)F](;l, -’?) = <2: x0><;i, h(l)L(A-l(ﬁ! J‘E)A'l)
x AAGH (R, ) F(A; R, A7'R)

where F(h, %) € LY (X, Q),/ ] (the space of square inte-
grable functions defined on the orbit (X, Q) with values
in A ) and A(h %) is a fixed matrix satlsfymg (R, %)

= A(h, %) (hy, %g). We also know that A™(%, ¥)A,

XA(A,, (h %) is always an element of the stabilizer of the
orbit. When the stabilizer is {I}, for any choice of the
matrix A(h, %), we have A“Y(h, Z)AA(AGL (R, X))=1.
Therefore, in such cases, we find only one representa-
tion which is

Fh, ) o200 3, )R, by f(AGHR, AT D), F(R, %) € LA(X, Q).
The stabilizer N, is isomorphic to the additive group of

the real numbers. Its unitary representations are the
unitary characters L(¢) (< R).

On the orbit (0g, 2'™), we choose the matrix:
N K(1 = M) Y(hy - ihg) —(1+ )Yk, +ik)\/1 O
A(h, %)=

K(1 =) Yy = ihy)  (1+ni) Ry + k) \iu 1
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K=(1+R) (2 +12+R+/) " withucR

The point (%) is stabilized by the matrix (j, }) so that
we have

by +ihy + X
. =T(A(R, 2)

hy +ih, 0
and therefore the matrix

K(1= X)) Ny - ifg) ~(1+ X)) Ny +ihy)

K(1= i) Yy = ihy) (14 2) (hy +ihig)
belongs to the coset space SL(2, C)/N and A(f, X) span
the coset space SL(2, €)/N,. Notice that we have thus
parametrized the orbit by five real numbers:
hy, by, By, by, .

To simplify writing, we put

1
AR, D AMNGH R, 2)) =

6= (1+ ) (hy +ihy), B=- (1+M)Y(h,+iky)
so that
K={(gB+8%)1,

We have

. - o 0B - Byd
TR N

and we obtain the form of the matrix A(Ag (R, %)):

R K'(—=vyB + ap8) + iu' (698 — By0)  GpB - Byd
AN (R, %)= - ’
—K' (88 = By0) +iu' (7B + yd) —1pB+ f
where 1’ € R and K’ = [(8,8 — B, 0){6,8 — By0) + (- 7,8
+ ag0)(=7,8 T apd)I"!. Next, a straightforward calcula-
tion leads to

0

KK’ [(a,B+ 798)(=7oB T @0) — (BB + 800)(5gB = Bod) +i(w’ —u) 1

But this matrix belongs a priori to N,. From this, we I |

deduce :
u' —u = - Im[KK'[(aeB + 740)(~ 7oB + 20) — (BB
+ 50-5)(60ﬁ - ﬁoo) ]] .

We now define

b=Re[KK’ [(a,B+ 7(8)(—¥oB T agd) = (BeB + 6¢0) (548~ Bed)]]

and the representation induced from L(¢) (/e R) is

Fh, u) 0:h0:50)_ [ TN, B, %) IR, w) = (3, xR, Ro)e'
XF(Ah, u').

The orbit (Op.., 94" is treated in a similar way. Setting

&= —i(h, +ihy), B=1i(hy +ih,), we find the same expres-

sion for the matrix A(k, ¥). We are therefore led in this
case to the same calculations and to a similar result.

Next, we consider the orbit (Cq;, 27). Its stabilizer is
N, the representations of which are the unitary charac-
ters L(9) (tc ©).

Therefore, the representation space will be the space
of square integrable complex valued functions defined
on the orbit. We choose the matrices

K1Yk, - ih;) ~ 1Yy +ihy)
AR)=
KU\ (hy = ihy) 1Ry + ihg)

which span the coset space SL(2, €)/N, and which verify

By iy
=TAR) [ | with K=13(RE+ A5+ B2 + ).
by + ik, 0

Therefore, in this case, a complete parametrization of
the orbit is given by the four real numbers £, &, fis, f,.
We now set 6=10"(h, +ihy), B=-1"(h,+ih,) and find

A B)AA(AGIR) =
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1 0
KK’[(aoE + 7’06) (- YB Tt 0105) - (BOE + 505) (603 - 305) 1

with K= (8B +68)L, K’ =(6ay- BYo)(@d = BYo) + (85
— By8)(Bdy = Byd), which is an element of N. The corre-
sponding induced representations are

F(R) Yoo [ O (A, kg, %) FJ(R) = (%, xg)h, ko)
x expli(t B +1B)|F(A;lR)

with B=KK’ [(aB+ ¥%,5)(~ 7B+ 2gd) = (BoB *+ 5¢0)
(8B — Bo®)].

Finally, the last class of representations, corre-
sponding to the orbit (Cg;, 0% and stabilizer N, has the
same form as the preceding one. Since the physical in-
terest of G’ is related to the study of massless parti-
cles, we shall now pay a particular attention to the zero-
mass representations of G'. The orbit (Cy;, Q7) is ho-
meomorphic to R* - {0} and the associated representa-
tions are labeled by the complex parameter f, These
representations restricted to the Dirac group G are ex-
actly the UIR induced by L(¢) for the particular choice
of A(%). (This choice of representative is different from
the one we made at the beginning. )

Next, we restrict our 5.U* ‘¥ to the Poincaré
subgroup:

Let

p-1/20086/2  —pt/2** sing/2
Ax)=

"1/2,4v ging/2  pl/2cos6/2

be the matrix which transforms the point (1, 0, 0, 1) into
x=(p,p sind sing, p sinb cosp, -p cos) on the orbit

Q) in the helicity formalism. The ranges of the param-
eters are

—0<php<too, O<O<7, -T<@<T.
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The family of these matrices spans the coset space
SL(2,T)/ Ez, so that an element of the coset space
SL(2, €)/N (which is homemorphic to the orbit &* - {0})
can be written in a unique way as A(k)=A(x)A(y) where

et 0

A=
0 e¥

€ E,/N with0<yp<2r

and we can explicitly realize the homeomorphism
SL(2, €)/N = (Cq;, ) by

NN 1p1/2 cos6/2 cosy P

o} {ol}l, - 1p1/2sin6/2 cos(¥ — ¢)\{ p sind sing
of\o A) AY) 1p/2cos6/2 siny p sinf cos
0 1/2 6in6/2 sin(y — )/ \-p cosé

One can verify that A(¥) A(y) is exactly the matrix A(f)
that we have considered before. We now can parame-
trize our representation with the parameters x, . One
has

A(AGHR) = A(AGHAQ') and AL (R)ALA (A7)
= A AR AANGR)AD)

where ' has to be determined. But we know that
A (%) AgA{A5l%) belongs to E, and by putting

et* ¢
AN Z)AgA (A %) = ,
VA eio
we have A R)AGA(AR) = (§0306)) i Lvr-wy).
The last matrix belonging to N, we finally get
¢+ —9p=0 (mod2km)
B=Ze 89 = z-i2e-0)

(ZeC)

The restriction of our representation on the Poincaré
subgroup can be written as

[G'UL(')‘l\p(Ao, xo)F](&; ll)): (527 x0> exp[z(tB +T§)]F(Aalﬁ?, <b - ¢),
where F(£, §) is a complex-valued square integrable
function defined on QXTI (T the unit circle).

Next, (by utilizing the Fubini theorem) we pass from
the space L3(QYXT) to the space L¥QS, L¥T")) of L3(I)-
valued square integrable functions defined on 9 by the
isomorphism:

f&, 9)—F' @) =f% ).

The representation becomes
[cl g ‘ p(Ao: xo)F’](Q) =(%, x&L(A'l(E)AoA(ABIX))F'(Aalk),
where L is a representation of &, defined by
et* 0
L f() = expli(tB+IB)f($- ¢)
z &t
with B=Z exp[-i(2¢~ ¢)] and fe L¥(T).

Thus, the representation ;.UX'? restricted to the
Poincaré subgroup is induced by the representation L
of the stabilizer E,. We know that E, has two series of
UIR: the discrete one L? (j integer or half-integer) and
the continuous one L™ (¢=x1, r>0). The represen-
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tation L is then easily shown to be reducible into the
sum of the two representations LI*!+!#11 and LU-1:1¢1 fop
t#0.

From this, we obtain (for ¢#0) the reducibility of the
restricted representation ;. UX¥ |, into the sum of the
two corresponding continuous-spin UIR of the Poincaré
group (containing, respectively, all integer and half-in-
teger helicities).

For =0, the representation becomes:
[G'UL(O)(AO, xo)F’](x) =(%, x0>F' (Aalﬁ?)

and it is induced by the representation f()) - f( - ¢).
This last unfaithful representation of Ez is actually the
regular representation of the twofold covering of the
group of plane rotations. One then deduces that, for
£=0, the representation ,U*?| , is reducible into a
direct sum of all the discrete spin zero-mass UIR of
the Poincaré group with multiplicity one.

l1l. POSSIBLE PHYSICAL APPLICATIONS

What was our line of thought until now? We have be-
gun with a generalized covariance principle, and ap-
plied it to the classical free neutrino equation.

When we wanted to implement this generalized covar-
iance principle to the second-quantized neutrino equa-
tion, two things occured: (1) We had to parametrize the
Hilbert space of the one-particle neutrino states as
square integrable functions defined on a new type of in-
ternal variables: the neutrino Stokes parameters. In
this way, we account for a type of internal structure of
the neutrino, and also parametrize some of the phenom-
ena of its weak interactions (cf., Ref. 1). (2) The pa-
rametrization of the Hilbert space of the one-particle
neutrino states explained in point (1) enabled us to ex-
tract finally the abstract form of a generalized Wight-
man covariance principle for our problem, which
stressed the important role that the unitary representa-
tions of the Dirac group play in our formalism. If we
insist upon having also the usual Wightman covariance
principle for our quantized field, we are led to a com-
patibility condition which (in addition to a simplicity
argument) gives rise to the unification group G’ as ex-
plained in the introduction. In other terms, from the
action of the unification group G’ on R*x 7%, plus the
neutrino second-quantized free-field theory (and of
course assuming the conservation of transition ampli-
tudes), one can axiomatize a unification-covariance
principle in which the unitary representations of the
14-dimensional unification group G' play the predomi-
nant role.

This unification-covariance principle incorporates
two aspects: if the field translations are equal to zero
we get the usual Wightman covariance axiom, and if the
space-time translations are equal to zero we get our
generalized covariance principle.

G’ is therefore a kind of unification group between ex-
ternal and “internal” symmetries, which plays also in
our approach a field theoretical role.

As was noticed by us in section two, there are two
types of UIR of G’ of interest for us: those which are
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irreducible when restricted to the Dirac subgroup and
reducible into two continuous-spin UIR of the Poincaré
group P when restricted to the latter, and those which
are irreducible when restricted to the Dirac subgroup
and reducible into an infinite sum of all discrete spin
zero-mass UIR of P with multiplicity one, when restrict-
ed to the Poincaré subgroup. This fact gives us two in-
teresting mathematical possibilities, which we shall have
now to confront with the physical aspects of our problem.
It was guessed by some people in the last decade that the
so-called continuous-spin representations (often refered
to as infinite-spin representations) might have to do with
zero-mass particles occuring in Nature and in particu-
lar with neutrinos. This point of view was studied in de-
tail in Ref. 3: in this work, it was suggested that the
continuous-spin UIR of the Poincaré group with a small
p >0 (-p®=W* W, where W* is the Pauli— Lubanski vec-
tor) might be utilized as a representation acting on a
one-particle physical neutvino space. Infinite component
fields were constructed which correspond to these re-
presentations (suffering from the usual diseases of this
kind of theories), and a generalized V- A theory was
constructed for the interacting case.

In the limit when p— 0, the infinite component field
theory in question goes to a usual field theory of a fixed-
helicity zero-mass particle and the generalized inter-
action goes in the limit to the usual V - A interaction.

It is now evident how to construct the free-field neutri-
no theory which incorporates also the “internal struc-
ture” of neutrinos. Actually we shall mention two possi-
bilities. However, since there exists an unusual feature
common for the two possibilities to be mentioned, we
discuss this feature before.

We focused our attention on two particular classes of
UIR of G’. Both remain irreducible when restricted to
the Dirac subgroup. However, both are reducible when
restricted to the Poincaré subgroup. In one case, we
obtain after reduction on Poincaré two continuous-spin
UIR of the Poincaré group: one containing all integer
helicities, the other containing all half-integer heli-
cities. In the second case, we obtain after reduction on
P all discrete-spin UIR of the Poincaré group (integer
as well as half-integer helicities) with multiplicity one.

Evidently, the second case is a limiting case of the
first one. A question arises whether we shall choose
the first or the second of the physical alternatives. to be
mentioned later, how comes and what can be done about
the fact that in both cases we have already on the level
of one-particle states both integer as well as half-inte-
ger helicity states occuring together ?

The first half of the question can be simply answered:
group theoretically the result is not astonishing since
G’ contains an eight-dimensional abelian normal sub-
group “half” of which having a vector character and
“half” of which having a spinor character.

From the physical point of view we have to remember
that the Dirac group was also the covariance group (in
our generalized sense) of the polarization equation of a
fully polarized plane wave (for time-independent elec-
tromagnetic field).

Thus it is not astonishing that we find in the end at
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least a trace of a fully polarized photon state.

As to the second half of the question, we shall rather
adopt the point of view that as far as we are interested
in the neutrino free field or in the neutrino leptonic
weak interactions, we shall systematically (when look-
ing at the usual space-time behavior of our system) re-
tain only the half-integer helicity part of the reduction
and ignore the integer helicity part. It should be men-
tioned however, that the integer helicity part might play
an important role in systems involving e. g., neutrinos
and photons.

What are now the two physical alternatives that we
got by means of our study ?

(1) To take the idea of continuous-spin representa-
tions seriously. In such a case, we shall utilize this
class of UIR of G’ which are irreducible when restric-
ted to the Dirac group and reducible into two continuous-
spin UIR of P when restricted to the Poincaré subgroup
(we shall utilize this subclass of representations which
corresponds to a small value of p after reduction on P).

The construction of the Fock space is straightforward:
the one-particle representation space will be the Hil-
bert space // of the UIR of G’ which we utilize here, and
the n-particle states space #/, will be constructed as
usual as a completed skew-symmetric tensor product of
n factors of //:

H":HI?' - 8H.
\’\:\/
If we denote by {Q} the one-dimensional vacuum space,
our Fock space will finally be

F={Q}+ @0 Hn'

The remaining of the free field construction in this for-
malism is straightforward. (Evidently as was said be-
fore, when concentrating on the Poincaré behavior of
such a system, we shall only retain the half-integer
continuous-spin UIR part for the one-particle states. )

(2) To utilize those UIR of G’ which are reducible on
the Poincaré subgroup, giving vise to all discrete spin
zero-mass representations of P, and of course are ir-
reducible when restricted to the Dirac subgroup. In
such a case, we are led to the usual space-time de-
scription of the neutrino—by the ordinary finite compo-
nent field theory—but with an unusual feature, that al-
ready the one-particle states will contain all possible
helicites. Physically, this means the following: either
we are dealing with neutrinos that can exist in all heli-
city (half-integer) excitation states, or that once we
passed from the neutrino equation to the groups G and
G’ (by the generalized covariance principle) and then
came back to, e.g., the corresponding free-field the-
ory, we built a theory not only of the neutrino but also,
in addition, of all other possible zero-mass discrete
spin particles (which are yet to be discovered!).

Of course, in this case, the construction of the corre-
sponding free-field theory is as before. The advantages
and disadvantages of the two alternatives which were
discussed are rather clear from the context. However,
it should be noticed that both alternatives [mentioned in
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(1) and (2)] have interesting space-time features (these
features are of course seen in the limit when the field
translations are set equal to zero and the theory then
shows only its usual space-time aspects) and certainly
both alternatives have also nice features concerning the
“internal structure” of zero-mass particles since in
both cases the corresponding UIR of G’ is irreducible
when restricted to the Dirac subgroup G.

It is this last condition which is necessary in order
to utilize and develop the results concerning the Dirac-
group aspect of our problem, mentioned in Ref. 1, such
as parity violation, number of the different types of
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neutrinos occuring in Nature, conservation of lepton-
number, leptonic-weak interactions and so on.
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Recent work by Moshinsky et al on the role and applications of canonical transformations in
quantum mechanics has focused attention on some complex extensions of linear transformations
mapping the position and momentum operators £ and p toa pair;; and?of canonically

conjugate, but not necessarily Hermitian, operators. In this paper we show that for a continuum of
complex linear canonical transformations, a related Hilbert space of entire analytic functions exists
with a scalar product over the complex plane such that the pair 7, ¢ can be realized in the

Schrodinger representation n and —id /dv. We provide a unitary mapping onto the ordinary Hilbert
space of square-integrable functions over the real line through an integral transform. The transform
kernels provide a representation of a subsemigroup of SL (2,C). The well-known Bargmann transform
is the special case when n and i § are the harmonic oscillator raising and lowering operators. The
Moshinsky—Quesne transform is regained in the limit when the canonical transformation becomes real,

a case which contains the ordinary Fourier transform. We present a realization of these transforms

through hyperdifferential operators.

. INTRODUCTION

The purpose of this work is to explore some of the
consequences of the use of general canonical transform-
ations in quantum mechanics. We shall concentrate here
in studying complex linear transformations between the
quantum mechanical operators of position and momen-
tum % and p, and a new pair of quantities given by

hod -~ a

N=ax +bp,

E=cx+ dﬁ, a,b,c,de€ complex field, (1.1a)
with the unimodularity condition

ad=-bc=1 (1. 1b)

which ensures that, if fc and p are canonically conjugate
operators, then 7 and ¢ will also be canonically conju-
gate, namely

(%,p]l=it=[,E]=i1 (1.2)

in units where %=1, In the usual Hilbert space // of quan-
tum mechanical states,! we have the space of square in-
tegrable functions over the real line R with the scalar
product

(fyg)o=fm dxf(x)*g(x) (1.3)

for f,g=#. (The star denotes complex conjugation.) The
Stone—von Neumann theorem states, moreover, that we
can always (through a unitary transformation if neces-
sary) use the Schrédinger realization of the realization
of the Heisenberg algebra (1.2), i.e., represent ¥ and p
by x and —id/dx over a set dense in /.

When the transformation (1.1) is real, a scalar pro-
duct where 7 and £ are Hermitian and realized by the
Schrodinger representation as % and —id/dn on functions
of 7 in A’ =/, with a scalar product analogous to (1.3)
leads to the Moshinsky —Quesne transform? between /4
and #'. The ordinary Fourier transform is a special
case of this for a=0=d, b=1=-c.

The use of a complex linear transformation (1.1) with

a=2"/2=d, b==-1i2"2=¢ (1.4)

has proven to be of great importance, as developed by
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Bargmann®* and applied to the coherent-state formula-
tion of quantum optics. ® Equation (1.1) with (1.4) gives
to 7 and i¢ (notice that Bargmann’s £ is here if) the
meaning of creation and annihilation operators with re-
spect to the harmonic oscillator states. Hermitian con-
jugation in #/ induces the properties 7* =i and (i£)* =17.
In order to find a Hermitian form where the Schrodinger
realization for 7 and £ can be implemented, Bargmann
introduced a space 7 of entire analytic functions 7 in
e —the complex field —restricted by the condition

| A(m) | < v exp(2e7*7) for finite y>0 and 0<a <1, with a
scalar product given by

(}?’ é) = fc d#(n)f_(ﬁ)*é(n),

du(n) =v(n, 7*) dRen dIm7

(1,5a)
(1. 5b)

for f,ge 7, where the integration is extended over the
complex 7-plane (with a definite limiting procedure, see
Ref. 3) and, in Bargmann’s case, the weight v(7, %)
=71 exp(—7*7). It was also shown in Ref. 3 that 7 com-
pleted with respect to the norm induced by (1.5) is a
Hilbert space and, moreover, a unitary mapping 4:4 =7
can be implemented through the transform pair

Fn) = [y, dxA(n, x)f(x),

fx) = [pdu(mA(m, x*F(n), (1.6b)
with the kernel A(%, x) =7 /1exp| = 3(x2 + 7?) +21/2¢7],

(1,6a)

In a recent work, Kramer, Moshinsky, and Seligman®
have considered a class of complex linear transforma-
tions of the type (1.1) and applied them to the study of
clustering in nuclei, thereby achieving significant con-
ceptual and calculational simplifications. We have taken
their motivation to study the general ease of complex
linear transformations and set up a continuum of spaces
7 of entire analytic functions with different growth re-
strictions in the complex 7-variable and a scalar pro-
duct of the general type {(1.5) with appropriate measures
v(n, 7*), where the Schrédinger representation is real-
ized. As in Bargmann’s case, completion with respect
to the norm induced by (1.5) shows that the 7’s are
Hilbert spaces and that unitary maps #:// = 7 can be
implemented through transforms of the type (1.6). We
shall call these canonical transforms.

Copyright © 1974 American Institute of Physics 1295
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In Sec. II we construct and characterize the spaces 7
and find the transform kernels in Sec. HI. In Sec. IV we
determine the behavior of the transforms in the limit
where the parameters a, b, ¢, d become real. The scalar
product (1.5) is shown to collapse to an integral over R,
so that the Moshinsky —Quesne transform is regained.
As the composition of two canonical transformations is
of the same type, the composition of the corresponding
transforms is developed in Sec. V. In Sec. VI, the
transform kernels are shown to provide, when bounded,
representations of a semigroup HSL(2, @) of the group
SL(2, @) of canonical transformations (1.1). In Appendix
A we give a realization of canonical transforms through
hyperdifferential operators, while in Appendix B results
for general n-dimensional spaces are presented.

In a future series of articles we intend to explore the
consequences of more general complex canonical trans-
formations in quantum mechanics. In Ref, 6 it was
shown that a transformation in the radial coordinate” of
a higher -dimensional space undergoing a linear trans-
formation is related with the Barut—Girardello trans-
form.® Among the classes of canonical transformations
where classical and quantum mechanics follow each
other® are point transformations followed by linear ones.
This has been used to relate!® the representation of the
algebra so(2, 1) given by the dynamical algebra of a har-
monic oscillator (with the addition of an inverse-square
potential) and its exponentiation to the discrete series
representations of the group SO(2,1), with Bargmann’s
realization!! of the same series. Finally, many-sheeted
canonical mappings of phase space into itself such as
those considered in Ref. 12 can be implemented with the
help of the representations of the group of automor-
phisms and an associated transform.®

{1. THE SPACE

Consider the complex unimodular linear transforma-
tion (1, 1) written in matrix form as

_ 7 ab _
2o ()-(t Y3 s

(i.e., M=SL(2,Q@)). The corresponding adjoint opera-
tors, relative to the scalar product in 4/, where X and p
are Hermitian, can be then written in terms of the ori-
ginal ones as

2.1)

A s( Tg) =M*Z,=M*M"1Z = CZ (2. 2a)
where the conjugation matrix
u iv
c=<iw u*) (2.2b)

is such that detC=1, CC*=1 and its elements are given
and restricted by

u=a*d -b*ccC, (2. 3a)
v=2Imb*a, w=2Imc*d-R, (2.3b)
fu|? +ow=1. (2.3c)

For every M «SL(2,C) we have thus a conjugation ma-
trix C(M). In particular, if ReSL(2,R), then C(R)=1
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and 7 and £ are Hermitian, and C(MR)=C(M). Barg-
mann’s case (1.4) corresponds to the imaginary anti-
d1agona1 matrix with =0, v=1=w, Since from (1.2),
7and £ are canonically con]ugate we want to implement
the Schridinger representation

ﬁf('fl) = 71)?(77),
&f(m) =~ i f(n)

(2.4a)
(2.40)
on any suitable function 7 of the complex variable 7. In
order that the total derivative in (2. 4b) be well defined,
the function f must be analytic in 7. The conditions we

are asking for a scalar product to satisfy can then be
formulated, through (2.2), as

(ﬁfy é) = (f9 [uﬁ + sz]é%
(&, ) =, Liwd + u*tlg).

(2.5a)
(2. 5b)

We can see that an ordinary scalar product of the type
(1. 3) cannot fulfill this requirement. One must look for
a more general kind of scalar product. Proposing the
form (1.5) we can turn Egs. (2.5) into differential equa-
tions for the weight function »(7, n*). Using (1.5), (2.4)
and performing an integration by parts [provided that the
boundary value of f{n)*v(n, 7¥)g(n) at infinity be zero],
the conditions (2.5) can be given as

*u(n, 7*) = (un - —vs= )V('n, ™), (2.6a)
52—*1/(71, n¥)=- <wn + u*%)v(ﬂ, 7). (2. 6b)

The solution of (2.6) with a specific choice of normaliza-
tion is

v(m, 1) =2(2m)” ”2exp{21 [ur? —2rm*+u*n*2]}

=v(17*, M*, (2.7a)

A convenient representation is obtained when we write
in polar form n=pe®®, u=we'®, whereupon (2.7a)
becomes

v(n, 1) =1lp, 6] =2(2m0)* /2 exp{- %2-[1 - weos(e + 29)]}.

(2.)
The boundary condition on f(n)*v(n, 7*)g{n) can now be
made explicit: we write (1) =£,(nv™2/2) expl (- u/20)7?],
imposing the condition » >0, then the scalar product
(1.5)=(2.7) becomes the Bargmann scalar product?® be-
tween £,(n') and g,(n’) for 7’ =7nv"*/2, The growth condi-
tions imposed on these functions imply then that f and g
must satisfy
2
| flpei®)| <vexp {% lo: = wcos(® +29)]}, (2.8)
for finite ¥ >0 and 0 <a <1, which is dependent on the
direction 6 in the complex 7-plane. This is sufficient to
characterize the space 7 of entire analytic functions for
which the scalar product (1.5) is finite. Bargmann’s
analysis® can now be translated to state that for v>0,
the space 7 with the scalar product (1.5) is a Hilbert
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space, unitarily equivalent to /4 through a transform of
the kind (1.6). It should be noticed that Bargmann’s
transform is indeed regained in the particular case (1.4),
allowing for the choice in the measure normalization:
here it is chosen as 2(27v)? /2 so that it go over smoothly
to the Moshinsky —Quesne transform (Sec. IV), while in
the original work? it is set as 7!, For every matrix M
SL(2, @) such that C(M) satisfies v> 0 we have thus a
Hilbert space 7.

A dense orthonormal basis for 7 can now be con-
structed as

i, () =[@7v)! 2! ]2 exp (_ % le>(nv'1 2y,
n=0,1,2,.... (2.9)

These functions satisfy the following recursion relations:

(w2 /20]T (n) = (n + /200, (7), (2.10a)

[uv'1/2n+v”2din] U (m)=n"20,_,(m), (2. 10b)
and, in particular,

[un+v di'r/] Uy(m) =0. (2.10¢)

They are, thus, eigenfunctions of a number operator

. - d 1 ...- =
N,U (1) s[uv"rﬁwd—n]U (n)=;nn*U () =nU ().

(2.11)

From the orthonormal basis (2. 9) we can build the
generating function

K(n, ) =3 T (T (1) = (2mo)2 /2

xexp{-— 21—11 [un? = 2nm7* + u*n'*z]} =K(n',n)*, (2.12a)

which acts as the reproducing kernel under the scalar
product (1.5):

(K(+, 1), D = [q du(mECn, n)*f(n) =f(n'). (2.12D)

HI. THE TRANSFORMATION KERNEL AND PAIRS
OF TRANSFORM BASES

We want to establish a mapping between the elements
f of the Hilbert space // and the elements f in 7, as
given by (1: 6) in such a way that if f(x) is mapped into
f(n), then nf(x) maps into 77(n) and f(x) into
~i(d/dn)f(n). Through (2.1), this means

1 (M) = [ dxA(n, x)iif(x) = Jr dx([ax +1b -a—i-]A('n, x))f(x),
(3.1a)

— i )= [ deA ()

= fm dx ([cx +id %]A(n,x))f(x), (3.1p)

and hence the transformation kernel A(7, x) must satisfy
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the differential equations
)
nA(n, x)= [ax +1b ﬁ]A(n, x), (3.2a)
i At ) = cx +id == A, x) (3.2b)
-1'81) M, x)=| cx +id = 1, %). .

The solution, with proper normalization, is

A1, x)=@,(27| ) exp {z—zb- [ax® = 2xm + dnz]}, (3.32)

where we choose the phase factor to be

@, =exp <:-2i-[12r—+<1>(b):| ),

where &(b)= phase of b€ [-—17, 7). This choice of phase
has been made so that the representation properties of
the A(7, x) be simple (Sec. VI) and for M=SL(2, R) they
agree with Ref. 2. The integrability condition in (1. 6a)
requires that Im(a/b)> 0 (i.e., v> 0) and that if =0,
then b should be real. The integrability of Eq. (1.6b) can
then be seen to hold through the identity ub=-ivd + b*
since this implies that |id/2b| < |1 =wi/2v. The nor-
malization makes the transforms (1.6) be inverse to
each other, as

(3.3pb)

[ dxA(, )A(', 2 = K(n, '), (3.4a)

fq: le'(n)A(T)y x)*A(n, x’) = 6(35 —x').

Equation (3.4a) can be verified directly, while Eq.
(3.4b) will be shown to hold when we will write the trans
form kernel A(n, x) as the generating function linking two
orthonormal bases, one in // and one in 7.

(3.4b)

We have constructed an orthonormal basis of functions
{0, (m} for 7 in (2.9). In searching for a corresponding
basis {U,(x)} for #/ we can go directly through the trans-
form definition (1.6b) or, preferably, use the indepen-
dent method of using the raising operators (2,10) for
{U_(n)} translated to operators in x and d/dx through
(2.1). The extremum U,(x) of the ladder is found from
(2.10¢) as

. a\*/" . a*
Uylx) =g} (ﬂ/Im 7)-) exp <—z EIT":x2>

normalized with respect to the scalar product in 4/, with

¢, given by (3.3b). From U,(x) and the raising operator
(2.10a) we find

(3.5a)

U (x)=[vm1 272 [ax -ib %]ﬂ Uyl(x)

a\1/2 /2
=¢ite, 2! (w/Im-F> ] (3. 5b)
K 1/2
)
with
@, =exp [m(%— +<I>(b))] . (3.5¢)

The basis {U,(x)} can be checked to be indeed orthonor-
mal under the scalar product in // and we can verify di-
rectly that the transformation kernel is indeed the gen-
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erating function between the bases:

A(n, ) =“E° 7 (MU, (x)*. (3. 6)

_In particular, notice that for Bargmann’s case (1.4),
{U,,(ﬂ)} is the basis of monomials in % while {U,(x)} are
the harmonic oscillator wavefunctions y,(x).

There are reasons for not being satisfied with the ba-
sis {U,,(n)} alone. There is the problem of not having a
manifest limit as v -0 (when the transformation matrix
M becomes real) and that of being eigenfunctions of the
number operator (2.11) which in / reads v-Y(ax — ib d/dx)
X (a*x —ib* d/ dx). Thus, we introduce the well-known
harmonic oscillator wavefunction basis (with the usual
phase convention)

Up(x) =121 71 /2] 2 exp(= 1), (), n=0,1,2,....(3.7)

The raising, lowering, and number operators are sim-
ple and can be translated to operators in 7 and d/dn
through (2. 1) in order to find the transform basis. The
differential equation for the ground function yields

Jo(n) =[7"/2(a +ib)}* /2 exp <' d-ic 17 ),

a+ib 2 (3. 82)
where we must take the sheet given by (a + b)/2
=|a+ib|-/2exp- 4 ®(a +ib), and the rest of the basis
can be generated through the application of the raising
operator, i.e.,

a,(m=[z"nx]-1/2[(d+ic)n+(-a+ib)%]"<’bo<m

- [(Zﬂ—z.%>nn!ﬂ1/2(a+ib)] -1/2

a

d-ic 7 ( 2-1/2)
xexp[— 21 ib T]H" [a2+b] nl,

(3. 8b)
which reduces to (3.7) when M becomes 1, It is also
interesting to notice that Bargmann’s case (1.4) gives
back the basis {Un(n)} with the proper normalization.
(Notice that only the leading term of the Hermite poly-
nomial survives). As a final check of the calculation we
can verify that the transformation kernel A(%, x) in (3.3)
is the generating function between the bases {zp"(x)} and
{g,(m}, i.e.,

A, ) =22 3, (1), (x)* (3.9)

n=0

implemented through the use of an integral representa-
tion for one of the Hermite functions.®

1V. THE LIMIT OF REAL TRANSFORMATIONS

We now want to examine the behavior of our construc-
tion when the parameters ¢, b, ¢, d<€ in (2. 1) become
real. Notice that the basis functions {J,(n)} present no
peculiar behavior and indeed go smoothly into {zpn(x)}
when M- 1, The transformation kernel A(%, x) in (3. 3)
is uneventful when a, b, ¢, d become real and only when b
approaches zero does the expression become indetermi-
nate at first sight. The analysis in Ref. 2 leads us to
expect that the kernel will become a Dirac 6 in 7 ~x,
This has to be examined further. Indeed, we intend to
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show that the scalar product (1.5) collapses to a line
integral as v— 0,

Consider the measure (1,5b) parametrized in its polar
decomposition (2.7b) as du(n) =vlp, 8lpdpdf. When v— 0,
w=11=vw|*/221 - Jyw—~ 1. Recalling that for real,
positive e~ 0, 1.i.m.e!/2exp(— ¢?/¢)=7'/25(q), we can
write

P
Li.m. v[p, 6]=1.i.m.2(270)"/2exp {- _v—[l - (1 =1vw)

v=0 y0

xcos(e + 20)];
=21/25(pl1 - cos(p +26)]*/2)
x expl - 3p?w cos(¢ +26)]
=p8(sin(3¢ +6)) expl— 30w cos(¢ +26)]

=p Y 5(6 + 1p) + 6(6 + 29 —m) lexpl - Lp%w).
4.1)

All of these steps should be done remembering that the
functions are under the double integral [;°pdp [&* 46, in
particular, the third step takes into account the fact that
the point p=0 is immaterial for the 6 as it is cancelled
by the measure in p, and the last step makes use of the
consequence that the 6 will act only in picking out values
in the integration over 6. The growth condition (2. 8) on
the function space is such that the scalar product is fi-
nite and for the line 8,= -3¢, 7—-3¢ is
2

| f (pet®o) | <yexp (3‘-:}- [a - w])< y exp(twp?) (4.2)
when we write w1 =$vw, a =1 ~A(v) and let A(v) be
any function of v which decreases faster than v as v- 0,
Similarly for g. ¥ we now define for f(n)=flp, 6], F(x)
=flx, - ip)and f(~x)=F[x, 7 - L@ ]for x>0, the limit
indicated follows, i.e.,

lim fo dpIF (D= [, oo T 5x)  (4.3)

with the condition, in effect, that f be such that £ (x)
X exp(— jwx?) is square integrable over R, and similarly
for g,

As can be seen, as v— 0 the integral over 11=(C be-
comes an integral over a straight line passing through
the origin and with a phase — 3¢ = — $&(u) = &(a). When
the transformation matrix M is real, #=1 and the in-
tegration path becomes the real axis, By a similar argu-
ment, the reproducing kernel K(7, 1) in (2. 12) becomes
the Dirac 6(x —x’). The behavior of the transformation
kernel A(7,x) at the limit b— O can be analized when this
takes place from any direction in the complex plane,
Using (1.1b),

Alx', %) =(2m) 2%, | b ‘ 172 exp{~ | b| Yo ,(2/a)* %
- (pA (za)-l /2x/]2} exp (;_Z,x/2>

—~ a'/?5(x —alx')exp (_z_g x'z)

4.4
lol-0 2a ( )

and the phase of the direction in which the inverse
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transform takes place, ®(a)=- $®(«), is the appropriate
one which will make use of the Dirac 5.

We can make explicit the condition that a transforma-
tion M in (2.1) lead to a transform involving only a line
integral. Notice first that C(M) = d if and only if M
€ SL(2, R), the measure in the transform space being
simply dx. Next, we can examine the cases when C(M)
is a lower triangular matrix (v=0). We consider the
case u=1 so that the integral be along the real axis.
Analysis of the conditions (2. 3) leads us to the restric-
tions: a,b real. An important subclass is that consid-
ered in Ref. 6, namely b=0, a=d™" real, where (4.4)
simulates the matrix elements of a Gaussian potential
for c=iq, q>0.

Transforms involving line integrals along a path tilted
by a phase @ can be obtained multiplying the transfor-
mation matrix M on the left by a diagonal matrix with
elements exp(ia), exp(—ia) as then u =exp(-2ia). In
particular, for b=i=-c™, d=0 (@ =7/2) we obtain a
Laplace transform with kernel (3. 3) given by —i(2m)/?
X exp(~xx'), which is off by a factor and a phase from
the usual Laplace transform. The condition “b real
when a=0” for the kernel (3. 3) is now violated, so it
is not surprising that-the integral in (1.6a) can diverge
for fe/. A restriction on/#/ [for instance f(x) =0 for
x <0] may make the transform meaningful. The inverse
transform is an integral over a Bromwich contour up
along the imaginary axis.

V. COMPOSITION OF TRANSFORMS

For every matrix M = SL(2,€) in (2.1) satisfying
Im(a/b) = 0 we have associated a canonical transform
(1. 6) from the Hilbert space #/ to a Hilbert space 7
characterized by (1.5), (2.7), and (2.8). Take now two
such spaces 7, and 7, associated to the transformations
z, =M,z, and z,=M,z,, with transformation kernels
A,(n, x) and A,(n,x). Then, since z,=M,M;'z, =M, z,,
we want to find the unitary mapping between F,and 7,,
Labelling f ® (1) ¢ 7, and the corresponding measures
du (7)), we obtain from (1.6),

FOO= [ dp,(0) Ay (n, 7)F D), (5.1a)

FOY= [ dua(ndAy (u, 0V @), (5. 1b)
where the transform kernel A, (5, 7') from 7, to 7, is

Agy (1, 17) = [ dx Ay(n, DA, (0, P = A, (', 1)*. (5. 1c)
Explicitly, it is

Ay (n,17) = (b, - b¥;b) exp[ - 3iln/2 + &(b))] (27| b| "1/2

xexp{(i/2b)an'*? — 21/ *n+di2l},  (5.2a)
where
a b\ fa, by\fa, b \**
(C d)_<02 d2><c1 d1) ’ (5.20)
and

®(b’, b'';b) =expl~ 3il&(b") +&(b"") — &(b) — &(b'b"'/b)]}
=+1 (5.20)

[compare with Eqs. (3. 3)], and can be written as a
generating function
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Ay, 1) =L FOMFL M, (5.9)
In particular, this allows us to define A,(1,x) =4 ,o(1, %),
Agx, )= A, (n, x)* and the reproducing kernel in each
space as K,(1,1')=A,,(n, 7). The composition of trans-
forms can then be effected through any (allowed) space

Jsas
Azl(ny TI”) = -[(l dp'e,(nl)Azs(TI, 7II)A31(T’” T’”)’

which generalizes (5. 1c) when we understand that
[edio(n)+-+=[gdx+++ and / =7, it corresponds to
My, =M, M, for My =M M, etc. with the explicit
forms as obtained from (5.2). Notice that when M, and
M, belong to the class v=0, the transform (5.1) in-
volves only line integrals although M,M;' may not be-
long to this class. Similarly, the condition Im(a/b)> 0
which must hold for M, and M, may not hold for their
composition M,M;*. The existence of the transform
(5.1) is assured, however, as A, (7,7’) belongs to 7,
as a function of its second argument and to 7, as a
function of the first. Square integrability is only de-
manded in / or its isomorphic spaces.

(5.4)

VI. LINEAR OPERATORS AND REPRESENTATIONS
OF HSL (2,C)

Let  be a bounded operator mapping / onto itself,
represented by an integral kernel P{x, x’) through

73 = [, ' Plx, ¥ ). (6.1)

1t then follows from (1.86) that © will also map 7 onto
7 through

7= [ au(r)Pn, w )7 (),
represented by the integral kernel
P(n,w)= I fm dx dx'A(m, x) Plx, x)A(H, x')*. (6.3)

To a product R :/CQ of such bounded operator then
corresponds

(6.2)

Rix,x")= fm dxP(x, x")Q(x", x ") (6.4)
which is also bounded and
R(n, ") = [ du(m)P(n, n)Qm, ). (6.5)

In particular, to the unit operator, whose representa-
tive in /4 is 6(x —~x'), will correspond through (3.4a) the
reproducing kernel K(n, ') in 7.

Now, for every M= SL(2,@), consider the operator
A (M) with the integral kernel given by (3.3), when we
restrict 7 to the real line., These are now operators
mapping // onto //, and can be seen as passive SL(2,T)
transformations, as opposed to the active transforma-
tions seen in the last section, which mapped# onto 7.
We shall denote this integral kernel by

DOMY=A,(x,x")

=expl- 3i(7/2 +3(b))|(27|b|)2 /2

x exp{(i/20) ax’? - 2x'x + dx2]}. (6.6)

When integration is possible, these kernels satisfy
fm dx'DONM,)D L), (M,)=&(b,, b,; b, )DL (M, M,) (6.7)

and hence form a ray representation of a subset of
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SL(2,Q): the subset for which the operators 4 (M) are
bounded. As the product of two bounded operators is
bounded, such a set must be a semigroup contained in
SL(2,0).

Notice first that the kernels representing 4 (M) with
M e SL{2, R) are bounded. This is obvious when we ex-
amine the transform normalized basis (3.8), as here
F =H, (A, A= (4, ¥,)o=1 and {¢,(x)} is dense
in/# and 7. For M SL(2,C) the operators A (M) will be
Hilbert —Schmidt operators when the kernels (6. 6)
satisfy [f dxdx’|D2)(M)|2 <, In performing the in-
tegrals, we see that we obtain the conditions

(6.8a)
(6. 8b)

Now, the product of a Hilbert—Schmidt and a bounded
one is a Hilbert—~Schmidt operator, hence the set of
matrices

<a B)(cosht —isinh§><a' B')
y 8/\isinh{ cosh¢ /\7v’' &'
(a,a’,B,..., 05" real) will be represented by Hilbert—
Schmidt operators for ¢> 0, as can be verified directly
from (6.8). This is a semigroup which does not con-
tain the identity. If we add to (6.9) the point £¢=0,
thereby making (6.9) contain SL(2, R), we will have a
set of bounded operators representing the semigroup
denoted by HSL(2,C) in Ref. 6. Notice that the matrix
(1.4) corresponding to the Bargmann transform does
not belong to this set.

An important subset of HSL(2, €) is the set of
matrices which we write and decompose as

ar -iB”)_(l 0\/D 0 (1 —iq’)
iv" 8 /)= \ig 1/\0 DY\0 1

with a¢”,...,8", q,q¢ =0, D>0, which are bounded, but
not Hilbert—Schmidt operators [as conditions (6. 8)
may be violated). The set (6.10) manifestly forms a
semigroup denoted by HSL(2, R) in Ref. 6, since it is
related through a similarity transformation [by a
diagonal matrix with elements exp(~in/4), exp(in/4)]
with the set of SL(2,R) matrices with nonnegative ele-
ments. The parametrization (6.10) furthermore allows
us to reach the special cases 8”=0 [Eq. (4.4) which
simulates the Gaussian potential | for which the decom-~
position (6. 9) fails.

Imb*a>0:v>0,

Imb*aImb*d>Im?2b.

(6.9)

(6.10)

From the representation (6. 6) we can build through
(6. 3) a continuum of representations of HSL(2, T)
through (5. 1c) as

DUM) =Dy (M MM}

ol (6.11)
where M, = SL(2, €) satisfying the conditions for the ex-
istence of a transform. Notice that the variable 1’ in
(6.11) appears as 7’* in the explicit form (6.6). These

D’s will exhibit the composition

Sy du (0D E(M)D ), (M,) = 9 Dkl (M, M) (6.12)
and the property
D,‘,’j,,’ (M) =D& (M*-2)* (6.13)

so that the representation is unitary for M c SL(2,R).
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APPENDIX A: REALIZATION THROUGH
HYPERDIFFERENTIAL OPERATORS

In this Appendix we want to introduce a Lie algebra
structure for the set of canonical transforms as

Fflx)=[U, flx) = exp(iTH)f(x) = fm dx'A, (x, x")f(x")
(A1)

where 7 labels the elements of a one-parameter sub-
group {or subsemigroup) of SL(2,T). For our purposes it
is sufficient to ask that the integral in (A1) to exist, so
that we can disregard the Hilbert space structure of the
functions involved, and the operator U, need not be
bounded, *41°

We want to find a differential operator H which gen-
erates the transform (Al), i.e.,

H(x, a%)f(x):—i/‘;ldx’[—%A,(x,x’)

with the boundary condition

) f(x')] (A2a)

T

(A2D)

If we knew H and solved for A (x,x’), this would be a
Green’s function problem,’® where A (x,x’) is the
Green’s function of exp(+i7H). Here we know A _(x,x’)
as given by (6.6) and [and (4.4)], so that we can build
the operator H(x,d/dx) by inspection of (A2a), for vari~
ous one-parameter subgroups of SL(2,C), viz.:

A, (%,%")] r0=0(x = x").

exp[ic(%fcz)]:(l 0), (A3a)

c 1

explin(59):(§ ), (%)
. 1,% *n. [ coshza —sinhia>

expliat (3 -] (oM TS, (as)
cairan o asvl. [€XD(= 2B 0 )

eXp[ZB%xp+[)x)].( 0 ex_p(_é_ﬁ) ’ (Asd)
122, . [COSEY —sin-12-7’>

explivyX{(p* +x )]'(sin%)’ cosly ) (A3e)

The last three generators can be seen to constitute the
well-known su(1, 1) dynamical algebra of the harmonic
oscillator, Z (A3d) being a scale operator, i.e.,

F ) =expliBi(zp + pD) f(x) =exp(:B)lexp(38)x]  (A4)

while Eq. (A3e), 5(x*+5?) being the oscillator Hamil-
tonian, gives the development in time /=3y of the
system. )

The association of hyperdifferential operators in (A3)
with 2 X2 matrices can yield a host of Baker—Camp-~
bell —Hausdorff relations between second order differen-
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tial operators,!” as

(coshe —sinho)
sinh® coshé

1 —tanhe)(l/coshe 0 1 0
—\o 1 0 cosh8/\~tanhé 1

which gives
316 i +
exp| - 30\ =3 x?
&2 d d
= L =z 1 L4+l
_exp[ sitanho dxz]exp[zlncoshe(xdx + ! x)]

1i tanh8x2],

(Aba)

x expl (A5b)

Further, when allowed to act on specific functions f
whose canonical transforms f are known, (A3) yield
special function relations. For 6 =in/4, (A5a) becomes
the Bargmann transform matrix (1.4), thus

) =expin [ (di +x)]f(x>
—27 /4exp(; dﬁ)exp(qxz)f(?l 7). (86)

In particular, letting f be one of the harmonic oscillator
wavefunctions ¢,(x) given by (3.7), f will be (2. 9) for
u=0, v=1, Eq. (A6) with a change of scale gives
immediately

x"=2" exp(i d?;)H (%) (A7a)
and its inverse
H W) =ex (- 7 403) 2o (ATo)

which are formulas that do not commonly appear in
special function tables, 412

APPENDIX B; EXTENSION TO n DIMENSIONS

We shall sketch here some of the results for the case
of n-dimensional spaces #". The most general complex
linear canonical transformation (2.1) now reads

D=( oG
(- o) @
where %, p, 1, and £ are n-component column vectors
and 4,...,D are nxn matrices satisfying? AB=BA,

CD=DC, and AD —BC =1 (the tilde means matrix
transposition). Hermitian conjugation is achieved as

7\ _(A* B¥\( D -B\n\_(U iV)ﬁ)

(§+> (c* px)\-C A ’é iw Dx\E) B2)
where U=A*D - B*C V= 2Ah(B*A), and W~2Ah(C*D)
the symbol AhM = (21) (M - M*) denotes the anti-Hermi-
tian part of a matrix, so that V and W are Hermitian and
their determinants are real. An analysis parallel to

(2.4)—(2.7) yields a Hermitian form for the space 7"
given by

(f, 8) = [qnv(n, 7¥)d"Ren d" Im7f(m)* (M) (B3)
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with the weight

vin,n*)

=([47]r detV)L 2 exp{§V-1Un =7V g% + Jp* VLU0 *}

(B4)
the growth restrictions on fe 7" can be seen writing
7o) =£,(V* /%) exp{- §jV" Un} where (V}/2P=V. As V
is Hermitian, when we ask it to be positive definite,
its positive definite square root is uniquely defined and
f, can be asked to be in the n-dimensional Bargmann
space. The restrictions are then

|7m)| <vexp{saqVin* - sRelfVUnl}, a<1. (B5)

The transform kernel between /" and #" will be, in
terms of the submatrices in (B1), up to a phase ¢,

A(n, x) =@ ((27]"|detB|)™ /2 expi{; XB'Ax —XB'n + 37 DB '}

(B6)
out of an analysis parallel to (3.1)—(3.3).
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Let M be a causally continuous space-time. Using indecomposable past and future sets in a
symmetric way we construct a causal completion N for M. N is a causal space; the chronology of
M in N is the chronology of M. The extended Alexandrov topology for N makes N Hausdorff
and M a densely imbedded subspace. M is globally hyperbolic iff either the chronological future or
the chronological past of each point in N-M is empty, causally simple iff the causality of M in N
is the causality of M. The standard examples of causal completions are special cases.

INTRODUCTION

Penrose’s conformal completion method for certain
general relativistic space—times! has proved useful in
applications.?® Various generalizations have been sug-
gested.*” In particular, Geroch, Kronheimer, and
Penrose® have shown, under rather general assump-
tions, that certain open subsets of space—time can be
used to assign a boundary to space—time. Some of the
subsets simply represent points of the space—time it-
self. The others are interpreted as ideal points at a
singularity, or at infinity, or at an event gratuitously
amputated out of a larger space—time. Geroch,
Kronheimer, and Penrose obtain a Hausdorff topological
space, interpreted as the space—time with the ideal
points attached as boundary points. The boundary might
be regarded as the place where information, carried
by particles or fields, enters that portion of physical
space—time which can be described by nonquantum
general relativity.

In general, the causality structure® of the space—time
does not extend to the boundary. For example, it may
not make sense to say a space—time even can signal to
a boundary point at a speed less than that of light, Now
causality structure is perhaps the deepest structure our
physical models have. In general relativity, analyzing
causality is central to the study of black holes,?:3 to
cosmology,® ' and to each of the major recent mathe-
matical theorems.?'* Causality can be used to analyze
in what sense properties of freely falling particles and
photons determine a topology, differentiable structure,
and Lorentzian structure for space~time.!? In fact,
causal structure determines these further structures up
to a conformal factor.!? In view of this basic character,
one hates to lose the causality structure when attaching
a boundary.

The main purpose of this paper is to show that if
space—time is causally continuous, !* the causality
structure does extend to the ideal points. Roughly
speaking, a causally continuous space—time is one with
the following three properties: There are no closed
timelike curves and this property persists even if suffi-
ciently small but otherwise arbitrary perturbations of
the metric are made; moreover, if there are “gaps” in
the space—time, their “dimension” or “shape” is re-
stricted; and finally, space—time is “not to concave”
at infinity or other boundaries such as the big bang. In
such a space—time the past and future of a local ob-
server depend continuously on his location. * There is
then apparently just one reasonable, conformally in-
variant way to attach a boundary. Causal continuity in-
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sures that for the boundary points causality and topology
cooperate in a rather cunning way. Most known physical -
ly interesting examples, such as the maximally extended
Reissner Nordstrom space—times, are causally
continuous.

In Sec. 1 we shall review some known results and add
a few preliminary propositions. Section 2 shows how to
assign a causal structure to certain collections of
space—time subsets. To avoid later redundancy, we
work rather generally in these two sections, but we
have in mind the ideal point boundary of a causally con-
tinuous space—time throughout. Section 3 reviews the
technical definition of causal continuity and proves
some results about causally continuous space—times.
Section 4 discusses topology. Section 5 contains our
main result. We there define the causal boundary of a
causally continuous space—time and show how it is
attached to the space—time.

The essential feature of our methods in Secs. 1-5 is
indicated in Fig. 1. The standard conventions? for
space—time diagrams are used. The figure shows a
space—time conformal to an open submanifold of two-
dimensional Minkowski space. The (closed) shaded re-
gions are not part of the space—time. P and F, shown
dotted, are sets of the kind which represent ideal
points., The key question is the following. By what gen-
eral method can one tell that P and F represent the
same ideal point y rather than two different ideal points.
Our answer here will be that P is the common past of
F and F is the common future of P. Specifically, P is
the largest open set each event in which can signal to
each observer in F at a speed less than that of light; F
is the largest open set each observer in which can re-
ceive such a signal from each event in P, We shall
identify sets, and the points they represent, pairwise
iff both these conditions, which do not imply each other,
hold.

In Sec. 6 we show that once a boundary has been
attached, one need not repeat the process: Completing

)
7
e F
/ N . X FIG. 1.
Copyright © 1974 American Institute of Physics 1302
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the completion gives nothing new. Section 7 discusses

a byproduct of our investigations which has some inde-
pendent interest, Any time-oriented space—time deter-
mines an algebraic structure, called a complete lattice.
The geometric properties of the space—~time are re-
flected in the algebraic properties?® of the lattice. There
is some hope that such lattices may be useful in
analyzing global space—times properties and/or in
quantizing. Finally, Sec. 8 mentions few unsolved
problems.

1. PRELIMINARIES

This section reviews most of the standard definitions
and results we shall need, sets the notation, and defines
common pasts and futures. The latter are new, so we
shall analyze some of their basic properties in sub-
sections 1.4—1.8,

Let (M, g) be a time-oriented space—time.2 Thus g is
a smooth Lorentzian metric on the smooth manifold M.
A smooth future-divected curve in (into'€) M is a
smooth curve whose tangent is never zero and always
timelike or lightlike future-directed. Define binary re-
lations < and «< on M as follows: x<y, if there is a
smooth, future directed curve from x to y; x<<y if
there is a smooth, future-directed, timelike curve
from x to y.

By abstraction, Kronheimer and Penrose® obtained
an algebraic structure which has some, but in general
not all, the properties of (M,g,<,<). Suppose Z is a
set, p is a binary relation on Z, and x,y,zc Z. Recall
that p is reflexive if xpx for all x, antiveflexive if xpx
for no x, and transitive if xpy and ypz together imply
xXpz. A transitive p is a partial ordering if two distinct
elements x,y cannot obey both xpy and ypx. Let €, «,
be binary relations on Z. <, called the causality rela-
tion, will correspond intuitively to signals which travel
no faster than light; <, called the chronology relation,
will correspond to signals slower than light. As here
we shall often use boldface to distinguish structures de-
fined in general from corresponding structures defined
on a space—time.

Definition 1.18: (Z,<,<) is a causal space if:
A. x<y implies x<y;

B. = is a reflexive partial ordering;

C. < is antireflexive;

D

either x<y<z or x<y<z implies x<z,

Let (Z,<,«) be a causal space. By Axioms 1,1.A and
1.1.D, « is transitive. If YC Z, (Y,<,«) is a causal
space.? Let X and Z be causal spaces and 8: X—Z be a
function. 6 is called isocausal if x <y implies 6x< 0y
and x <y implies 6x< fy. 8 is called a causal isomor-
phism if it is one-to-one, is onto, is isocausal, and has
an isocausal inverse.

Let Z be a causal space, S,PC Z be subsets. The
chronological past I'S of S is I'S ={xe Z: x< s for some
sc S}. Thus if ye Z, I{y}={xec Z: x <y}, where {y}

C Z denotes the singleton subset. P is called a past set
if P=I"S for some S. A past set P is called indecom-
posable® if it is not the empty subset and obeys the fol-
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lowing restriction: Whenever Q and R are past sets
such that P=QU R, then Q=P or R=P. The causal
past IS of S is J"S={xec 2: x< s for some sc S}.
Chronological and causal futures I'S and J*S, future
sets, and indecomposable future sets are defined dually,
i.e., with « or < replaced by the respective inverse
relations > or =. We shall often take dual results for
granted.

The time-oriented space—time (M, g) is called causal
if, for all x,yeM, x<y and y < x together imply x=y.
(M, g) is causal iff there are no self-intersecting future-
directed curves which is true iff (M,<,«) is a causal
space.>! For all SC M, I"'SC M is open.!!

Let (M, g) be a causal space—time, and UC M an open
subset. The chronological common past YU of Uis YU
=I{xe M: x<u for all ue U}. Since < is transitive
IFUD YU iff U is not the empty set ¢C M. The chrono-
logical common future 4 U is defined dually.

1.2. Notation and Conventions: Throughout the rest
of this paper: A. M= (M, g) is a causal space—time with
chronology «, causality <, topology 7 ={UC M: U is
open}, and power set § ={SC M}. The following two
examples indicate the basic notations that will be used.
(i) ¢ 7={SC M: S=4 U for some Uc T}, etc. (ii) Suppose
UeT;then ¥4 Us+(# )= +[4()]=(4o4) U= (+ - 4)(U), with
the first form preferred, etc.

B. The collection P of pasts is P=I[ ; 7 =I*/ is the
collection of futures. The (past) hull lattice [ is [ =+T;
dually, / =47 ; the term “hull lattice” is suggested by
the results of Sec. 7 following. // is the collection of
indecomposable past sets; dually, / is the collection of
indecomposable future sets.

C. (P,F)e PX7 means Pc P and Fc ¥, etc. (P,F)
will be called a hull paiv if (P,F)e PX7, P=¥ F and
F=4 P, Define a relation ~on PU 7 as follows. A~A
forall Ac PUYJ. If A,Bc PU7F then A ~B iff either
(A,B) or (B,A) is a hull pair. We shall show below that
~ is an equivalence relation and that each equivalence
class contains at most two members.

D. I:M~— P denotes the function with rule fx:I‘{x};
dually Ix=I{x}. For example, suppose SC M. Then I'S
is an open subset of M, But IS ={Is:se St={r{s}:se s}
is a subset of 7; thus IS is a collection of open subsets
of M.

The ideal points we eventually wish to discuss are the
elements of UMW/ ~. In the rest of this section we first
analyze how the topology 7, the collection 2 of pasts,
the hull lattice /, the collection/ﬁ of indecomposable
past sets, etc., are interrelated. Then we examine
common pasts and futures in some detail. We will base
most of our proofs in the paper on the following standard
proposition.

Proposition 1.3%'!: Suppose Uc 7, SC M, and SO I'S;
then:

A. Interior (Closure S)=Interior S=1IS;

B. Closure (Interior S)=Closure S={xe M :S21x}
D JS;

C. Irvovu.
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Lemma l.4: Suppose U,Ve 7. Then:
A. U2 V implies + UC 4 V;

B. ¥+ U2 U;

C.4U2Viff UCHVV.

Proof: Part A follows directly from the definitions.
For part B, first note than if uc U then z ¢ 4 U implies
u<z, Let Q={xeM:x<«<z for all ze 4 U}; thus Q2 U.
Therefore ¥4 U=I"Q2 I'U2 U, where we have used
Proposition 1.3.C. Finally, for part C, suppose 4 U
2 V. Then the dual of part A and part B itself together
give ¥ V2 ¥4 U2 U. The dual argument gives the
converse. =

Proposition 1.5
A.T2P2[=4%7;
B. (+o4); is the identity; W)=[; Top—t~fc7
C. (I')p is the identity; 4
D. pnj={e,M=[n/. T2F—i~[cp

Proof: Part A. 72 P since I'S is open for all SC M.
P=I SD[ Now 72 7bythedualof 72 P so vFC V7
=/. Conversely, suppose L=+U, Uc7. Then 4 L2 U
by the dual of Lemma 1.4.B. Thus ¥ U2 ¥4 L by the dual
of lemma 1.4.A. This gives LD +4 L. Lemma 1.4.B.
gives ¥4 LD L. Thus L =44 L ¥ ¥; thus [c +F. Thus
L=4F.

Part B. We have just shown that (+o4) is the identity
on/; dually, (#°4) is the identity on /. Thus ¥ (/)

Part C. Suppose P=IS, SC M. PO I'P since < is
transitive. By Propositions 1.5.A, and 1.3.A, P
=Interior P=IP, Thus I" is the identity on /.

Part D, Suppose Se Pn 7. IFI-SD S since « is a re-
lation. By Proposition 1.5.C S=I"S. Proposition 1.3.B
and the transitivity of « give I" Closure S=I{xc M :S
2 Ix}C Closure S. By Proposition 1.3. A we now have S
=TI Closure S. Thus Interior S=S=I'I" Closure S
D Closure S, so that S is open and closed. Since a
space—time is connected, S=¢ or S=M. Conversely
I*¢ =¢ and, by Proposition 1.3.A, M2 I*M =Interior
M=M. Thus Pn 7 ={¢,M}. Now by Proposition 1.5.4,
LﬂL C PnF. Conversely, Y¢=M=4*¢ and, since < is
antireflexive, +M=¢=4M. Thus /N[ = {¢ M=

We shall henceforth regard the empty set gC M, the
past copy ¢ € /2, and the future copy ¢ € 7 as in princi-
ple distinct. Unless explicitly indicated otherwise, ¢ in
the following means ¢ C M. The analogous comments

e e e
i </ //,/// /
‘ N 'Z/ ;
MY | . -

‘ i XV% i FIG. 2, Here tIx=(Ix)U PUQ, and
| N ‘ k= U P.

SR SR

S NS ’ \ ;
’ - _
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FIG. 3. p=gq, P2Q.

apply to M; the distinction between Mc 2 and Me 7 is
sometimes essential.®

The following miscellaneous results will be needed
later.

Corollary 1.6: Suppose Ue 7 and P,@< /. Then:
A, P2Q implies Closure P2 Q;

B. PN U#¢ implies P2 +U;

C. + U=Interior{xe M:u> x for all uc U}.

Proof: By Propositions 1.5.C and 1.3, A, P2 @ im-
plies Interior Closure P=PZ @ =Interior @, so part A
holds. For part B, we have P=I"PD I'(Pn U)2 ¥+ (PN V)
2 U, where we have used Proposition 1.5.C, the de-
finition of I", the definition of ¥, and the dual of Lemma
1.4.A. Finally, Propositions 1.3.A and 1.5.A imply
part C.®

Pyroposition 1.7: Suppose Pec P and xc M. Then:
A. Pn(ix) #¢ iff x€ P;
B. +Ix2 4 IxD fx.

Proof: x< P iff x€ I"P iff there is a y € P such that
x<y ift ()N P#¢. Thus part A holds. For part B first
note that Wi Ix by Lemma 1,4.B. Now suppose z
€ I (Fig. 2). Then z € Ix by the duals of Propositions
1.5.A and 1.5.C, Thus there is ayCIx with z>y.
y>w for all we Ix since > is transitive. Thus z € ¢ Ix
thus 4 [xD Ix; by the dual of Lemma 1.4. A, VIxD vh I, m

1.8: Figure 2, for an open submanifold of two-dimen-
sional Minkowski space, shows that neither equality in
Proposition 1.7.B need hold.

Proposition 1.9: The following three conditions are
equivalent:

A. (P,F) is a hull pair;
B. Pc/ and F=4 P;
C. Fc/ and P=+F.

Proof: By Proposition 1,5.A, P=1V F implies PeZ;
dually F=# P implies Fc /. Proposition 1.9 thus fol-
lows from Proposition 1.5.C and its dual. ®

By our conventions, /2 and 7 have no elements in
common. Proposition 1.9 implies that the relation ~ de-
fined in 1.2.D is an equivalence relation which identi-
fies a given A € PUF with at most one other element of

PUF.

2. SET CAUSALITY
M, its topology 7, the collection PC 7 of pasts, the
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NW/

- — —

(TP)n(lF

FIG. 4. Duality corresponds to turning the page upside down.

collection 7 of futures, the hull lattice Z, its dual Z ,
/M, M, and the equivalence relation ~are as in subsection
1.2.

Ultimately we will consider space—times such that
(fx Iv)isa _hull pair for each event x, represent each
event x by Ix or equivalently Ix and use elements of
/}’} UM/~ to represent ideal points. For awhile, we work
more generally. The game is to make / and 7 into
causal spaces, abstracting from simple situations such
as those shown in Figs. 3 and 4. Then one must glue
P and 7 together.

Various glueing constructions are possible algebrai-
cally, but most of these can be shot down by showing
that they give unnaceptable answers in some of the
standard examples? of black-hole, big bang, or other
conformally completed space—times. The key idea of
the method we shall use is to glue /2 and 7 together
along the hull lattice and its dual,

2.1: Define relations > and > on /U 7 by the table
below, whose use is indicated by the following exam-
ples. Suppose (P,Q)e PX P, (P,F)ec PX3F and (F,P)
€ 7 X P, The table specifies: P> @ iff P2 @, as in Fig.
3; P> Q iff Pn (4 Q)¢¢ as in Fig, 4A; P> F iff there
is a hull pair (L,L) such that P>1 and L>F (i.e., P
O Land LC F); ete.

2.2 s e3> .

A pPxp o Nt =g
B. X7} . C: (F)Ne=g
C. pPxj7 3AL,L): *DLandLC- N
D. 7xpP 3W,L): *CLandLl2- (¢ )N(t)=g

2.3: The dualities in the table are a little tricky:
Line B is the dual of line A but both line C and line D
are self-dual. Compare Fig. 4. Proposition 2.6.B and
Example 2.7 following indicate on intrinsic difference
between = in line C and = in line D. We now analyze
the table, starting with line A.
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Proposition 2.4: (P,<,<) is a causal space; I: M— )

is isocausal.

Proof: (P,Z) is a partially ordered set so that Axiom
1.1.B holds. Now suppose P,Q,Rc /. To check Axiom
1.1.A, assume first P> Q. Then PN (# Q) #¢.
Corollary 1.6.B and Lemma 1.4.B give P2 4+ Q2 @,
so that P> @ as required. Now to check that > is anti-
reflexive, assume P> @ and @ > P, Then P=@Q and
PN (* P)#¢ by the argument just given. But xc P (+ P)
implies x> x, the desired contradiction. Now suppose
P=Q>R. Then P2 @ and QN (+ R)#¢; thus PN (#R)
#¢ and P> R, Finally, assume P> @=> R, Then PN (4 Q)
#¢ and QQ R, By Lemma 1.4.A 4RD 4@. Thus P>»R
also in this case. Thus Axiom 1.1.D holds; thus (72, <,
«) is a causal space.

Now suppose x,ye M. If x>y, %) IAy,Asinge x=zy
>z implies x>z for any event z, Thus Ix>1y. If x>y,
then y e Ix so (Tx)n (4 Iy)2 (Ix)n (I:y)ah ¢, where we have,
used Proposition 1.7. Thus Ix>> Iy in this case. Thus I
is isocausal. ®

By the dual of Proposition 2.4, (7,<,<) is a causal
space. To analyze how P and 7 are glued together,
considerable casework will be required. Propositions
2.5 and 2.6 below give some of the interrelations.
Example 2.7 shoots down various false conjectures.
Proposition 2.8 shows that the relations defined in
Table 2.2 cooperate with the equivalence relation ~ .
Theorem 2.9 is the main result we shall need.

Proposition 2.5: 4: P— 7 is isocausal; 4:/ =/ isa
causal isomorphism.

Proof: Suppose P,Qe 2. If P> @, then by Lemma
1.4.A, 4 P>4Q, If P> Q, then, by Lemma 1.4.B ap-
plied to P=U, 4 P> 4 Q. Thus % is isocausal. Dually,
¥:7 =P is isocausal. Proposition 1.5.B now shows #:
[ —/ is a causal isomorphism, ®

Proposition 2.6: Suppose Pc 2, Fe#, and r
e{z,<,»,«}. Then:

A. PrF iff, for some hull pair (L,L), PrL and LrF;

B. PrF implies Pr(¥ F) and (¢ P)rF; P< Fiff P
<(VYF)iff # P)<F,

Proof: In part A, the cases r=< and r== are trivial.
Suppose P> F or F> P, Then PN F#¢ or (# P)N (Y F)
#¢ respectively. So suppose Qe P, Ge ¥, x€ QN G.

Let L=+Ix; then #4L=1. By Corollary 1.6.B, Propo-
sition 1.7, and their duals @N (# L)#¢ and (¥4 L)ﬂ G
#¢. Substituting P=Qand F=Gor 4 P=G and Y F=Q
finishes the proof of the direct assertlon in A, To prove
the converse, suppose first P> 3 and L> F. Then
PNL and Lﬂ F are both nonempty. By Corollary 1.6.B
and W L=1 we get P> F, The remaining case, with
=<, is handled by the dual argument. Thus 2.6.A
holds.

We start the proof of 2.6.B with the case Ps F.
Then FC 41 and LD P, LCL + P2 41 by Lemma
1.4.A, so that 4 P2 F and F> 4 P, Moreover, ¢+ P2 F
ffyFO Piff Y F= P, where we have used Lemma
1.4.C, Now if ¥ F2 P set L=+ F. Then LCL, iop,
and 4 LD F, so that F> P, Thus Bis valid if r==,
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FIG. 5.

Now suppose P> F. Then P2 1,4 ic F, Le/. Thus
PO L=VALDVF and P> VF; dually 4 P> F. Suppose P
> F. Then PN F#¢. By Lemma 1.4.B and its dual,

+ P> F and P>V F, Finally, F> P implies F> 4 P and
¥ F>> P directly from the definitions. Thus 2.6.B is
also valid. ®

Example 2.7: 1t is not true that PD ¥ F and 4 PC F
imply P> F. We give a counterexample. Let ¢ be the
image of an inextendible lightlike geodesic in Minkowski
space, ¢’ be another. Set P=1I¢, F=I¢', as shown in
Fig. 5A, Then 4 P=¢=+V F, so that P>V F and ¢ P> F;
but P> F need not hold, as the figure suggests. This
example is important in applications. P represents a
point at future lightlike infinity, F a point at past light-
like infinity.2 Various geometric and physical argu-
ments indicate that one must allow P# F?, A similar
situation arises in some of the cosmological models.?
In Fig. 5B, F represents a point on the big bang. The
definitions in Table 2.2 were designed to handle such
cases.

Proposition 2.8: Suppose (L, L) is a hull pair, Cep
U7, and r is as in Proposition 2.6. Then LrC iff LrC.

Proof: Suppose Pc P and Fe F. By Proposition 2.6.,
LrP implies LrP and LrF implies LrF. The remaining
cases involving r=>> and r =« follow directly from
Table 2.2 and the definition of a hull pair. The remain-
ing cases involving r=2 or r=< can be proved by ar-
guments of the following kind. Suppose L= P, Then L
DPand LD L sothat L=P. »

Suppose ("C PU 7 is a subcollection. Proposition 2.8
shows that < and <« are well defined on the quotient
space C /~. It is such quotient spaces which are of
interest in what follows. However, since each equiva-
lence class contains at most two members, it will be
convenient to work with differences rather than quo-
tients. Call (C PUF causal iff (" does not contain both
members L 1 of any hull pair (£,1). For example C
=pPU 7 - L is a causal subcollectlon and has essentially
the same structure as PU 7/~

Theorem 2.9: ((",<,<) is a causal space iff (" is
causal.

Progf: Assume C is not causal. Then there is a hull
pair (L,L) both of whose members are in (. By Propo-
sition 2.8, L>L L= L L+1, so that (" is not a causal
space. Conversely, supposeC is causal. In checking
Axioms 1.1 we need consider only cases where at least
one element is in 2 and at least one element is in 7.
Take P,Qc< P and Fe 7 throughout.
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To check Axiom 1.1. A, suppose P> F. Then by
Proposition 2.6.A there is a hull pair (L,£) neither of
whose elements need be in () such that P> L and L
> F, Using Proposition 2.4 and its dual, together with
Proposition 2.6, A again, we get P2 F, The dual argu-
ment finishes the proof of Axiom 1.1.A,

Suppose now P> F and F> P, By Proposition 2,6.B,
Pz{yF=>Pand F24P=2F, Thus P=VFand F=+%P,
This is a contradiction since C cannot contain a hull
pair. Thus, to show < is a reflexive partial ordering,
it remains to show that < is transitive. Suppose first
P> Q>F. Then, for some hull pair (L,L), P> Q=L and
L>F, sothat P> F., Similarly trivial cases will be
omitted in the rest of the proof. Now suppose P> F= Q.
By Proposition 2.6.B, P= ¥ F= @, so that P> . The
dual arguments finish the proof that Axiom 1.1,B holds.

If P> F and F>» P, then P> F and F> P by Axiom
1.1.A. By the above proof of Axiom 1.1.B this cannot
occur. Thus « is antireflexive and 1.1.C holds.

The proof of Axiom 1.1.D follow the above proof that
2 is transitive almost verbatim. For example, if P
> FzQ, then P>» { F2 @, so that P> @ by Proposition
2.4, m

3. CAUSAL CONTINUITY

To proceed further, one needs a restriction on M,
The appropriate condition can be motivated in various
ways, 4 though it is not clear that all physically inter-
esting space—times obey the condition, In the present
context, the simplest motivation is the following.
Since we eventually plan to represent each xe M by Ix
or Ix it seems reasonable to require that I and F'be
one-to-one maps which leave chronology completely
unaltered. This gives the following definition.,

Definition 3.1: M is causally continuous iff for all
x,yeM:

A. Ie>>ly iff x>y itf Ie> Iy;
B. fx:fy iff x=y iff fx:fy.

Proposition 3.2: The following requirements are
equivalent:

A. Requirement 3.1.A;
B. for all xe M, 4+ Ix=1Ir and +Ix=1Ix;
C. for all x,y € M, x< Closure JYy} iff y € Closure

J° {x} .

Proof: In any case: (i) x>y iff y € Ix; and (i) Ir> Iy
iff (#Ix)0 (Iy)#¢ iff y € Ix, where we have used the
definitions in Table 2.2 and used Proposition 1.7.A.
(i), (ii), and their duals show 3,2.A and 3,2.B are
equivalent. The equivalence of 3.2.B and 3.2.C is
proved elsewhere.*

Progos}tion 3.2 shows that if M is causally continu-
ous, (Ix,Ir) is a hull pair for all x€ M. In our subse-
quent discussion we shall need two more definitions and
two further results. The Alexandrov topology 7! onMis
the smallest topology 7’ on M such that Ix and Ix are
open for all xe M 8; thus 7'C 7. A causal space
(Z,<,x) is weakly distinguishing 8if, forallw,ze Z,
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*{w}=1*{z} and I"{w} =I"{z} together imply w=1z.

Pyroposition 3.3: If M is weakly distinguishing and
obeys Condition 3.1.A then:

A.T'=T;
B. M is causally continuous.

Proof: Suppose the hypotheses of the proposition hold
and 7’ #7; we will show a contradiction. There are
distinct events x,y € M such that x>y and vIy2 Ix 218,11
By Proposition 3.2.B, IyD Ix by Axiom 1.1.D, Ix2 Iy
Thus Ix=1Iy; the dual argument gives Ix= Iy. But x#y,
the required contradiction. Now 7’=7 implies that un-
less x=1y, neither fx=1Jy nor Ix=1Iy can hold.2®! Part
B of the proposition follows. ®

Covollavy 3.4: If M is causally continuous, 7' =7.

4. TOPOLOGY

Some of the examples given by Geroch, Kronheimer,
and Penrose® indicate that in general one cannot hope to
get a reasonable causal structure for ideal points which
cooperates with any reasonable Hausdorff topology.
When M is causally continuous, as we shall assume
throughout this section, the situation is more cheerful.

4.1: Call (C PUF an enlaygement of M iff ( is causal
and C contain either fx or Ix for all xc M. The extended
Alexandrov topology T on an enlargement C is defined
as the smallest topology on (" such that, for all Ce(”,
each of the following four subcollections is open:

r{c, r{d, xk{c=C-1{c, k{c=-a{c}.

Suppose C is an enlargement of M. Because of Propo-
sitions 2. 8 and 3.2.B we can, and shall, assume Ix
CC and IxéC for all x € M without essential loss of
generality.

Theorem 4.2: ((",T) is Hausdorff; f:M—-Cis an
imbedding.

Proof: Throughout the proof P and @ are distinct
elements of ("NP and F and G are distinct elements of
(NF; “Closure” and “Interior” will refer to 7 on M,
not to 7 on (",

Since C is causal, either @ ¥ P or vice-versa; suppose
Q# P. Then Closure @2 P by Corollary 1.6.A. Choose
x€ P -Closure Q. Then Pe I*{Ix} by causal continuity
and Proposition 1.7.A. Q € K-{Ix} by Proposition 1.3.B.
For any Ce pU7F, I*{C} and K-{C} are disjoint, since
B> C implies B= C, Thus we have found separating
neighborhoods for P and Q.

Suppose G £ F. The dual of the argument just given
shows there is an x€ F - Closure G and that, within
(PUF,<,«), Ix>F, Ix# G. Causal continuity and
Proposition 2.8 now show that Fe I"{Ix} and G ¢ K*{Ix},
which gives separating neighborhoods. Throughout the
rest of the paper we will use “extended duality” to
connote that duality, causal continuity, and Proposition
2.8 are being used simultaneously, as in the argument
just given.

Either F> P or F= P, Suppose first F= P. Then
there is an x in P~ Closure (¥ F), PeI*{lx} as above.
Fe K-{Ix} by Proposition 2.6.B with r=<, since ¢ F
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lfx by Proposition 1.3.B. Thus we again have separat-
ing neighborhoods. Now suppose instead that F> P,
Then + F2 P and # P2 F, Since (" is causal, either ¥ F
#Por4P+F. If there is an x€ ¥ F - Closure P, then
PeX-{Ix} and + F> Ix as above, Since ¥ F> Ix iff (¥ F)
N (4 Ix) # ¢ iff F> Ix iff Fe I*{Ix}, there are separating
neighborhoods in this case. An extended dual of the
argument just given completes the proof that ((7,7) is
Hausdorif,

IA:MA-C is one-to-one by Condition 3.1.B. More-
over, I:M—IM is open when IM is assigned the relative
topology from ((,7) since the Alexandrov topology of M
is the manifold topology of M and Condition 3.1.A
holds. To show I is continuous, we consider sets of the
form I-! B, where £ is one of the subbasic open neigh-
borhoods 4.1 and I denotes the complete inverse
image. Now Ix> P iff (Ix)ﬂ (¢ P)#¢ iff x< ¢ P, by the
dual of Proposition 1.7. A, Thus ["I'{P}= 4 P is open.
Moreover, P> Ix iff PN (+ fx)#¢ iff xc P, where we
have used causal continuity. Thus [-0-{P}= P is open.
Ix# P iff xe M - Closure (* P) by causal continuity,
Proposition 2.8, and the dual of Proposition 1.7, A.
Thus the complete inverse image of K*{P} is again
open. Similarly, P# Ix iff x€ M -~ Closure P. Extended
duals of the above arguments show that each subbasic
open neighborhood 4.1 has an open complete inverse
image. Thus I is continuous. Thus it is an imbedding. ®

5. IDEAL POINTS

We now apply our results to ideal points. The notation
is that of 1.2,

Suppose Pe/M. Then® P=I"¢, where cC M is the
image of some smooth, future-pointing, timelike
curve. There are essentially just two different casesS:
(i) c has a future end point x € M; (ii) ¢ is future inex-
tendible. In case (i), P= Ix, in case (ii), P is inter-
preted as an ideal point. Compare Figs. 1 and 5.

Throughout the rest of this section, M is causally
contingyous. Define the causal completion M of M as M
=MUM =+ (MU L). Thus M has essentially the same
structure as /U / ~. Define the casual boundary 8M
CMof M as oOM=M- IM M is an enlargement of M,
Assign M the causality <, chronology <, and extended
Alexandrov topology 7). Thus (M,<,«,7T) is a causal
space with Hausdorff topology. Suppose x,yc M.

Theorem 5.1: I M— M is a dense imbedding, Ix
> Iy iff x> y; Ix=> Iy iff y € Closure (Ix).

Proof: Tis an imbedding by Theorem 4.2. To show
that IMC M is dense we will again analyze the subbasic
open neighborhoods B given by 4.1. Suppose P . De-
fine PN (I"'R)=2C M and define Y=P - Z. By case-
work we will show Z#¢ and I"YC Y. Extended duality
and indecomposability will then show [M is dense.

Suppose 8 =I"{B}, Be M, Then xc P implies B> P
> Ix. Thus Z=P in this case; Z is not empty since P
€/M; Y is empty so Y2 I"Y. Now if A=K"{B}, we again
have Z=P and Y=¢, since P»fx, P# B, and Jx> B
cannot hold simultaneously. Next suppose 4 =I*{B}.
Then, by the definitions in Table 2.2, Z=PnN F#g¢,
where F=B or F=% B, according as Bc 7 or Bec P re-
spectively. This gives Y=P~F, Since I"P=P and I*F
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=F, Y2I'Y, Finally, suppose 8 =K*{B}. Let Q=B or
@ =¥ B, according as Be P or Be 7 respectively. In
both cases we have Z = P —Closure 7—Q¢¢, where we
have used the definitions, Proposition 2.6, and Proposi-
tion 1.3.B. ¥ =Pn (Closure TQRRI'Y=PNQ.

Now suppose P=/,N f3,, where 8, and 3, are sub-
basic open neighborhoods. Then P=I"P=[I~(Z,n Z,)]

u{r-v,Ju [I-7,]. We cannot have Z,n Z,=¢. For if we
did, indecomposability would give, say, P=I"Y, which
contradicts I"Y,2 Z,. By induction, each B €7 which
contains some Pe /2 contains the image of some xc M.
By extended duality each nonempty A €7 contains the
image of some x€ M. Thus [ is a dense imbedding.

Ix=ly it oD Iy iff y € Closure ([x) by the definitions
and Proposition 1.3.B. Ix>>1Iy iff x>y by Condition
3.1.A.

A topologized causal space Z is causally simple? iff
J¥{z} and J{z} are closed for all ze Z. Trivially M is
causally simple.

Covollary 5.2: I M—IM is a causal isomorphism iff
M is causally simple.

Example 5.3: Consider the submanifold of two dimen-
sional Minkowski space shown, together with its com-
pletion M, in Fig. 6. This space—time and its comple-
tion mimic many of the properties of a maximally ex-
tended, causally completed Reissner—Nordstrom solu-
tion.? In addition, s represents a point amputated from
the space—time and resurrected in M.

The reader may check the following points. As a point
set, the boundary oM has the intuitively expected prop-
erties. For example v& 9M corresponds to a hull pair
and is a single point of M. The topology is also the
expected one. For example // is an open neighborhood of
y. The causality is for the most part also obvious.

Thus w>v, z>v, and 2> y>x. y»X, which is accept-
able, but not intuitively obvious.

6. PROPERTIES OF CAUSAL COMPLETIONS

Throughout this section M is a causally continuous
space—time and M is its causal completion. Boldface
denotes structures formed from (M,<,«,7) by re-
peating exactly earlier definitions given for {M,<,<«,7).
For example P=1-{SC M} is the generalization of the
definition in 1.2.B. Similarly, suppose Ue 7 so that U
is an open subset of M. Then + U=I"{x € M: x<u for
all ue U}. We summarize some properties of M, with
the rather tedious proofs omitted or drastically
condensed.

It can be shown that M is causally continuous in the
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following sense (compare Sec. 3). M is weakly distin-
guishing; moreover, for all x,ycM, xc Closure J*{y}
iff y € Closure J- {x}

Theorem 6.1: M is causally isomorphic and homeo-
morphic to its own causal completion HUM/~.

Proof: We outline the main steps. (A) Suppose x,y
€ M and x>>y; then there exists a z < M such that
x> [z>y. (B) Suppose Pe P; then P=I"P. (C) I o1:
P~ P is a one-to-one onto function with inverse I R 13))
PC M itf I"*P</il. (E) Suppose Pe P; then4 P=1-T4 7-1p,
(F) Suppose (P,F)e PX7F; then (P, F) is a hull pair iff
(I-*P,I"'F) is a hull pair. (A)—(F) and some of their
extended duals imply thath/ﬁ /~is causally isomorphic
to M UM/~. Since the topologies are determined by the
causal structure, M is also homeomorphic to its own
completion, ®

The following theorem has several applications which
will be discussed elsewhere. It corresponds to a result
proposed by Seifert* in a slightly different context.

Theovem 6.2: M is globally hyperbolic iff, for every
x< M, either I"{x} or I*{x} is empty.

The result follows from the relation between boundary
points and inextendible curves discussed in Sec. 5. We
omit the proof.

7. LATTICE STRUCTURE
Let / be the hull lattice of M, A/'C ] be a subcollection.

Proposition 7.1: (Z, D) is a complete lattice. The
greatest lower bound M/ and least upper bound UN of the
elements of A/ are given by

=Interior N N, UA =+4 N.
‘FI/\/ erior ay un U

NEN

Proof: (T,2) is a complete lattice, with Interior N as
meet andU as join,'® Lemmas 1.4.A and 1.4.B, to-
gether with their duals show that 4 and ¥ are a Galois
connection from 7 to itself. The result follows,'s

Example 7.2: Let x and y be spacelike separated
events in M1nkowsk1 space, c¢ be the straight line between
them. Then fx and Iy are in L since Minkowski space
is causally continuous. The greatest lower bound of
these two elements is (fx)N (Iy)c[ However, in four
dimensions, (fx)U (Iy) is not in /. It turns out that the
least upper bound of Ix and Iy is I"c, the geodesic hull
of (Ix)u (y).

Example 7.3: Let Z be the hull lattice of the Einstein
deSitter cosmological model, In B3, let / be the collec-
tion of all open, bounded, convex subsets together with
the empty set and with R? itself. (/ , D) is a complete
lattice. The greatest lower bound of two elements in /
is their set intersection; the least upper bound is their
convex hull. It can be shown that / and [ are isomor-
phic as complete lattices.

By using the methods of Secs. 2—4, one can assign
a causal structure and a Hausdorff topology to the hull
lattice of a causally continuous space—time. Roughly
speaking, the resulting structure is a big collection of
fuzzy points,
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8. CONCLUSION

For a causally continuous space—time the causal
completion defined here seems quite satisfactory. But
should one assume that all physically interesting
space—times are causally continuous? If so, one would
like a characterization of the above causal completion
which does not involve the rather clumsy Table 2.2.

If not, one might look for generalizations. We have
tried many generalizations; each seems to have some
incurable disease.
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The necessity for statistical mechanics of relativistic particles endowed with variable rest masses
essentially arises from astrophysics (when dealing with clusters of stars or galaxies which do exhibit a
mass spectrum) and from the statistical bootstrap model of Hagedorn and Frautschi for inclusive
reactions of elementary particles. We begin this series with the simplest case of classical particles
since this case demonstrates more clearly the main features of the theory. Moreover, this classical
case is an excellent approximation for the statistical bootstrap near the “hadronic boiling point.” We
first derive the one-particle distribution function using the standard maximization procedure, in the
implicit case of a uniform mass spectrum. It is shown that the actual mass spectrum possesses a
part due to thermal agitation. An equation of states is derived. Other distributions are obtained
(energy, 4-velocity). In the case of weak collisions, space-time correlations for the numerical and
proper energy densities are derived and applied to the hadronic matter near the “hadronic boiling

point.” Finally, several extensions of these ideas are discussed.

1. INTRODUCTION

With the present article, we begin a series of papers
devoted to the systematic study of the relativistic
statistical mechanics of particles with variable masses.
A few years ago such a subject could have been con-
sidered of mere academic interest. However, the
situation has evolved mainly under the pressure of
problems arising from astrophysics.

Accordingly, let us briefly mention some of these
problems. A first one occurs when dealing with
statistical cosmology,'™* where the universe is con-
stituted of a gas whose particles are assumed to be of
equal masses. These particles are generally considered
as being galaxies and possibly clusters of galaxies.
However, galaxies (and a fortiori clusters of galaxies)
do not appear to possess identical masses. Therefore,
a less crude approach to statistical cosmology should
involve their mass distribution. A second problem where
such an approach seems to be worth considering arises
when treating in a statistical way clusters of galaxies
themselves. Indeed a number of clusters (such as
Coma or Virgo) contains large numbers of galaxies of
unequal masses. At another scale star clusters could
also be dealt with such an approach. Let us also men-
tion a general statistical approach involving implicitly
mass distributions, by Saslaw.5~7 In this theory exci-

_tations of variable masses in a gravitational plasma are
considered and discussed in connection with galaxy
formation, etc. Other articles involving mass distri-
butions have been published either in the context of
stellar dynamics® or in cosmology.®

However, the necessity of such statistical mechanics
appear more clearly when considering the very attrac-
tive firveball model of multiple production of particles in
high energy reactions, i.e., the statistical bootstrap
initiated by Hagedorn'®—'? (see also Frautschi’s ver-
sion!®), In this theory a mass spectrum of the
asymptotic form

p(m) ~ ¢ m® exp(bm)

(where ¢, a, b are constants) is basic and leads to a
good qualitative agreement with relevant experiments
in high energy physics.
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As a consequence, interesting applications of this
theory have been considered!'® in the context of the big
bang cosmology.

At this stage, and particularly when referring to star
or galaxy clusters which do not exhibit a violent thermal
agitation, the reader may wonder why should the theory
be relativistic. The answer is both of theoretical and
practical order. First it is clear that a relativistic
treatment is needed for large masses or large veloci-
ties, and that such a relativistic treatment implies a
Newtonian one. Second, in Newtonian physics, the mass
is always decoupled from momentum or energy (i.e.,
there exists a superselection rule which guaranties the
conservation of mass!® while the situation is not so in
relativity physics). This amounts to saying that an ex-
tension of Newtonian statistical mechanics to particles
with a given mass spectrum does not present the same
physical content as in relativity physics.

In this paper, we are mainly interested in treating
the simplest case, i.e., equilibrium, which is of im-
mediate importance in applications. A general relati-
vistic theory does not present any particular difficulty,
at least at a theoretical level.

In Sec. 2, the equilibrium distribution and the sub-
sequent equation of states are obtained. Section 3 is
devoted to the study and discussion of the thermal mass
spectrum. In Sec. 4, connected distributions (for energy
and 4-velocities) are derived. Section 5 is concerned
with space—time correlations.

Conventions and notations

Throughout this paper, the signature of the metric
tensor g,, is + — - —. Greek indices run from 0 to 3
while Latin indices run from 1 to 3.

2. THE EQUILIBRIUM DISTRIBUTION

Let us first derive the equilibrium distribution func-
tion of a relativistic gas of noninteracting'’ particles
endowed with unprecisely defined masses (or, equi-
valently, with a mass spectrum), i.e., such that
(2.1)

p*p,=0, p°=0.

Copyright © 1974 American Institute of Physics 1310
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The distribution function N(x*, p*) we are looking for
is normalized through

SNGR, PRy (p* /m) dyp =G* (),

where the integral extends to the domain defined by

Eq. (2.1). In Eq. (2.2), m must be considered as a
mere notation standing for (p"px)” 2, It has, however,
the physical meaning of a mass, and the normalization
integral (2. 2) will appear below to have the sense of the
average over a mass spectrum of the current of parti-
cles of mass m. j*(x*) is the 4-current of the gas,

ju(xl) = n(x)‘) u u.(x)\),

where n(x") is the invariant numerical world density of
the gas, and # “(x*) is its average local 4-velocity.

(2.2)

(2.3)

Since the mass m is no longer a disposable param-
eter but rather a function of the p*’s, the normalization
equation (2. 2) has now to be justified. Let us start with
the microscopic Feynman’s current for » identical
particles. Successively one gets

()

ZZZ::' f.:ﬂ d7 5(x* = x}( TN u(7)

i=

£ 3

{1 Y

© dro(xt - #X7)) 21 ;(.T)

1

i=n pu
Z f drdp 5(x* = 2(1))s(p* - p’i‘('r))—r;L—-

(2.4)

The distribution function N(x*, p*) is defined as the
average value over the possible motions of the
quantity!s:1®

NG, pY) = (R, )
=y [ dra(e - (s - P,

from which [and from Eq. (2.4)] the normalization (2. 2)
follows. It should also be noticed that the variation of
mass (and hence of the mass spectrum) is entirely due
to dynamics through the terms pi(7).

Let us now adopt another point of view. For like
particles of fixed mass m, the normalization condition
reads?®

jH() = f DL pu N, p)
Hm po

(with H,, defined by p* p, =m?) or

() — dp p* A
= f L BN,

Suppose now that we are given a mixture of particles
endowed with different masses m; and that those parti-
cles of mass m; have the weight w(m,); or, in other
words, there exists a true mass spectrum. Then,
instead of the preceding equation, we should have

. d s
M= wim) [ m, S PN p,
7 170 m, ¢l
Hmj
and going to a continuous mass distribution

j“(x"):f dm w(m)[ m B PE N (o o,
0 Him by m
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which is easily seen to be rewritten as

7Y A A A ﬁ
)= Lw dyp W(m) N (x*, ) =

bt
= dp N(*, pr) 2= QED (2.2)
‘/p;p)‘ao 4P ( p)m (

Once again—in a different physical context—the nor-
malization equation (2. 2) has been recovered.

With the normalization (2. 4), the momentum—energy
tensor reads

()= [ N, ) 2L, p, (2.5)

Of course, j* and T“¥ must satisfy the conservation
equations?

3,j*=0, 8,T*=0 (2.6)
The 4-entropy density'®:2° is given by
o
si)=- [ Eonee, pymivee, Mlap @0
and should verify
3,5 =0 (2.8)

at equilibrium. In Eq. (2. 7) we have dropped an unes-
sential multiplicative constant. The simplest way to
interpret Eq. (2.7) is to consider S#(x*) as the 4-entro-
py density in the sense of information?'? theory., How-
ever, if we go back to the Newtonian case, it is easily
seen that a definition such as (2.7) amounts to adding to
the usual Boltzmann entropy of kinetic theory a contri-
bution due to the mass density. In the relativistic case
the situation is not that simple so that it is preferable
either to take (2. 7) as a generalization of the usual
entropy or to interpret it within the context of informa-
tion theory.

Let us now derive the equilibrium distribution func-
tion. We follow the usual maximization procedure which

in local form writes
5S4(x*)=0 (2.9)

with account of the constraints (2. 2) and (2. 5). By
introducing therefore five Lagrangian multipliers ¢ and

£¥, the following variation equation,
8S#(x*) + ¢ 554 (x*) + £, T*¥(x*) =0, (2. 10)

is obtained. Equivalently, it may be written as

f d.p P SN(x*, p™ {In[N(x*, pM)] + 1+ ¢ + £ 9"} =0,
by 09> 0 m

03,
e (2.11)
from which we immediately get
N(x*, p*) =A exp(~ £,p"), (2.12)

with InA =~ 1 - ¢. This form for the equilibrium distri-
bution function is quite similar to the Jiittner—Synge?°
one. This is by no means surprising since (i) the basic
physical contents are alike and (ii) their derivation is
formally analogous. The main difference comes from
the domain where the integrals are evaluated:

{p“p, =0, p°=>0}in our case and {p*p, =m?, p°>0}in
the Jiittner—Synge case.
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Let us now calculate the Lagrange multiplier A, From
dimensional arguments it is immediately seen that
Aocntt (with £2=£¢,). Finally, using the fact that the
only 4-vector at our disposal is £* and Eq. (2. 3), we
obtain

A =n(x*)E*/dnx (2.13)
with?®
) = n(xt) 4 () /E(x), (2.14)

where the x* dependance of £ has been made explicit in
the last equation. In Eq. (2. 13), y is the following con-
stant:

x=J, 2K (x)dx=31/2, (2. 15)

where K,(x) is a modified Bessel function®® of order 2.

As to the remaining Lagrange multiplier £, it can be
identified with the reciprocal temperature

£=(kT)' (k:Boltzmann const) (2.16)

as in the Jiittner—Synge case. However, this last point
has to be discussed a little bit further. It has indeed
been shown that this identification is (in the Jiittner—
Synge case) not the only possible one.?® This is due to
the fact that the relativistic perfect gas law may be
written either as p =nkT or as p=pkT’. Synge makes
the first choice and, accordingly, the identification

(2. 16) follows. However, the second choice (p =mass
density) leads to another expression. ?® Here, the
identification (2. 16) has been effected (i) for the sake of
comparison with the Jiittner—Synge case and (ii) be-
cause, as we show below, we have not a perfect gas law
in p as in n.

Equation of states

In order to find out the equation of states obeyed by
this particular gas, let us calculate its momentum—
energy tensor (2.5). This tensor has necessarily the
form

TH¥(x*) = p(x*) ubin ¥ = p(a*) A=X(u?) (2.17)

where p(x*) is the invariant mass density of the gas and
p(x*) its pressure. A*¥(#*) is the local projector on the
spacelike 3-surface orthogonal to u#*:

ARV (UM = g*¥ - uri. (2.18)
From Eq. (2.17) we get

p=T"u u, p:é(p-T“u). (2.19)

It follows that
Arr )2

o= [ a,pPBE exp- e po), (2. 20)
which is easily calculated in a comoving frame
(170.: 1, 17“:0):

p=4/k. (2.21)

It remains to calculate the trace T*  of the momen-
tum—energy tensor. However, instead of using the
second Eq. (2.19) to get the pressure, it is sufficient
to notice that the usual momentum energy tensor (for
particles endowed with a mass m) is?
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To¥ =nm[K(mg)/K(me)]iwsa” - (n/£) g+, (2.22)

and that T**(x*) can be obtained from T"* with an aver-
age over masses; i.e., through

T ) = (T 455 mass (2. 23)
And since
WOpass =1, (2. 24)

it follows that pressure is simply

p=ngl (2. 25)

i.e., is the mass average of the coefficient of g*¥. Of
course, we have anticipated a little bit on the next
section; however, we see that the precise form of () ...
has no importance at this stage. From Eqgs. (2.21) and
(2. 24) we finally obtain

p=1p, (2. 26)

which may be considered as the equation of states of
this gas. It should be emphasized, however, that the
“good” one does depend on its future use. Both Egs.

(2. 25) and (2. 26) are equations of states, but they should
not be employed without any precaution. For instance,

if we had to introduce such an equation of states in
cosmological equations, we should use Eq. (2.26) and
not Eq. (2.25). In a sense, one could say that Eq. (2.25)
reflects the fact that we deal with noninteracting parti-
cles, while Eq. (2. 26) reflects the energy content of

the model.

Remark

At first sight, it could be surprising not to find, as
particular solutions of our variational problem (2. 11),
the usual Jiittner—Synge distribution for given masses;
i.e., solutions of the form

d ni§ —
N(x", P"): 1Z=-E W exp(— £miulp") (2. 27)

X5(p*p, —m3) 26(p%m;.

In fact, solutions of this form are, of course, ad-
missible, but they cannot be contained in the above
derivation since our definition of the 4-entropy density
implied the use of continuous distributions and not of the
singular type (2.27). To obtain a general solution, we
should use the following expression for the 4-entropy
density;

SH(x) =~ f %”_ NG, ) In[N (e, p)]d, p
(2.28)

s

I
-

t

_.1_ A pA A pHr MM
, meZ N P I[N (o, P p+ =S5
1050

and the usual constraints provided by the numerical 4-
current and the momentum—energy tensor.

3. MASS DENSITY

Let us denote by N, {x*, p*) the usual Jiittner—Synge
distribution®®

N (o6*, pr) = [nt /4mm*Ky(m E) | exp(— £ &, p*)

This distribution being normalized on the mass shell

(3.1)
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{p"pl =m?, p°>0}appears in this context as being a
conditional distribution. As a consequence, it is re-

lated to the equilibrium distribution (2. 12) through
N(x*, pY) =n(m) N (2, p) (3.2)

where n(m) is the mass density we are looking for. Now
from Eq. (2.12) and (3. 1) we get

n(m) =(2&°/31)m* K,(m£), (3.3)
which is normalized as
J7 nmyam=1. (3.4)
For m ~0, n(m) reduces to
n(m) ~ &/3n (3.5)
and for m ~ to
n(m) ~(&/3) V(2/m)(m £)*/* exp(- mE). (3.6)
The first two moments are given by
(my=(2/31) £, (mDH=5¢72, (3.7)

from which follows that 6m ~5 kT, where §m is the ma\ss
dispersion.

More generally,
2 _[l+5 i{+1
[ . —. 141 g=1
(m)_sﬂI‘(z)l"(z)Z £°.

Remarks and discussion

(3.8)

(1) The above mass density may be derived with
several other methods. Among them, the following is
useful and sheds some light on what is really done.

Let us calculate the local average value of an arbi-
trary function ¢(m) submitted to the only constraints
that (i) it does not grow faster than an exponential at
infinity and (ii) it is locally integrable. We have!®:27

womy=La, [ apnee, 2 oim)

_ (3.9)
:—‘3[ m3p(m) dm s exp(— m £u°) dyu,
° uO:I
=;—* f m3¢(m)%(g—m—£—)dm (3.10)
(o]
= fowd)(m)n(m)dm. QED

(2) The existence of such a mass spectrum might ap-
pear extremely surprising since we have not made any
assumption involving mass, except, of course, the
possibility of the existence of a mass spectrum.

In fact, we have made the implicif assumption that
masses could take any values uniformly in the range
(0, ©). Let us specify this point more precisely by
saying that n(m) depends only on the thermal state of
the gas since it depends on the reciprocal temperature
£ n(m) should therefore be considered, not as a true
mass spectrum, but rather as a systematic contri-
bution of thermal agitation to the mass. Consequently,

DEF

dF (m) "= n(m)dm (3.11)
must be considered as a weight factor with respect to
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which we have to integrate quantities like ¢(m) o(m),
where o(m) is the true spectrum. In the case considered
above, o(m)=1, i.e., any positive mass is uniformly
allowed.

(3) The preceding argument can be supported by a
more serious analysis of the derivation of the distri-
bution function (2. 12). We have indeed maximized the
entropy of the distribution N(x*, p*). However, what
would have occured if we had maximized only the con-
ditional entropy (m being fixed)? A simple calculation
shows that we would have obtained the Jiittner—Synge
distribution for N,, leaving the mass density com-
pletely undetermined as expected. Let us pursue this
brief analysis by looking at the entropy of the distri-
bution written under the form (3. 12). We get

Sh—— / n(m) N, («*, p*) In[n(m) N, (x*, p*)] % b
(3.12)

for the entropy 4-density. This last equation can be re-
written as

S =ukS{n(m)} +(S&) (3.13)

where the angle brackets denote an average over m and
where S{n(m)} stands for the entropy of the mass den-
sity n(m). From Eq. (3.13) it is clear that the maxi-
mization of S* [with due account of the constraints (2. 2)
and (2. 5)] yields the Jiittner—Synge distribution.

Let us now maximize the total entropy density (3. 13)
with respect to the variations of n(m) only and let us
also take the constraints (2. 2) into account. We obtain
the following equation:

6(u, SH)+co (1) + £, (T2, =0 (3.14)

where the brackets denote an average over mass and
where the index m indicates a quantity in which the
mass is fixed.?® Equation (3. 14) immediately provides

(3.15)

In Eq. (3.15) the quantities S* and T£" are completely
arbitrary. Therefore, n(m) is itself completely arbi-
trary, which result is not surprising since no specific
assumption has been effected for n(m)! However, this
arbitrariness shows that the mass dependance of n(m)
depends entirely on what is assumed as to the thermal
agitation of the gas through the terms S* and T“". If
these last two quantities are specialized to the usual
ideal®® relativistic gas, then, with a simple calculation,
expression (3. 3) is recovered.

n(m)=exp(-c—u, Sk -t TL' U 7).

Accordingly, the mass density (3. 3) must not be con-
sidered as a mass spectrum (either to be given or to be
found from additional assumptions) but rather as a
weight factor due to thermal agitation.

(4) Suppose we impose some conditions on n(m), for
instance, that

{m)=m, (m,:given constant). (3.16)
Then instead of Eq. (3. 15) we should find
n(m) =exp(-c — am —u, S& - £ET4 u u,) (3.17)

and, instead of Eq. (3. 3),
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(3.18)

where D is a normalization factor and «, the Lagrange
multiplier associated with condition (3. 18). Note that,
because of the asymptotic form (3. 6), a can be positive
or negative.

n(m)dm =D exp(— am)d F (m),

In this context, Hagdorn’s mass spectrum (1. 1) can be
found anew by imposing a condition of the form

(m - alnm) = const, (3.19)

whose physical meaning is not yet clear in this context.

Another case of interest, since it occurs frequently,
is the case when m is bounded from above or/and has a
minimum value. Then it is easily found that

n(m)dm=E 6(m —m ) 6(m_, . —m)dF (m) (3. 20)

min

(E :normalization constant)
where 6 is the Heaviside step function.

(5) What about the nonrelativistic case ? With similar
methods, the distribution function is found to be infinite,
because of the lack of convergence in m. More
specifically

n(m) ~m*/2, (3.21)

This circumstance is due to the absence of link be-
tween mass and energy. It is therefore incorrect to say
that Eq. (3. 6) constitutes the nonrelativistic limit of the
relativistic mass density, even though the Maxwell—
Boltzmann distribution can be obtained from Jiittner and
Synge’s by using the low temperature limit. ?* Compari-
son of Eq. (3.21) with Eq. (3. 6) shows that they differ
by the exponential factor exp(—m£), which is a typically
relativistic term.

(6) 1t should be emphasized that, in this model, the
particles constituting the gas can actually modify their
masses through interactions or any other processes. An
example of such a situation is provided by Hagedorn’s
fireballs.

With this remark in mind, it is quite natural that our
equilibrium distribution gives rise to an uniform true
spectrum?® in the simplest case where no extra as-
sumption is made. Only with the introduction of basic
dynamical processes, as to the mass loss (or gain), or
with empirical or theoretical facts the “true” p,q(m)
can be obtained.

When such an extra function is given [as, for instance,
Eq. (1.1) in the statistical bootstrap], the equilibrium
distribution function is simply written as

N(x*, P =Ap ((g,,,0* P*)/?) exp(= £ 4, pY) (3.22)
where A is a new normalization constant and Peg @ given
function.

(7) A remark similar to that effected at the end of the
last section can be made—our procedure cannot contain
singular distributions and, consequently, we have to
impose them. Finally, the most general thermal
spectrum has the form

28° -
pUm) = S K€y + 53 4, 8(m —m ) (1-7) (3.2)
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with
Zqizly qi?O, OS}/SI.

i=1
4. CONNECTED DISTRIBUTIONS
In this section, we derive (1) the 4-velocity distri-
bution and (2) the energy distribution.
4-velocity distribution

It is immediately obtained by taking the average over
mass of the Jiitther—Synge distribution written in 4-
velocity space,

d(ut)= <Zﬁn§£) exp(— mt u"ﬁ,‘)>
G S S
ot ()t

(4.1)
(4.2)

Had we used a true spectrum uniform inside two
values m, and m_, , we would have found (I am in-
debted to the referee for pointing out an error in the
calculation)

A
Bt = Z%%)F X (normalization const)
A

X {@XP(=~ 1y £ U, w) « Py, £ 4P uy)

— exp(— M, £, ") P(m g, @ u,)], (4.3)
where P(x)=x3/3! +x%/2! + x + 1. Such a minimum mass
appears while dealing with galaxies (m ~10* g) or in
Hagedorn’s fireballs, where it is considered to be the 7
meson mass.

In connection with these 4-velocity distributions it
might be interesting to find out the mass spectrum which
could give rise to the cosmic rays distribution,

@ (uM) = const{ir, u*)™*, (4.4)

where o ~2.5, i.e., we look for a o(m) such that

et

const(u, u)” = f dm o(m) 66;; m® exp(—m £ u, u*).

(4. 5)

It is easily seen that o(m)~m”"* and that it should be
limited from below (m = m_, > 0). Naturally, this mass
spectrum should not be taken too seriously and is,
presently, a mere curiosity.

Energy distribution

Let us derive the distribution of the energy®” e=p* u,.
We have

&)= (oe—pru,)),

where the brackets now denote an average over the
p*’s, x* being fixed. Thus,

(4.6)

¥e)=(A/n) dpble—p*u, ) exp(- Ep*u)
pu-pu>0
920
x2 7, (4.7)
m
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=(1/31)t* exp(— &e). (4. 8)

5. SPACE-TIME CORRELATIONS

Space—time correlations are of great interest in
astrophysical applications, especially particle density
correlations and mass density correlations. Naturally,
applications require a more sophisticated true spectrum
than the one used below. Here we derive what could be
called “thermal correlations”.

Particles density correlations

In Appendix A we derived the expression for such
correlations (Eq. (A11)) in the case of particles with
definite mass m. To obtain the particle density space—
time correlations, we just have to take the average
value of Eq. (All) over the thermal mass spectrum.
Therefore, we get

(6.74(7) 8 (x")) = (6 44X (5.1)
(with X* =x* = x')
xuyv (% - S
0 2
n X*XY
T T, X (5.3)

where T?=X,X*. The space—time correlations for the
invariant world density »n are obtained by contracting
the indices u and v, and hence

n (= M(x, - )R
g (ﬁlx")"

@ n(x*): s n(x) = (5. 4)

They vanish on the light cone and decrease as ~{™,

It should be noticed that, instead of Eq. (5. 3), we
would have obtained a temperature-dependant relation
if we had used a spectrum with a nonvanishing mini-
mum mass.

Mass density correlations

These correlations are easily obtained from the

expression of
(THYMTH'V (M) (5.5)

by multiplication by # u,u,, #,. The evaluation of Eq.
(5. 5) does not present any particular difficulty and
follows exactly the one given in Appendix A for §j*”.
The only changes required are the introduction of a
factor m u*" 4 in equations such as (A2). Finally, we
get

2 vyu' yv’
Wy AN e ey MR XEXVXW X
(T T (O = oy
27. XA
xexp - L2t ETM*X , (5. 6)
from which we have
wyvyu' yYv
<T““(x‘)T“'"'(x")>=4—" 1 XXX X (5.7)

i @ X) XX,
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Consequently, the mass density correlation is

A FAYN — _‘}ZI'_ .1_ ____1

6p(x*) 6p(x'*)) = En? ﬁhXA (XAXA) (5.8)

It follows that (i) mass density correlations decrease
more slowly in time than particle density correlations,
(ii) unlike particle density correlations, mass density
correlations do not vanish when x* and ™ are separated
by a null 4-distance but rather tend to increase inde-
finitely. The latter circumstance is due to the absence
of a minimum mass. If we had taken a uniform spec-
trum begining at m,,, a multiplying factor of the form

expl= M gy, £, X /(X, X2 (5.9)

would have prevented such infinite correlations, making
them going to zero when XX, - 0.

Note also that Eq. (5. 8) can be rewritten as

o) sp(x™) = £ P (5. 10)

where use has been made of Eq. (2.21).

Space-time correlations for the hadronic fireball 1%~ 3

The hadronic fireball is characterized by the mass
spectrum (1.1) with a=-3 and b ~m!, where m, is the
7 meson mass. Moreover, this spectrum is limited
from below by m,:

p(m) =cm™3exp(bm). (5.11)

Strictly speaking, Eq. (5.11) is only the asymptotic
form of the actual spectrum. It is, however, used in
most calculations since the low energy part is difficult
to obtain.

In order to calculate the space—time correlations of
the hadronic fireball, the 4-velocity distribution has to
be derived. This distribution is given by Eq. (4.1) with
another meaning for the average ( ), since we now have
a “true” mass spectrum p(m). This average is given by

(+)=H [ (++)m" exp(bm)d F (m), (5.12)

where H is a normalization constant, i.e., such that
(1)=1. Note that, due to the asymptotic expression

(3. 6) for the thermal mass spectrum, t is always
greater than b and hence 5! is a limiting temperature!®
(i.e., the “hadronic boiling point’”1°:31),

The 4-velocity distribution is now easily computed
and turns out to be

¢had(uu) = (Hn£4/6772) eXp[— mt( Eﬁ)‘u)‘ - b)] (Eﬁkuk - b)-l-
(5.13)

Despite the denominator (£u,u* - b), this distribution
is never singular provided &> b.

Using now Eq. (A10) with N(x*) given by Eq. (5.13),
we find that

Hnt? X=XV
6,”2 x T4 (

554X = £, X* — Th)™

Xexp[-m, T-Y(tuu* = bT)]. (5.14)

This formula exhibits interesting properties. One can
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see that for x=0, when £ — b, the density fluctuations
(and correlations) tend to infinity. This is due to the
fact that, at £=5, the hadronic fireball undergoes a
bhase transilion. This property shows, as remarked by
‘Carlitz® in another context, that a thermodynamical
model is no longer valid for a description of hadronic
matter. Note also that, on the light cone, §j“=0.

For the mass density space—time correlations, the
same techniques yield

(T‘“’(x") Tu’ u’(x,x» =§5T" vu’ u-'(XA)
Hng*  XuXvXe'XV'

.

= 6 T
x[(&2, X2~ bT)
X exp[~m, Tk, X* — bT)]
x[(&u X* 6T m?

+2(tu,X* - bT)m, + 2. (5. 15)
Contracting §T“**"" with u it ju,.u,., we get
Hngt, — —
(@P()op(x ) = e (X — BT (X1
x exp[- m (u,X* - bT)T]
X[(Eu,X* = BT)?m2- 2(£u,X* = bT)m, + 2], (5. 16)

which exhibits the same qualitative features (discussed
above) as

nkt 1 1

H
(Bn(') bl = g T3 X pm T

Xexp[-m, T (tu,X* - bT)]

X[(£u,X* = bT)?m? + 2( £, X* = bT)m,, + 2] (5.17)
obtained from Eq. (5.14) by contracting the indices
and v. The only qualitative difference between mass
density and numerical density correlations (or
fluctuations) is that the former begins much before the
latter when £—b.

Expression of this kind will be proved useful in big
bang models or in hadron stars. However, we must
bear in mind that Egs. (5.14)—(5.17) are only approxi-
mate since (i) the number of particles has been im-
plicitly considered as fixed and (ii) we have used
Maxwell—Boltzmann statistics instead of the correct
quantal ones. % We shall see® that the difference may
be important.

6. DISCUSSION AND CONCLUSION

In this paper, we have given the most simple proper-
ties of relativistic gases at equilibrium (and possibly
at local equilibrium) when their particles may exchange
mass. This was essentially possible for, at equilibrium,
we did not need any detailed dynamical mechanism for
such exchanges. It is clear, however, that dynamics is
(at least partially)!® contained in the “true” mass spec-
trum has to be determined elsewhere: either experi-
mentally or theoretically as in the statistical bootstrap
models for hadronic matter.

It is also clear that the extremely simple properties
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derived here cannot be applied bluntly to physical
situations. Some less trivial generalizations are re-
quired. Among them let us mention (1) microcanonical,
canonical and grand canonical ensembles, (2) presence
of an external force field, (3) gravitation, (4) quantum
statistics, and (5) nonequilibrium phenomena.

Let us briefly review these various points.

(1) The microcanonical ensemble is easily written!®
in the absence of mass spectrum and next integrated
over a given p(m). From this microcanonical ensemble
the canonical ensemble is derived, by using the method
of structure functions. Although be it rather lengthy,
this does not present any particular difficulty. 33:3¢
However, the most interesting generalization is the
grand canonical ensemble since particles can also be
exchanged. Here again things are simple (see Appendix
B).

(2) The usual relativistic gas in an external force
field has already been treated elsewhere?® and the
generalization is obvious. However, in the context of an
eventual application to the primordial fireball (with
10"38 55 1s), the classical external mesic.field
deserves a particular consideration. First, this field
contributes to the mass, adding a term in A& (X : coup-
ling constant; ®: mesic field). Second, such a classical
field can be used to describe the interactions of a field
containing a large number of m mesons. Third, in a
model'® based on the statistical bootstrap, very heavy
fireballs (which ultimately will turn out to be pro-
togalaxies) are produced (matter acquires a “grainy
structure”) in a sea of light particles, most of which
are 7 mesons. Fourth, the relativistic scalar plasma
(and at this stage of the evolution of universe, matter
could be described as such, with suitable modifications)
has been studied and presents particular instabilities36:37
which could be interesting in this context.

(3) As to the extension of the previous results to in-
clude grvavitation, most results of Secs. 2, 3, 4 are still
valid, though some care is needed in handling indices,
integration, etc. For instance, instead of Eq. (2. 5),
we would write

re)= [
(x}) pOpP =0

Sop
020

(181172 dp N, ) 2L

(6.1)

It is also clear that the normalization constant A will
not change since locally Minkowskian coordinates can
always be used to evaluate this invariant quantity. In
the same way, the thermal mass spectrum will not
change since the general relativistic Jiittner—Synge
distribution®® preserves its special relativistic form. 3°

However, the main difference is that the distribution
function has to satisfy a less trivial Liouville equation
than the special relativistic one. Instead of

p*o . N=0, (6.2)
it should satisfy
- aps 0
LN=p* 09, N-TH, p*p? 5" N=0, (6.3)

where the I'2’s are the well-known Christoffel symbols
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of second kind. This equation demands the same con-
straints on £, as in the case considered by Chernikov®;
i.e.,

v, E,+V,E,=0 (6.4)

and the only difference comes from the normalization
constant which leads to 9,A=0, or

(6.5)

Had we also considered a “true” mass spectrum p(m)
in front of N [i.e., as in Eq. (3.23)], we would have
obtained the same results essentially because of the
fact that the quantity m = [g, (x*)p“p*]'/? is a constant of
motion. Accordingly, p(m) is also a constant of motion
and therefore is a solution of Eq. (6.3). Finally, since
Eq. (6.3) is linear the function p(m)XN(x*, p*) is such
that

L[p(m)- N(x*, pM)}
=L p(m)- N(x*, p*) + p(m) LN(x*, p*)
=0

nt= const.

provided LN=0.

The only nontrivial generalization is that for the
space-—-time correlations. This requires (i) the com-
plete solution of the geodesic equations and (ii) extreme-
ly involved calculations. Fortunately, these calculations
can be performed in the case of a big bang cosmology
when correlation lengths are small compared with the
radius of the universe. In such a case, the spatial
curvature may be considered to be zero and the calcu-
lations (i) and (ii) can be performed.

Let us also note that the equilibrium distribution
(2. 12) is not a solution of Eq. (6. 3) for an expanding
homogeneous isotropic universe (except perhaps during
an extremely short duration) since Eq. (6.4) is not
satisfied. It can however be taken as an initial distri-
bution whose evolution is governed by Eq. (6. 3).%

Finally, it should be mentioned that the inclusion of
gravitation in the theory is interesting not only in view
of applications to astrophysics but also to elementary
particle physics. Indeed, if Hagedorn— Frautschi
statistical bootstrap has to be taken seriously, this
theory will provides clues and suggestions as to possible
tests for equality of gravitational and inertial masses
etc.; of course, the latter assertion is true only if one
thinks that general relativity is valid not only on a
macroscopic scale but also at a microscopic level.
These aspects are presently under current investigation.

(4) The quantum case is treated in a separate
article® and does not present particular difficulties.
Although we could start maximizing the expression for
the entropy written as a functional of (n,) (n,: number of
particles in the state s)*! it is preferable to start direct-
ly from the density matrix. As an example, the thermal
mass spectrum is found to be

_ 4mz
T ons

m Ky (me(n+ 1)

E n+1) ) (6. 6)

1(m) i) (¥2)
F 1

where the upper sign stands for fermions and the lower
one for bosons (z is linked to n+ and ¢ through the
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normalization condition). In the case where the “true”
mass spectrum is uniform, there exists a Bose—
Einstein condensation on the state p* =0. When there
exists a minimum mass, this condensation is on the
state p* = (myy,, 0), where m,, is the smallest mass
compatible with the quantum numbers of the gas. This
condensation might have interesting properties in big
bang models. * It is also found that Fermi degeneracy
presents peculiarities which might be used in the study
of hadron stars.

APPENDIX A

In this appendix, we derive the expression of the cor-
relation tensor (5j4(x*)- 8j%(x'*)) for a relativistic
perfect gas. Let us write

547" (6a(x*) - B5(x)). (A1)
j%(x*) is the vandom numerical 4-current’® of the parti-
cles of the gas®:

i

N 400
jae =, [ 80— X —ulr ) dr,

(A2)

(assuming weak collisions),

where 7, is the proper time of the i-th particle while u
is its 4-velocity. Here 73=x}x,,, since the particles
are not interacting. For the same reason particles
move along straight lines between collisions.

Let us also recall that the average value of a given
physical quantity A% is given by'®+%

<A'.'>=/ f N@MA urds, g
T uthuy, =1 Uy
>0

(A3)

(Z: spacelike surface)
and hence, as an example, we have!®
gty =7 ().
In Eq. (A1), we defined
84 (x) = jip(x") = ().

(A4)

(A5)
Now, Eq. (A1) may be written as

Gj”"(x",x”‘):Z/ drdr %L-t— u*dz (x,)
i o

Xohul N(x*, ud) X 5(x* = x} =y 7)

X5(x* =2t =ul ), (A6)

where d> (x,) is the 3-surface element relative to the
ith variables. By using the properties of the Dirac
distribution, Eq. (A6) reads

d.
6j"”:Zi}/.deT’ -;:iu“ ds, (x,ubuy N(u})

X§(x* = x, —uf(T = 7))

X O(x'* = x et} 7). (AT)
The last § term of this last expression is
(¢ —t,—ud T 5(x' —~x, - u,7). (A8)
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The 7’ integration yields
8(x — X, —u, (u®) (¢, — ¢ N ut, (A9)

which is next eliminated with the x; integration [i.e
with u® d= (x;)]. Finally, it remains that

‘9

54V (xM) = f daT ] N(u*yuu® 5(X* = u* T) agu )
ubvy =1 uo
4950
(A10)
where X*=x*~x'* and T? =X*X,. The integrations oc-
curing in Eq. (A10) are easily performed, and we find

méEn p. ¢ ex - mEup X
WK (me) T° O T T

841X = (Al1)

This expression agrees with the one already given by
Sytenko*® (in a noncovariant form) for the density cor-
relation function,

APPENDIX B

In this appendix, starting from the microcanonical
ensemble, we give a derivation of the distribution func-
tion (3. 22)

N(xl’ p)‘) =A~p(m) exP(" 517;}7)‘)

The expression for the relativistic form of the
microcanonical distribution for N free particles has
been given elsewhere!® and is easily generalized so as
to take account of p(m):

(B1)

micr

iN
N® (P*, {pt}) = const 5(P* —§ pE) (52)

iy
x il;ll 2m p(m,)6(p5(D'p,, — m3),

where 0 is the Heaviside step function and where the
normalization constant depends (i) on the number of
particles N, (ii) on the fotal momentum energy P* of
the gas, and (iii) on the spatial volume occupied. Note
that N is normalized through's

mier

) i=N p
f Nojer (P*, 05D I dopy

N\ puipuz.. peN
=J*1% "y =(‘7> —ur (B3)
since P* is the only disposable 4-vector included in
N In the preceding equation we have set P*p, =M,

micr’

Instead of using N¥ (P*, {p%}) we shall rather use the

conditional distribution!® (x* being fixed)
NI (2P, o) = Nt (P, 1

micr
1"
X H P P

i Mm; (B4)

The reason why we use this conditional distribution
is the following. It is a true probability density in
momentum space, while this is not the case for Eq.
(B2) due to the normalization condition (B3).

It follows that the one-particle distribution function is
given by

(5= [ T dypy- 5(0* - PING( [, [p£D) (BS)
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where we have made clear in the notation for N(x*|p")
the one-particle distribution that we calculate a con-
ditional (x* being fixed; one could also say, a local--+)
distribution. A simple calculation provides

A - 1/2 "
N(xxlpl):p(m) QN'I([(P ph)(PA p)‘)] ) P pu

2,4 TR
(B6)
where
iy
)= [ 0P - 7 1) (B7)
x il;ll p(m )2m,6(p)B(Dp, ; — m2) pui dJ’,

An expression similar to 2,(M) has been evaluated by
Lurgat and Mazur?®? using the central limit theorem, **

Their (M) differs from ours by the absence of the
term

i=N
il}1 plm) Pep, M mit.

In the limit N> 1, they found
(M) =& (B) exp(BM)

3\-1/2
x(@2* o loe by ) (88)

where $N(B) is the generating function** and where 8 may
be identified* with (¢T)™". In our case (M) is given by

a similar formula except that the generating function is

different.

In our case, it turns out that the generating function
is

A,(oz) fn (M) exp(- a, P*)d,P (B9)
=<ﬁ17;> (ga_;_z 4 % %) [X(a)], (B10)

where
x(@)=2 [ am p(mym? K (me). (B11)

[¢]
(with o?=a*a ).

However, the important thing for the derivation of
Eq. (B1) is the form of QM) and, more particularly,
the fact that

(M) ~ exp(BM).
Inserting Eq. (B12) in Eq. (B6), we find
N(x*|p*) = L(B, M) exp[— BM + (M® + m? — 2P*p ) /2]
Xp(m)X P*p (Mm)™ (B13)

(B12)

~L(B, M)p(m) Pup, (Mm) exp(~ BP“M7p,) (B14)

since for N> 1, M > m.

This is almost Eq. (B1) except that the constant
factor L(B, M) has to be determined. In fact, for the
sake of brevity, it can be determined by the normaliza-
tion condition although it is actually furnished by the
limit form of Q,(M).
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Equation (B14) allows the identification of SP*M"!
with &%= gu™*, Next, after multiplying Eqs. (B13),
(B14) by the invariant numerical density n(x*) the final
form (B1) is recovered.

In fact, the precise form (B1) could have been re-
covered rigorously from the generating function al-
though the calculations are rather lengthy.

APPENDIX C: PROOF OF EQ. (2,15)

Since a number of calculations occuring in this paper
are typically those leading to Eq. (2. 15), this equation
is proved here. First we start from the normalization
equation (2. 2) which we write as

o]

/n”’d’” Db P2 N, py=dm (). (1)
’xh_mz pO m

Using the fact that J#(x) is necessarily proportional to
£ and a Lorentzian frame where £* reduces to
(1,0,0,0) a straightforward calculation leads to

%= f )
= /o- ndm i—; (— 5%) [p e %03 exp|~- £p°] (C3)

e

where the passage from Eq. (C3) to Eq. (C4) may be
found in Ref. 18 (Eq. (108). Equivalently Eq. (C4) is
rewritten as

£t d
dm L 252 exp[~ Ep°]p°;1; ;,’03 (C2)

xzﬁf dm drm*K (mE) (C5)

4m J, 3

z[a dx x*K,(x) (with x=m¥), (C6)
4]

where use has been made of those recursion relations
for the K,’s given in Ref. 18. Now using Cartesian co-
ordinates, the normalization equation (2. 2) leads im-

mediately to

x=£* / ap® f dP—f—};)—ﬂ? exp(- £p°), (CT)
which reduces to

© 2
x=t4 [ dp°(p") exp(- £p°) [J* sin*0de (c8)
with the change of variable p=p°sind. Finally we ob-
tain Eq. (2. 15),
x=3n/2. (2.15)
In conclusion, we have evaluated the same quantity in
two different systems of coordinates in Minkowski

space: Cartesian coordinates and relativistic polar
coordinates.
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We have described a new approach to the Clebsch-Gordan problem for the unitary representations
of the three-dimensional Lorentz group. We relate the various types of Clebsch—Gordan series to
problems in the representation theory of four-dimensional orthogonal and pseudo-orthogonal groups,
and thereby achieve a new and better understanding of the structures of the series. At the same time,
the Clebsch-Gordan coefficients in a continuous basis are calculated. In this, the first of four papers,

the case D*®D * is worked out in detail.

INTRODUCTION

The problem of constructing the unitary irreducible
representations (UIR’s) of the three-dimensional
Lorentz group 0(2, 1) was solved by Bargmann many
years ago.! This work was partly motivated by the fact
that knowledge of these UIR’s was a necessary step in
the construction of all the quantum mechanically ac-
ceptable unitary representations of the inhomogeneous
Lorentz group.? For this reason both single- and dou-
ble-valued representations of 0(2, 1), or in other words
all the single-valued UIR’s of the spinor group SU(1, 1),
were constructed by Bargmann. Following this work,
many authors considered the Clebsch—Gordan (CG)
problem for this group. * This problem naturally splits
into two parts. The first is the determination of the
Clebsch—Gordan series, namely the determination of
which UIR’s are present in the decomposition of the
direct product of two given UIR’s, and each how often,
The second is the evaluation of the Clebsch—Gordan co-
efficients which effect the decomposition of a direct
product into irreducibles.

The UIR’s of the group SU(1, 1) can be naturally di-
vided into three classes: the discrete class, the con-
tinuous nonexceptional class, and the continuous excep-
tional class. We shall hereafter be concerned with the
first two classes alone. The discrete class can be fur-
ther subdivided into UIR’s of the positive type, and those
of the negative type. Let us generically denote these two
types of UIR’s as D* and D", respectively; for the UIR’s
of the continuous type we shall write C. (Further dis-
tinguishing labels will be appended in due course. )
There is essentially just one nontrivial outer automor-
phism that can be defined for the group SU(1, 1), and it
has the effect of converting a UIR of type D* into one of
the type D™ and vice versa, while it carries any UIR of
type C into itself. Consequently, the only essentially
distinct direct products to be considered are of the
forms D*® D*, D*® D", D*® C, and C® C; D"® D" and
D™® C are related to the first and third cases by the
outer automorphism. The structure of the C—G series
changes greatly as one goes from one of these four
cases to another; but this structure has an intrinsic
meaning in that it does not depend on the ways in which
the various UIR’s are realized. On the other hand, the
C—G coefficients are always defined relative to a well-
defined way of realizing the UIR’s; that is to say they
depend on the way in which basis vectors have been
chosen in the spaces of the various UIR’s.

In the three-dimensional Lie algebra of SU(1, 1), one
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can distinguish three distinct types of elements, those
of elliptic type, those of parabolic type, and those of
hyperbolic type. The maximal compact subgroup of
SU(1,1), [the O(2) subgroup of 0(2, 1)], is generated by
an element of elliptic type. In Bargmann’s paper, the
UIR’s of SU(1, 1) were constructed in a basis in which
the O(2) generator is diagonal. In this basis, the break-
up of a UIR of SU(1, 1) into a discrete direct sum of one-
dimensional representations of O(2) is immediate. Fur-
ther, the relationship of the representations of SU(1, 1)
to those of the compact group SU(2), which is quite
close, can be nicely displayed. In all the work done on
the Clebsch—Gordan problem upto now, this same
“0O(2)-basis” has been used; so once again the expres-
sions for the SU(1, 1) C—G coefficients are intimately
related to the SU(2) case, and may be thought of as
suitable analytic continuations of the latter.

An alternative basis in which to set up the UIR’s of
SU(1, 1) is that in which the hyperbolic generator of an
0(1, 1) subgroup is diagonal.* We shall refer to such a
basis as a continuous basis. This form for the represen-
tations has become quite important in recent analyses
of generalized relativistic partial wave analysis.® The
aim of the work to be described in the present series of
papers was originally the determination of the C—G co-
efficients of SU(1, 1) in a continuous basis, for all pos-
sible direct products of UIR’s not belonging to the con-
tinuous exceptional class. We have described elsewhere
a construction of the UIR’s of SU(1, 1), in which the
generators are built up in a simple manner using oscil-
lator operators, and in which a certain degree of uni-
formity is achieved in the treatment of the discrete
class UIR’s on the one hand, and the continuous class
UIR’s, on the other.® In this construction a particular
0(1, 1) generator has a specially simple structure not
shared by the other two linearly independent generators.
Using this construction as the basis for the calculation
of the C—G coefficients in a continuous basis, it soon
became apparent that there was a higher symmetry in
the problem. The structure of the C—G series in each
of the four cases D*g@ D*, D'® D™, D'® C, C® C gets
related to a problem in the representation theory of a
four-dimensional real rotation group, the particular
group depending on the type of direct product involved.
By fully exploiting this connection, one now understands
in a new light why the C—G series looks the way it does
in each case; correspondingly, a certain amount of uni-
fication is achieved among results which might other-
wise appear disjointed. The higher symmetry of course
also helps us in computing the C—G coefficients in each
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case. But its greater value is in the explanation of the
structures of the various C—G series; and these struc-
tures as we have already noted are intrinsic to the rep-
resentation theory of SU(1, 1). It is interesting to note
that this higher symmetry is not at all apparent in all
the work done on the C—G problem for SU(1, 1), in the
“0(2)-basis”; it results directly from the specific way
in which we have set up the UIR’s of the group, and this
is geared to the use of the continuous basis.

It is worthwhile describing briefly at this point how
the higher symmetry comes about. Recall that the dis-
crete class UIR’s of SU(1, 1) can be labeled by an index
k with possible values 1/2, 1, 3/2, ..., for each value
of & we have one UIR of positive type, D;, and one of
negative type, D;. A UIR of continuous type is written
C::e=0 or 1/2 accordingly as the UIR is of either inte-
gral or half-integral type, and ¢ ranges from 1/4 to «.”
The value g=1/4 is excluded if e=1/2. The label ¢ may
be parametrized by g=1/4+ s%, with 0 ss<~ if e=0
and 0<s <= if e=1/2. In terms of oscillator operators,
it is possible to set up three somewhat special unitary
reducible representations of SU(1, 1), which we shall
denote by /)*, /)7, and (.® When expressed as a direct
sum of UIR’s, /)* contains the UIR Dy ,, once, and each
D, for k>1 twice. Similarly, /)~ contains D], once, and
each D; for 2 =1 twice. And ( can be expressed as a
direct integral of the UIR’s C;, with each UIR for each
pair €, ¢ occurring with multiplicity two. (All these
properties will be explained in the subsequent sections. )
Consider now the unitary representation ))*® /) * of
SU(1,1): It is clear that every direct product of the form
D;® D}, is contained in this larger representation. It
turns out that the generators of the product representa-
tion /)*®/)* which are just sums of the generators of the
individual factors, are invariant under a set of trans-
formations that can be defined on the space of the rep-
resentation /)* ® /) and having the structure of the
group O(4), the group of real orthogonal rotations in
four dimensions. And the Casimir invariant for the
“total” SU(1, 1) representation is identical to one of the
two O(4) Casimir invariants. [The other 0(4) Casimir
invariant vanishes. ] In fact the representations of 0(4)
appearing here are just those carried by “spherical
harmonics” in four dimensions. By splitting up the
space of the representation /)*® /)* of SU(1, 1) into sub-
spaces in which distinct O(4) representations occur, and
this is relatively easy, we obtain subspaces in which
distinct UIR’s of the “total” SU(1, 1) appear. By a fur-
ther suitable choice of basis, we can then specialize to
individual products of the form Djg D} contained in
)'® /)7, and easily read off the corresponding C—G
series. The structure of the C—G series for this type of
direct product is then seen to be essentially determined
by the spectrum of O(4) representations obtained by the
action of this group on functions on the unit sphere in
four dimensions.

In a similar way, the product representations /)'® /),
D'® (, and (@ are associated with the symmetry
groups 0(2, 2), 0(3,1), and 0’(2, 2); and the structures of
the C—G series for products of the form D;® D;,,

D, ® C, and C%® C¢, are fully determined by the prop-
erties of “spherical harmonics” corresponding to
0(2,2), 0(3,1), and 0’(2,2), respectively. Here, the
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same group 0(2, 2) describes the symmetry properties
of both /)*® /)" and ( ® (; however, the “spherical har-
monics” are needed in the two cases in different bases;
in the former, the O(2)® O(2) subgroup of 0(2, 2) is
singled out, in the latter it is the subgroup

0(1,1)® 0(1, 1). The construction of the “spherical
harmonics” for the groups 0(2, 2), 0’(2, 2) can again be
reduced to a simpler problem at the level of the group
SU(1, 1): This happens because locally 0(2, 2) has the
same structure as SU(1, 1)® SU(1, 1). And the structure
of the Plancherel formula for SU(1, 1), as derived by
Bargmann, yields immediately the required spherical
harmonics for 0(2, 2); while the same formula written in
a new basis is adequate for 0/(2, 2). ° In dealing with the
intermediate case /)'®(, we were led to an interesting
problem in the representation theory of the homogeneous
Lorentz group O(3, 1), a partial solution to which is
available in the literature.® The problem is to decom-
pose the unitary representation of the (3 + 1)-homo-
geneous Lorentz group O(3, 1) acting on functions defined
on the single sheeted spacelike hyperboloid in real four-
dimensional space with metric +++—, into UIR’s of
0(3,1). (The corresponding problem for the two sheeted
timelike hyperboloid was solved long ago, and the re-
sults will be relevant in our work.) We have described
elsewhere a complete solution to this problem, and the
results will be used in the present work. !

We now outline the plan of the present and the suc-
ceeding papers of this series. Even though the spirit
behind the solution is the same in all four types of direct
products, the details differ. To avoid confusion, there-
fore, this paper mainly deals with the Clebsch—Gordan
problem for the products of the form D*® D*, and the
related case D"® D". In the second, third, and fourth
parts of this work, we shall take up the cases D*g D~
(and D"® D*), D*® C (and D"® C), and C® C, respective-
ly. In each case, all the relevant details of the cor-
responding symmetry group and its associated spherical
harmonics will be developed. In Sec. I of this paper, we
gather some information on the UIR’s of the group
SU (1, 1), and the particular construction of these UIR’s
that we will use later on. Section 2 contains a descrip-
tion of the three unitary representations /)*, /)7, and (,
as well as a concise statement of the structure of the
C—G series in all four cases, and some comments on
them. The material of Secs. 1 and 2 will be used in the
succeeding papers as well. In Sec. 3, we describe the
symmetry properties of the representation /)'® /)" of
SU(1,1), and show how this leads to the well-known
structure of the C—G series for two positive discrete
UIR’s. The results of Sec. 3 lead immediately to the
C—G coefficients in a continuous basis; these are given
in Sec. 4. Finally, in Sec. 5, the details for the case
D"® D~ are read off from the previous results using the
outer automorphism of SU(1, 1).

1. STANDARD FORMS FOR THE UIR’S OF SU(1,1)

The group SU(1, 1) consists of all 2X2 complex ma-
trices of the form

() e

In this defining representation, we identify the genera-

(1. 1)
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tors as 30,, (i/2)0,, and - (i/2)o,, where 0’s are the
2X 2 Pauli matrices. In a general representation, the
corresponding generators will be written J,, J,, J, and
they will obey the commutation rules

- i[JD, J1] =J2’ - i[Jm Jz] - J].’ - i[Jv Jz] == Jo-
(1.2)
In a unitary representation, the J_ are Hermitian. J, is
elliptic, J, and J, hyperbolic. When we use a continuous

basis, J, will be the preferred generator. The Casimir
operator @ is defined by

Q={(J P+ (P = (J, ) (1.3)

It commutes with all the J,. The outer automorphism
7 may be defined to have the following actions on a gen-
eral element of SU(1, 1) and on the generators:

o B - a* B*
p* ax g a)

Jo—=dg, Jy=~d,, J=J,.

T (1. 4a)

(1. 4b)

Clearly, both the group composition law and the com-
mutation relations (1, 2) are preserved by the mapping
T.

A UIR of SU(1, 1) is unambiguously specified by giving
the value of the Casimir invariant @, and in addition the
eigenvalue spectrum of the generator J,. In the discrete
UIR’s D%, where k takes on one of the values 1/2, 1,
3/2, - -, the value of @ is k(1 ~ ); and the eigenvalues
of Jare m=Fk, k+1, E+2, -+ in the positive discrete
case, and m=-k, ~k-=1, —k~2, ... in the negative
discrete case. Because the eigenvalues of J, are all of
one sign, it is trivial to see that the automorphism 7
cannot be unitarily implemented in these cases. On the
other hand, 7 preserves the value of @; so it is equally
obvious that it converts a UIR D; into D and conversely.
In the continuous UIR’s C%, the value of @ is g=1/4+ 5%,
where s 20 or s> 0 according as to whether e=0 or 1/2;
and the eigenvalues of J,are m=0, =1, £2, -+ if €=0,
and m=+1/2, £3/2, --- if e=1/2. Since as we have
said the value of @ and the spectrum of J, determine a
UIR uniquely, 7 must be unitarily implementable in a
UIR C¢; if we write |s, ¢;m) for the eigenvectors of J,
and adopt a suitable phase convention for the matrix
elements of J, and J, (the Bargmann choice), 2 then the
unitary operator A that implements 7 is given by

Als,gm)=(=1)""|s, ¢ ~m). (1.5)
Let us now summarize the nature of the eigenvalue
spectrum of J,, and then give the construction of the
UIR’s that will be used later. We will use letters p, ?’,
«++ to denote eigenvalues of J,. Then it turns out that in
a UIR of discrete type, whether it be of positive type or
of negative type and whatever be the value of 2, the pos-
sible values of p are all real numbers from —« to + =,
and for each value of p, J, has precisely one eigenvec-
tor. In a UIR of continuous type, again the possible
values of p are all real numbers from — < to +, in-
dependent of both s and ¢, but now J, has two linearly
independent eigenvectors for each value of .13 There-
fore, within a discrete UIR, the elements of a con-
tinuous basis can be completely labeled by the eigen-
value p of J,, but this is not so in a continuous type UIR.
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However, in the latter case we know that a unitary op-
erator A can be found that will implement the automor-

phism 7, and A commutes with J,. By specifying both
the eigenvalue p of J,, and a==+1 of A, we can then
unambiguously label the elements of the continuous basis
in a UIR C}. Summarizing, in the UIR D}, n=41, we
have the continuous basis |k, 7n; p) obeying

Iy |k, mspy=p |, m;p),

oy | R, msp)=8(p = p), (1.6)
And in the UIR C; we have vectors |s, € p, a) obeying

Jyls,€ p,a)=p|s, p,a), Als,& p,a)=als, € p,a),

(5,6 1',b|s,6 b, a)=0(p =)y, —®<p,p<e,

b=zx1, a=x1.

"°°<p/’p<°°-

(1.7

The question of a “phase convention” for such basis
vectors is much more subtle than in the 0(2)-basis,
because the generators J, and J, cannot be described by
means of “matrix elements” any more. All we shall
insist on in a realization of a UIR is that choices of con-
tinuous basis vectors and of A be made consistent with
the above equations.

For any chosen value of 2, the UIR D, can be realized
in the following fashion.'* We define the Hilbert space
A (R, +) to consist of functions on the positive real line,
f(7r) for 0 <¥ < o, with the norm

FIe= [ 7|f(r)[2dr<.

[Actually the space //(k, +) does not change with &, but
we keep these labels to remind us of the UIR being con-
structed. ] The generators of SU(1, 1) will be written
J(k,+) and are

Jo<k,+)=%(7z_ﬁi_l _d_+(_2u),

(1.8)

ar® v dr r?
(@ 1d_(2-1)
ik, +)= 7 (’ R 7l P )
-1 d
Jz(k, +)_ T(rt_i’)’— + 1) (1.9)

The dependence on £ lies only in J (&, +) and J,(k, +); it
can be checked that Q has the value 2(1 - k) and that
Jo(k, +) has the correct eigenvalues. The finite trans-
formations generated by J,(k, +) are local but those
generated by J,(k, +) and J,(k, +) are nonlocal. The first
is easy to construct:

[exp(itd,(k,+)) f](r)=exp(¢/2)f[rexp(t/2)].  (1.10)
For the others we can write the general forms
[{explipd (b, +)] or explivd (&, +)]}f ()= f:r' dr'

X{L®* (v, 7" ;u) or M=y, 7" ;0)} f(7'). (1.11)

The kernels L and M can be evaluated, and are given
in Ref. 6, and will be omitted here. Finally, the vectors
of the continuous basis, satisfying Eq. (1. 6), may be
chosen to be

[k, +;p) = (1/Vm) 72971, (1.12)

For the UIR D;, we define the Hilbert space 4/ (k, =)
in exactly the same way as 4/ (k, +), but choose the
generators J, (¢, —) thus:
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Jo(k, _): - o(k; +), J]_(k7 _) = _J]_(k’ +)) Jz(k, _)

=dJy(k, +). {1.13)

The action of the finite transformation exp(izJ,(%, +)) is
unaltered, while the kernels L‘** and M‘** are re-
placed by new ones, L'*~ and M‘*', which are actually
easily obtained from the former. Finally, there is no
change in the continuous basis vectors:

|k, —; D) = (1/Va )i,

Some subtleties are involved in setting up the UIR’s
C¢. Just as the spaces // (&, +) did not change with 2, we
now have a Hilbert space /4 (s, €) which actually does not
change with s or €. It consists of pairs of functions on
the positive real line,

(1.14)

f:(;IEZD 0<r<, (1. 15)
with the. norm
WFe=[" w2+ | D dr <. (1.16)

The generators J (s, €) will be simultaneously differ-
ential operators in ¥ and 2X2 matrices; formally there
seems to be no dependence on € and we have

1 d 452 )

Jo(s e)—l 2+—£+—-—+—— o.
NEI=g\T T @ T v dr 7z) ® %

_1(,., a® 1.4d 4
Jl(s,e)_4(r +d7'2 +r g +—72— ® 0y,

Jz(s,e)z:z—i<'r—d—+1>® 1. (1.17)

dr
But the dependence on € comes in through the delicate
dependence of the domains of J (s, €) on €. In practice
the value of € will be clear from other considerations,
whenever we come across a continuous class UIR. An-
other point is that the generators J (s, €) seem to be
invariant when the phase of f,(7) in (1. 15) is changed
relative to f,(7); in other words, they would all appear
to, but actually do not, commute with the operator o,,
which would be absurd since we are dealing with an ir-
reducible representation. Again this is a deficiency in
trying to identify a UIR C7 by merely looking at the
formal expressions for the generators, but can be taken
care of appropriately (see below). In Ref. 6 the kernels
describing the nonlocal actions of exp[iuJo(s, ¢)] and
explivd (s, €)] have been listed and the € dependences
made explicit. We have equations of the form

{explitd,(s, O1f };(r) =exp(£/2) f,[r exp(£/2)],
2 L3
[{exp(iud (s, €)) or exp(iv (s, e))}f],:}ez fo dr’ v’

=1
XL Or, 775 u) or My (r, v} f(r"), j=1,2,
(1.18)

and the 2X2 matrix functions L, M of », »’ arising here
can be found in Ref. 6. The automorphism 7 is now im-
plemented by the operator A acting as follows:

nmoy a(B0)= (A7),

Therefore, once the value of € has been fixed by other
means, we may recognize a UIR of the type C¢, when we

(1.19)
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find the generators to be of the form in Eq. (1.17) [and
of course the space they act on to be of the form of

H(s, €)] and in addition if we are either able to show that
the finite transformations have the form (1. 18) or that

T is implemented in the manner of Eq. (1.19). [This
last point takes care of the problem posed by the formal
commutability of J (s, €) and o,. ]J1t is now easy to
choose the simultaneous eigenvectors of J,(s, €} and A so
that they obey Eq. (1.7):

. _L<1
|s,6,P,a>—m .

With this, we have specified the standard forms that we
shall adopt for the UIR’s of SU(1, 1).

)rz""l, a=+1. (1.20)

2. THE SPECIAL REPRESENTATIONS /%, (

As stated in the Introduction, an important role is
played in our analysis of the Clebsch—Gordan problem
for SU(1, 1) by three special unitary representations of
this group. One of them acts as a generating repre-
sentation or source for all the discrete positive UIR’s,
another for all the negative ones, and the third for all
the continuous UIR’s. We will describe the properties
of /)* first, /)" next, and ( last.

Introduce the Hilbert space //(+) consisting of com-
plex valued functions square-integrable over the two-
dimensional plane. Elements of //(+) are written
f{x,, x,), with the norm given by

IFIE= [ dx, [7 dx,|f(x,, x,) |2 (2.1)

In this space, we can set up two independent oscillator
operators a; and their Hermitian conjugates a} obeying
the standard commutation rules

la,, a;]=5,, la;,a)=[a},a}]=0, j, k=12 (2.2)

These operators could be expressed in terms of x; and
9/0x; by

- 0 i G
= — + — e — |, - —— . .
a, 5 <xj o ), a; 5 (xl axj) (2.3)
We now define three operators J,(+) as functions of the
oscillator operators via

J(H)=Haa;+ 1), J(+)=1(aja;+a;a,), J(+)=(~-i/4)

(aja; - aa,). (2.4)
A summation over a repeated index is understood. It is
easy to check that these operators obey the commutation
rules of SU(1,1). On the other hand, they are explicitly
Hermitian, so they generate a unitary representation of
SU(1, 1) in the space //(+). This, by definition, is the
representation /)*.*® Since Jy(+) is positive definite, /)*
must be a direct sum of UIR’s of type D} alone. We now
analyze /).

The basic commutation relations (2. 2), as well as the
generators J, (+) of /)*, are invariant under the group
of all real orthogonal transformations in two dimensions,
acting on the basic variables in the following manner:

X;=~0,,%, a;—

+ +
;7 08y a5~ 0,3,

i
.5
0T0=1 (2.9)

We have, therefore, a unitary representation of this
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group acting in //(+) and all the operators of this rep-
resentation commute with the representation /)* of
SU(1,1). The full group of the matrices [I0,,/l consists
of the identity component containing the matrices

cosa S p g <q<ar (2.6)
—-sina cosa
and the component containing the matrix
1 0
2.7
‘ 0 -1 N (.7

corresponding to the discrete transformation x, — x,,
X, —%,. The unitary operators representing the ele-
ments (2. 6) on 4/(+) are generated using the Hermitian
operator M,, given by

M,, =i(aja, - a;a,). (2.8)

Let the discrete transformation (2. 7) be represented by
the unitary operator B, i.e., B acts on a function
flx,,%;) as

[Bf] (xp xz) :f(xp - xz)-

The complete set of algebraic relations involving the
generators of /)* on the one hand, and its symmetry
operators, on the other, is

[Jo(+), M,;]=0, BJ (+)B=d,(+),
BM,=-M,B, B:=1.

(2.9)

(2.10)

Now the Casimir operator for /)* can be easily calcu-
lated, and it becomes a simple function of M,,:

Q =(J1(+))2 + (J2(+))2 - (Jo(+))2= %(1 "Miz) =K(1 _K);
K=3(1+ |M12,)- (2.11)

We are now in a position to express /)* as a direct
sum of UIR’s of SU(1, 1). Let us introduce in place of
%, the polar variables 7, ¢ via

X, =rcosg, X,=rsing, 0<r<w, 0<@<2r,(2.12)

so that M,, becomes the operator i9/8¢. Breaking up
A(+) into eigenspaces of M, is accomplished by the
Fourier expansion of the ¢ dependence of a general
function f(x,, x,):
S exp(- img)
Fx)=f(r,9)=27 fn()——=
! e V2

The mth term here is an eigenfunction of M,, with eigen-
value m, and by definition it is the component of f in the
eigenspace //,(+):

(2.13)

HD= 35 Hul+), ful?) exp(=ime)e H ),

IflE= 2 [ rar|f . (2.14)
m=0,+l-°*

[For simplicity, the direct sum sign @ is omitted here. ]

Since B and M,, anticommute, the action of B on the

eigenspaces of M,, is evidently

BH ()= Hom (). (2.15)

Every subspace //,(+) is invariant under the generators
J, (+), and so under the action of the representation /)
of SU(1,1). For given m, /A .(+) has the same structure
as the space (%, +) set up in the last section [recall
that // (&, +) actually has no dependence on ). Hal+)
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consists of functions f(7) with the norm (1, 8), Making
use of (2.3,2.4,2.12), each J, (+) restricted to 4 (+)
becomes a differential operator in 7 alone; it is found

that

J(+)]| restricted to 4 ,(+)=J,((1+ 1m|)/2, +);
(2.16)

the operators on the right are the ones set up in Eq.
(1.9) in the course of defining the standard forms for
the UIR’s D;. Putting together all these facts, we con-
clude that the two subspaces //,(+) and %/ _.(+) both sup-
port the same UIR D{,,,,.),2 of SU(1,1), and we have the
direct sum decomposition of /)*:

«
0 =m=2_° D:1+Iml y /20

The discrete positive UIR D;,, appears once, and the
UIR’s D} for k=1, 3/2, ..- twice each.

(2.17)

The generating representation /)" for the negative
discrete series is obtained from the above by obvious
modifications. The space //(-) is defined in the same
way as //(+), and there is no change in the operators
a;, a; either. The generators J, (-} of /) are taken to
be the transforms under 7 of J, (+):

Jo(_):_ 0(+)’ J1(-)=— 1(+); Jz(_)=J2(+)' (2' 18)

There is no change in the symmetry group, it is again
generated by M,, and B. The Casimir operator @ for /)~
has the same expression in terms of M,, as previously,
and the eigenspaces /#/,(-) of M,, are also unaltered
from the previous discussion. The necessary equations
describing 4/(-), /7, and J,(-) are

H(—): Z IL/m(_)y Bﬁm(_):/'/-m(_);

©
m==

Jo(-)| restricted to 4/, (=)=J_ (1 + |m]|)/2, =),

o= mz=_;_° DZ1+lml)/2'

The standard forms J, (k, =) for the UIR D; are given
in Eq. (1.13). The discrete negative UIR D;,, occurs
once in /), the UIR’s D, for k=1, 3/2, --- twice each,

(2.19)

Now we turn to the representation (. Here, in con-
trast to the previous cases, the symmetry group will be
a pseudo-orthogonal group so it will be necessary to
use a suitable metric operator that relates upper to
lower indices and conversely. We take the space £/(()
of the representation (" to be the same as //(z), and
also define a,, a; exactly as before. But the generators
I, () will be

JO(C) = %(aial - a3a,),
JH{C) = 1(a}) — (a3 + (a,)? - (a,)?),
I C) = (=i /D(a}) + (a3)? = (a, ) — (a,)?).

These are of course Hermitian, and they do obey the
SU(1, 1) commutation rules. To make the symmetries
of the present construction as clear as the symmetries
of /)* were, let us define new basic operators and a
metric tensor thus:

(2. 20)

(2.21a)
(2. 21b)

b,=a,, bi=a;, by=-a; b;=-a,

Su=+1, gn=-1, £,=8,=0.
Then the basic relations (2.2) can be rewritten as
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[bp b;]zgjk) [bja bk]z[b;a b;]ZO, (222)
the realizations of b, in terms of x, and 3/dx, become

by=(=i/V2) (x,+2)), bj=(i/V2)(x,~2)),

9;

I

2
PP (2.23)
If in (2. 20) we substitute b, in place of a; appropriately,
we then find

() =2(g"*b;b,+ 1),

Jl(C ) = %gjk(b; b; + bjbk)7

I ) =(=i/D) g7* (bjb,~bby).
Equations (2. 22), (2.24) must be compared with Egs.
(2.2), (2.4), respectively. We see immediately that the
basic commutation relations (2.22) and the generators
J(() are all invariant under the group of all real linear

transformations which preserve the indefinite quadratic
form

(2.24)

gk xx,=x5 - x3. (2. 25)

We have therefore a unitary representation of this group
acting in #/((’), and all the operators of this representa-
tion commute with the representation (* of SU(1,1). The
full group of these matrices [[0%[ consists now of four
distinct components. The identity component contains
all the matrices of the form

cosha sinha
sinha  cosha ”, Sesase (2.26)
the second component contains the matrix
-1 0
2.27
15" 2 @27

corresponding to the transformation x; — - x;, and all
products of this matrix with the matrices (2. 26); the
third component is similarly generated by the matrix

o il
0 -1

corresponding to the transformation x, — x,, x,—~ —x,;
and the fourth and last component is generated by the
product of the above two matrices. The unitary opera-
tors representing the elements of the identity component,
on 4/((), are built up using the Hermitian generator S,,
defined as

(2. 28)

Sy =i(b3 b, - by b,) = i(a,a, - aa). (2.29)

Let us write P and B for the unitary operators repre-
senting the discrete elements (2. 27), (2.28), respec-
tively; B is the same as before [cf., Eq. {2.9)], while

(Pfl(x;) =F(-x,). (2. 30)

Then the full symmetry of the representation ( of
SU(1,1) is expressed by

alC): 80120, BILO) B =PI(O P =T4C): (5 3y
BS,,=-S,,B, PS,,=S,P, PB=BP, P*=B=1.

If we compute the Casimir operator @ for (, it becomes
a function of S,,:

Q :(JI(C))2+ (Jz(C))z - (JQ(C))z = %+ % (s]_z)z- (2- 32)
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Having analyzed the algebraic structure of the set of
operators that commute with the representation ( of
SU(1,1), we can now express (. as a direct integral of
continuous class UIR’s of SU(1,1). [That only such UIR’s
will appear is clear from the form of @ in (2. 32). ]

Since P and S, commute, we can decompose A (( ) into
simultaneous eigenspaces of these operators. Then, as
shown in Ref. 6, the eigenspace with a definite value for
S,; and a definite value for P carries a single UIR Cf, of
SU(1,1): The eigenvalue of S, fixes ¢ via (2. 32), and
P=+1givese=0, P=-1 gives e=1/2,1% To break up
H(C) into these eigenspaces, we must change from the
%, to hyperbolic-type variables; this requires dividing
the x, — x, plane into four regions. The new variables

7, 1 are introduced in each region in this way:

|%,| > |x,|: x,=(sign of x,)7 cosh,

x, =(sign of x,)7sinhy, 0 <7<,
- oSN <o
|2, > |%,|: x,=(sign of x,)r coshn,
%,=(sign of x,)r sinhny, 0<¥r<,
=< <o, (2.33)

Let the eigenspaces of P be written 4 (") and 4 _(();
these are made up of functions, respectively, even and
odd under x; — - x;. We may write for a general

fe HQO)
FE)=FE)+1LAx), fl=x)=2fLx)),
IFNE= AR+ AR = 7 dxy [ dry (] 70212+ 106 [,
(2.34)

Within an eigenspace of P, a function f, is fully deter-
mined by its values in the region x, > |x,| (which is half
of the region |x,| > |x,}), and in the region x, > |x,|
(which is half of the region |x,| > |x,!). Denote these
functions by f£,, (»,n) and f,, (¥,n), respectively; the =+
refers to the eigenvalue of P, the 1 and 2 to x, > |x, |,

x, > 1x,|, respectively. So after splitting a general func-
tion f ¢ #/(( ) into its components f, in 4/ () each of
these components may be represented as a column vec-
tor with two components:

=)

W =2 [Trdr [ dn(|fulr,m) |2+ [fo0r,m)[?). (2.35)

In both #/ () and 4/ (), S,,=-19/3n. Next, to diag-
onalize S,,, the n dependences of f,,(7,7), f.(7,n) must
be represented by Fourier integrals:

(fﬂw, n)) _ f s EXR2isn) (£, (7)
felrsm)) ) N fiz,s (M)
Ife=2 [~ ds [ vdr(|fa, )]+ | fur, (1)]?).(2. 36)
The integrand here, namely the column vector
> f*l ,3(7)
exp(213n)<fﬂ’s(y)>,

is an eigenfunction of P and S,, with eigenvalues +1, 2s,
respectively; and by definition (2. 37) is the component

(2.37)
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of f in the eigenspace /4, ,.((). We can write /() as
HO=HLO)+H (O,

. (2.38)
HLO) = [ ds .40,

thereby exhibiting the breakup into the simultaneous
eigenspaces of P and S,,. The action of B is clearly
analogous to Eq. (2.15):

B H, 2(C)= Ha2sl C)- (2.39)

And on /4, ,((), the Casimir invariant @ reduces by
virtue of Eq. (2.32) to multiplication by (% + s2?).

Each subspace /4, ,(( ) is invariant under action of
J,(() and so under the representation C of SU(1,1). For
a fixed choice of s and eigenvalue of P, this subspace
has the same structure as the space 4/(s’,€) set up in
the last section [recall that A(s', €) actually had no de-
pendence on s, e]; it consists of pairs of functions
{1(7), £,(7)}, with the norm (1.16). Making use of Egs.
(2.23), (2.24), (2.33), each J (() restricted to 4/, ,.(()
becomes a matrix-cum-differential operator in 7 alone;
it is found that

J ()] restricted to 4, ,.(C)=d(]s],e. (2. 40)

The operators on the right are the ones set up in Eq.
(1, 17) while defining the standard forms for the UIR’s
C¢. Putting together all these facts, we see that the two
subspaces 4/, . () and //, () both support the same
UIR Cg/4+32 of SU(1, 1); while //_,.(() and H - -2s(() both
support the same UIR C}/%, 2. We thus have the direct
integral decomposition of the representation (:

C=Jlds CYpt [Lds Ci3
Each UIR C:, appears with a multiplicity two in (.

(2.41)

For the continuous class UIR’s of SU(1, 1), one must
investigate how the outer automorphism 7 is imple-
mented. Given the generators J (( ) for the reducible
representation (, it is easy to construct a unitary op-
erator 4 on 4{() which has the effect of implementing
the mapping 7. We just take

Mf] (xp xz) =f(xzy xl)-
Then, using Eq. (2.20) for instance, we see easily that

AJO,I(C)A-IZ_JO,I(C)’ }4J2(C) )4-1=J2(C)'

(2.42)

(2. 43)

But we see equally easily that 4/ commutes with both the
symmetry operators S,;, and P, while with B we get

ABA'=PB. (2. 44)

So in any case, the subspaces #/, ,(( ) are invariant
under 4, and, in fact, if an element in Ht,Zs(C) is
written in the column vector form (2.37), 4 has the
desired effect of interchanging upper and lower com-
ponents. Thus, 4 leaves each UIR in the direct integral
decomposition of ¢ invariant, and within each UIR it
has the form of the operator ,4 of Eq. (1.19).'7 All these
properties of the representation (" will be needed when
we consider the direct products of the form D*g C,
CoC.

The description of the representations /)*, (" that we
have given overlaps partly with the work of Ref. -6; how-
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ever, we have emphasized here the role of the sym-
metries of these constructions in performing the direct
sum decomposition into irreducibles. It would be fairly
evident by now how the two-dimensional rotational sym-
metries of /)*, ( get enlarged to four-dimensional ones
when direct products like /)'® /), )*'® /), etc., are
considered. We conclude this section by recalling the
structures of the various Clebsch—Gordan series, and
making some comments on them. Omitting the direct
sum @ symbol, the four essentially distinct series have
these forms:

(I) D;® D} = 2 D;,.,

K zhek' JReB 41,000
—1 3
kR = 25 1, 25"y

) D@D, =6Fk-F - > .,
(Il) D, ® D3 =& l)k”z,i”/zpk
R'=k
+ 0K -k~-1) 2 D;.,

k‘'®10r3/2
+ [ ds Cias
k,k’I%,l,%,“', 620(%) and &

o= 1(3) if £+ ¥ =integer
(half-odd integer);

(o) D3 Ci/g2=

B =1or3/2

Dy + [ ds cY
Il b 1/4+s'2

k=%1,+, €=0,% 0<s<o, ¢=0(%) and

k7.=1(3) if £+ e=integer (half-odd integer);

(IV) C,p2® C)pp2= 2 Diu.+ 25 Dg
k" 2l or3/2 k=1 or3/2

+2 L" ds” Cf} 4.gm2s
€=0,% 0<s,s'<w, e =0() andky,=1(3)
if e+ ¢ =integer (half-odd integer).

Wherever there is a sum on %27, it is from a minimum
to a maximum value in integer steps. The step function
6 used in case (II) is defined thus: 6(x)=1 for x
=0,4,1,3,«, and=0for x=-%,-1,-%,.... In cases I
and II if on both sides of the given equations every D* is
changed into a D, the resulting equations remain true.
Now a very interesting aspect of these Clebsch—Gordan
series is this: If we consider the direct product of any
two UIR’s of SU(1, 1), neither of which belongs to the
continuous exceptional series, then in the decomposition
of the product into UIR’s the particular discrete terms
D3, will never make an appearance. It is well known
that D7, are to be distinguished from Dj for 2> 1 and
Cé for ¢ =1 in another sense; in the regular repre-
sentation of SU(1, 1), only the latter are present, both
Dy, and the continuous exceptional UIR’s are absent.
We will show in papers II and IV of this sequence that it
is the structure of the Plancherel formula of SU(1, 1)
that is responsible for the absence of D3, in the
Clebsch—Gordan series (II) and (IV) above; the reason
in the case of series (III) turns out to be a property of a
particular representation of the group O(3, 1), as will be
explained in paper ITII. The point to be noticed is the
absence of D3, in the decomposition of even those pro-
ducts in which one (or both) factors may itself be D? /20
Another point to be noted is that in no series does the
trivial identity representation of SU(1, 1) appear as a
discrete summand.
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3. C-G SERIES FOR THE PRODUCT D* X D*

Let us now take two representations of SU(1, 1) of the
type /)*, each in a space of the form //(+), and consider
their direct product /)*®/)*. The space of the total rep-
resentation will be 4 = f{+)®@4(+), the variables of the
first factor in the product will be numbered 1, 2, those
of the second 3,4. /4 then consists of functions
F(xy, %y, %4, x,) With

BFIR=[2 [T [7 [T dx, dx,dx,dx,| f(x,, %g %q, %) |2
(3.1)

We will use Greek subscripts u, v,+++ to go over the four
values 1, 2, 3, 4; no metric tensor is needed since we will
be dealing with the group O(4). The four oscillator op-
erators defined on // fulfill

[au) a;]:éw,
a,=(=i/V2)(x, +3,), a,=(i/V2)(x,=3,). (3.2)

The generators of the first factor in the product /)*'® /)*
will involve just the variables numbered 1,2 and will
have the forms given in Eq. (2. 4); we will write
dJ,(+,12) for them. Similarly, the generators of the

la,a)=[a;,a)]=0,

second factor in the product are J(+, 34) and the “total”
generators for the product /)*® /' will be

I, =d(+, 12) +J_(+, 34). (3.3)

We can express the J, in terms of the a,, and then we
find

J,= %(azau +2), J,=4laa’ +a,a,), J,=(-i/4)(a’a

(3.4)

-a,a,).

In the summations over the repeated index u, all four
values are involved. We see immediately on inspection
of Eqgs. (3.2) and (3. 4) that the basic commutation rel-
ations as well as the “total” generators J, are invariant
when the basic variables are subjected to any real linear
orthogonal transformation in four dimensions:

o’o=1.
(3.5)

These matrices constitute the full rotation group 0(4),
and there is therefore a unitary representation of this
group acting on //, such that the corresponding unitary
operators all commute with the operators of the rep-
resentation /)*®/)* of SU(1, 1) which also acts on //. For
the present, it is enough to consider just the identity
component of O(4); its representation on /4 is clearly
generated by the six generators

uav-xvau)°

x, ~0,.%

uy”w

a,—~0,.a

+
uv’yr au_.o a+

uyy?

M, ,=ia;a,~aa,)=ix (3.6)

[The M . Obey among themselves the 0(4) commutation
relations. ] The symmetry properties of the SU(1, 1)
generators J, are thus expressed by

(..M, ]=0. (3.7)

For the individual sets J (+, 12) and J (+, 34) we have
only
[J4(+, 12) or J(+, 34), M,, or M,,]=0. (3.8)

[The discrete symmetries are not needed, as mentioned
above. |
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Let us establish next the connections between the
various Casimir operators. For SU(1, 1), we have the
Casimir operators @,,, @,, for the individual factors in
the product /)'® /)*, and then @ for the total. The first
two are related to M,,, M,, via Eq. (2.11). There are
two Casimir operators associated with the Lie algebra
of the group O(4), namely M*=M M, and €, M, M,;
but the particular form (3.6) of M,, that occurs in the
present realization of O(4) makes the second invariant
vanish identically. This of course has the effect of
restricting the types of UIR’s of O(4) appearing in 4/, !®
@ can be now shown to essentially coincide with the non-
trivial Casimir operator of O(4). All in all, we have

lez%(l —Miz), Q34:%(1 -M§4)7

Qz(J1)2+(Jz)2_(Jo)2="%MuyMuy="%M2- (39)

The direct product /)*® /)* contains within it the indi-
vidual products of the form D;® D;. for all values of &
and 2. We want to get at the C—G series for the latter,
and then compute the C—G coefficients in the continuous
basis. It is then clear that we must construct two types
of bases for //, an uncoupled basis and a coupled basis.
In the uncoupled basis, we want the operators M,, M,,
(hence Q,,, Qs4), Jo(+,12) and J,(+, 34) to be simulta-
neously diagonal. Such basis vectors are direct products
of basis vectors drawn one from each factor in a product
of the form D; ® D,,. In the coupled basis, the simulta-
neously diagonal operators should be M,,, M,, (hence
Qu2s Q34), J, and M? (hence Q). By having M, and M,,
diagonal in both bases, we will be sure we are dealing
with a single product D;® D}, and its reduction. The
coupled basis vectors will belong to definite UIR’s of
the total SU(1, 1); at the same time they will be basis
vectors for the UIR’s of O(4) in a definite form, namely
a form in which M* M,, and M,, are diagonal. The point
is that UIR’s of O(4) can be built up in more than one
way, either “diagonalizing” a canonical O(3) subgroup,
or an 0(2)@ 0(2) subgroup; what is needed here is the
latter. By examining the allowed eigenvalues of M? while
keeping those of M, and M,, fixed, in a coupled basis
vector, we will be able to read off the C—G series for a
product D;® D;,; by calculating the overlap between an
uncoupled and a coupled basis vector, we will obtain the
C—G coefficients,

In the place of the x,, let us introduce radial and
angular variables by

%, =7cos(B/2)cosp, x,=7cos(B/2)sing,

%y =7 sin(B/2) cosy, x,=v sin(B/2) siny,
Osy<x, 0<Bs<m, 0<9g, <27, 1,
dx,dx,dx.dx,=tr*drd cosgde dy. (3.10)

Then M,,=i9/9¢ and M ,=i3/9y. To pick up D;g D},
we choose (nonnegative) eigenvalues (2k~1), (2k - 1)

for M,,, M,,, respectively. Then combining Eq. (1.12)
with the analysis of the representation /)* given in Sec.

2, we can write the uncoupled basis vector &:
@k K0 = (1/T) (v cosp/2)21%° (1/V27 ) e 2r Do
X(1/V7 ) (7 sinB/2)24%" -1 (1/V2nr ) e-+2¥ -1,
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Myp=2k=1, My=2k -1, J,(+,12)=p, J,(+,34)=p'.
(3.11)

This is normalized to a Kronecker delta in % as well as
in &', and to a Dirac delta in p as well as in p’. [See
Eq. (4.4).] Before putting down a coupled basis vector
¥, we need to know the eigenfunctions of M?, as well as
what the generators J, of SU(1, 1) look like when re-
stricted to an eigenspace of M,,, M,,, and M2, The 0(4)
group has, locally, the same structure as 0(3)® 0(3),
so we can split M, into two independent (i.e., com-
muting) O(3) Lie algebras. Let us call these L and R.
We define them as

leé(M3z+M14)! L2=%(M13+M24), L3=%(M21+M34)a

R1=%(M32_M14)’ R2=§(M13—M24), R3=%(M21—M34)-
(3.12)

The O(4)-commutation relations among the M 4y OW ap-
pear as

[L -,Lk]=i€jk,Ll, [ijRk] :iejktRl’

(L,,R,]=0, j,k1=1,2,3. (3.13)
The vanishing of the second Casimir operator of 0(4)
implies that these two commuting O(3) Lie algebras have
the same Casimir operator; and this is essentially M2,
We find quite easily that

L?*=L,L,=R*=R,R;=¢M?

0 1 92 02
= ot 35 ~ Sip (6(<p T

aZ
_a_BT

az

208 Stor Malo = w))'
For an eigenfunction of M,,, M,,, and M?, the ¢ and
dependences are as in Eq. (3.11), while the 8 depen-
dence is to be obtained by solving the eigenvalue equa-
tion for the differential operator above. The solutions to
this equation are well known; they are the D functions
of angular momentum theory. !® This should be no sur-
prise because these D functions are known to be the
“spherical harmonics” on the unit sphere in four-di-
mensional Euclidean space. All in all, an eigenfunction
of M,,, M,, and @ =3 M? with eigenvalues 2k -1, 2F
-1, and k2”(1 - k"), respectively, turns out to be of the
form

exp| - i(2k — 1)¢] exp[—i(2F - 1)y] <2k” - 1)1/2

V2r Nors 2
(3.15)
Xd o S5 (B F(Y)
and its norm is
[T rtar|fo . (3.16)

In other words, the eigenspace of M,,, M,,, and M? with
the stated eigenvalues consists of all functions (3. 15)
with the norm (3. 16). Apart from the change in measure
from 7 dr to 7%y, such an eigenspace is seen to have
the same form as the standard space 4/(k, +) in which
the UIR D; was set up in Sec. 1. The next point is the
form of J, when restricted to this eigenspace. Apart
from a similarity transformation to compensate for the
changed measure, this form should be the standard one
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in Eq. (1.9). First we check that all dependence of J o
on the angular variables 8, ¢, ¥ can be isolated in M?
as we would expect; for J,, for example, the steps are

Jo=1+3a,a,=5(x,x,-3,2,)=5(r*-02),

2 1 M? )

D=;—2<x-ax'8+2xe8—-2—-, x-B:quu:rﬁv
_1 02 3 ¢ 2 4Q>

JO_Z<_31’2_1’_3—’;+7 -z ) (3.17)

In a similar fashion, one can see that all the angular de-
pendence of J; also can be isolated in M2, while J, is
already a purely “radial” operator.? Restriction of J,
to the subspace on which Q@ =%"(1 - %") involves just

substituting this value of @ in J; by following this with
a suitable similarity transformation, we finally get

7,7 Q=R (1=k")=d (R, +), (3.18)
the operators on the right being given in Eq. (1.9). A
further restriction to definite eigenvalues for M,, and
M,, has no effect on Eq. (3 18).

The use of the O(4) symmetry of the representation
'® [)F of SU(1,1) is now clear. The C~G series for
D;® D3, is given by a knowledge of the possible eigen-
values of M? given those of M, and M, ; in other words,
it is determined by the knowledge of O(4) spherical har-
monics in the O(2)® O(2) basis. Since these O(4) har-
monics are just the D functions of angular momentum
theory, we know by reference to Eq. (3. 15) that the
superscript on the d function must be greater than or
equal to the magnitude of each subscript. Since any way
both & and #’ are =%, the C—G series for case (I) given
in the previous section is now understood. Of course in
the present case involving D*® D* there are more ele-
mentary ways of arriving at the C—G series, but our
aim is to relate it to the O(4) structure since this will
generalize to all other cases. Next we have seen that if
we split 4 into the eigenspaces of the “total” SU(1, 1)
Casimir operator @ with various eigenvalues #’(1 - %"),
then the restrictions of J, to these eigenspaces are just
the standard forms J,(k”, +) developed in Sec. I (apart
from a similarity transformation!). In a given eigen-
space of @, corresponding to some %’, the UIR Dj;. will
appear many times, corresponding to the various pos-
sible products D;® D}, from which it could have origi-
nated. By next fixing the eigenvalues of M,, and M,, at
2k -1, 2k’ -1, respectively, we pick up the UIR D;..
contained in the particular product D; ® D,,. All these
steps, suitably modified, will occur in the other types
of direct products as well.

We conclude this section by writing down the coupled
basis vector ¥, whose construction is obvious by now.
It is of the form (3. 15), except that the “radial” depen-
dence is determined by the eigenvalue of J,:

Pl R (R0 exp[-i(2k - 1)¢} exp[~i(2k' - D]y
p=

Var var
(Zk" -1 >1/2
T2

v (B)(2/VT ) 7 2i 2,

(k" =1)
xdk+k’ =1, k-
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My,=2k-1, M,=2F-1, Q@=~ IME=p(1-k"),
Jy=p".

This is normalized to Kronecker deltas in 2, %', and k",
and to a Dirac delta in '’ [see Eq. (4.5)].

(3.19)

4. C-G COEFFICIENTS IN THE CONTINUOUS BASIS

In this section we will first set up a suitable notation
for the SU(1, 1) Clebsch—Gordan coefficients in a con-
tinuous basis. Let us use the generic symbol R to denote
any UIR of SU(1, 1) of interest, it could be either (k,7)
or (s,€). According to Eqgs. (1.6), (1.14), (1.20), the
vectors of the continuous basis in 4 can be written as

[R;p, @), —w<p<wm, a=z (4.1)

p is the eigenvalue of J,(R); if R =(k,n), the additional
label a is to be dropped, while if R =(s,¢€), it is to be
retained and is the eigenvalue of the unitary operator A
implementing the outer automorphism 7in 2. A glance
at the four C—G series listed in Sec. 2 shows that there
is one case, namely case (IV), in which the reduction of
a direct product R @R’ into a direct sum (integral) over
various R’/ involves a multiplicity problem. A given
UIR A” may occur twice in the reduction. Bearing this
in mind, and also notation for basis states given in Eq.
(4.1), it is easy to see that an adequate and unambiguous
way of writing down a C—G coefficient in the continuous
basis for the reduction of R ® R’ is this:

C(/{R’/\)"Ylpap'bP"C);

pa are state labels within R, p'b within R, and p”c
within R”. y is the multiplicity label that distinguishes
the two (possible) occurrences of 2” in a given product
R ® R’ It is needed only when all three UIR’s are of
continuous type. This C—G coefficient is to be computed
as the scalar product between an uncoupled basis vector
@ and a coupled one, ¥. In all our calculations, many
distinct direct products are present at the same time in
one large Hilbert space //; we have seen this in the pre-
vious section. Now especially when the constituent UIR’s
R and R’ involve one (or more) continuous class rep-
resentations, one must be rather careful in relating a
C—G coefficient to a scalar product of the form (&, ¥).
Let us first define the symbol 5(R’, R):

G(R"R)=6klk 617"7 ifR:(kyn), R':(k,;n,)’
=5,..08(s" =s) if R=(s,€8), R =(s,¢)

=0 otherwise.

(4.2)

(4.3)

Whenever we construct uncoupled basis vectors ¢ like
that appearing in Eq. (3.11), they will obey the
orthonormality condition

@ K7, e =s(R" RIBR™R")
XO(p" =IO =) 8,0, (4.4)

Similarly, when we construct coupled vectors ¥, they
will obey

O e R AL

xé(R Z’R 1) 672716([), _p)éba'
(4.5)
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The point we want to draw attention to is the presence of
the first two delta functions on the right-hand sides of
Egs. (4.4) and (4. 5), namely those involving the con-
stituent UIR’s in a direct product.? They are present
because of the particular way we have solved the
Clebsch—~Gordan problem, namely dealing with all pro-
ducts of a given type (say D*g D*) at once. The other
factors on the right-hand sides of Eqs. (4.4) and (4.5)
are standard and would be present in any treatment of
the problem. For products of the type D*® D* or D*® D~
the factors 5(R”,R) 8(R”,R’) are quite harmless since
they are finite; we can in fact choose " =R and R” =R’
throughout. Keeping these facts in mind, we relate the
C—G coefficient (4.2) to basis vectors &, ¥ in this way:

(ofh, RRED)=0r0R100R5 )

XC(RR'R"y | pa p'd pc). (4. 6)

Once the C—G coefficients have been extracted from the
scalar products in this way, they become independent
of the specific method we have used to handle the
problem.

Conservation of J, implies that in the general C—G
coefficient (4. 2) there will always be a factor 5(p + p’
-p”). So let us set

C(RR'R"v|papbprc)=6(p+p" ~p")C(RR'R" v| pap'bc)
(4.7)
Generally, only the values of C will be listed.

Since the orthonormality conditions for & and ¥ are
specified in Egs. (4.4) and (4. 5), there are no ambi-
guities in writing down the orthogonality and complete-
ness properties for the C—G coefficients. But we will
omit the details. The notation and conventions set up
above will be adequate to handle all the direct products
we will treat. The multiplicity index y will be relevant
only in paper IV for the products C® C, and its choice
will be explained there. For the present we may drop it
as well as the indices a, b, c.

The basis vectors given in Eqs. (3.11) and (3. 19) have
been constructed in accordance with the conditions in
Egs. (4.4) and (4.5). The C—G coefficient in a con-
tinuous basis, for the product D;® D}, — D;., can there-
fore be written as

C(k+ B+ b+ Ip P pn):(q)(zn(k;'a-), \I,(k+)(k‘+) (kp"“+))

_<2k” - 1)1/2 5(p+p'
“\ 2r

. 4 B 2ip 4 B -2ip
-p )fodﬁ<cos2) <sm2>
AFY pn (B). (4.8)

The simple integrations over », ¢, and ¥ have been
carried out; the first of these produces the factor 5(p
+p’ —p"’). In the evaluation of the 3 integral, let us for
ease in writing set j=k" -1, m=k+ ¥ -1z2zn=k~-F.
We can use the formula?? (valid for m = n)

di ()= ((J +m)! (G -n)! >”2 (cosB/2)"™" (~ sin/2)"™"

J=-m)(G+n)! (m - n)!

X, Fi(j—-n+1, —j—n; m—-n+1; sin?8/2), (4.9)
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Substituting ¢=sin® /2, we are in need of

de 6:05-2) -2ip (siné)my df,,,,(ﬁ)

N (= 1)men <U+m)!U—n)!>1/2 fl dt i +(m=n-1)/2

-t \G=m)TG+n)]

X(1 =gy ie-tmem)/2 B (Gop+ 1, —j=n; m=n+1;t).
(4. 10)

This can be evaluated using a formula that expresses an
integral involving a generalized hypergeometric function
of type ,F in terms of , | F ,,*; the ¢ integral appearing

g+l 0

on the right-hand side of (4. 10) then has the value

[C(i(m =n+ 1) =ip! ) T(= m +n=1) = ip)/T(1 —n—i(p+p'))]

j_n+1y —j_n5 %(m -n+ 1)'-7'1)’;
X
SFZ( m-n+l,1-n-ip+p) b
Putting in the values of j, m, and n, and omitting the
b function present on the right-hand side in Eq. (4. 8),
we obtain the final form for C for the product
D;@D;.—D,.:

N - 1)2% -1 » _ 1\1/2
Clk+ ¥+ k+|pp)= (=1) (Zkzﬂ 1>

(2% = 1)1
x((k’+k”+k-2)!(k’+k"—k—1)!>1/2
F—k-E ) (k+E —F-1)!

x<r(k'—i17')r(1—k—ip)>

T(E+1-k=ip—ip')
R+l -k +1—k=k" F—ip;

X3F2< 2R B+ 1-k=ip—ip, 1)- (4.11)

5. C-G COEFFICIENTS FOR D™ XD~

The C—G series and C—G coefficients for the pro-
ducts D" D~ and D"® C can be related to those for
D*® D* and D*® C, respectively, by using the outer
automorphism 7, In general, T(R) will denote the UIR
of SU(1, 1) that is obtained by acting on R with 7. So
(R, 1)) =(k, =n) and 7((s,€))=(s, €). If we have the
relation

R®R =2LR",

certain special “values” of R” appearing on the right
with corresponding multiplicities, then the relation

TR (R =22 7(R")

follows; again {” has the same values as in (5. 1) with
the same multiplicities. Applying this to the C—G
series for D*@ D* given in Sec. 2 [case (I)], we get

(5.1)

(5.2)

D,®D; = Div, kand ¥ =3,1,3,--.

B shel’ JR+R 41,000

(5.3)

To deal with the C—G coefficients, we remark that
when a UIR D; is converted into the UIR D; with the help
of 7, the generator J, is unaffected and neither is the
choice of the continuous basis [see Eqs. (1.12), (1.14)].
In the UIR’s C%, however, the eigenvalue a of the op-
erator A implementing 7 will occur. So we can easily
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see that the following general relation must be valid:
CT(R)T(R) T(R" Yy |pa pb p'c)
=abcYa,, C(RR'R” Y |pap'bpc).
po

(5.4)

Here, a,, is a set of mixing coefficients possibly de-
pendent on R, R’, R” but not on pa, etc. We shall use
(5. 4) only in those cases where no multiplicity label is
necessary. Further, if any oneof R, R/, or R” isa
discrete class UIR, the appropriate one of the symbols
a, b, c is to be dropped throughout. Using this relation
in the present case, we easily get

Clh= K-k~ |pp p)=Clk+ R+ F+[pp p)
(5. 5)

and the same is then true for the related quantities C.

6. SUMMARY

In this paper we have explained a new approach to
understanding the structure of the Clebsch—Gordan
series for the unitary representations of the noncompact
group SU(1, 1), and have applied it in detail for the pro-
ducts of the types D*® D* and D"® D~. We have also
computed the Clebsch—Gordan coefficients for these
cases in a continuous basis, and specified the orthonor-
mality and completeness properties of these coefficients.
In doing both these things, we have been led to a simple
problem in the representation theory of the group O(4).
While the C—G series is not new, the C—~G coefficients
are new, and so is the relation of the former to the
group O(4).

We have also set up the basic notation and construc-
tions that will be used in treating the remaining kinds
of products.
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Following the approach of a previous paper, the Clebsch—Gordan problem for the group SU(1,1) for
products of the form D *QD ~ is related to properties of the pseudo-orthogonal O(2, 2). A new
understanding of the Clebsch-Gordan series for this case is achieved by analyzing the properties of
0(2, 2) spherical harmonics. The Clebsch—-Gordan coefficients in a continuous basis are also

calculated.

INTRODUCTION

In a previous paper, referred to hereafter as I, we
have described a new approach to the Clebsch—Gordan
(C—G) problem for the unitary representations of the
group SU(1, 1).! In this approach, the structure of the
Clebsch—Gordan series in each of the four essentially
distinct types of direct products gets determined by the
properties of a suitable four-dimensional real ortho-
gonal or pseudo-orthogonal group. At the same time
this connection allows us to compute explicitly the
Clebsch—Gordan coefficients in a continuous basis.

The method works with three special “generating”
unitary representations /)*, /-, and ( of SU(1,1), and
exploits the symmetry properties of these representa-
tions and their direct products. In I, the product rep-
resentation /) *®/)* was analyzed and related to proper-
ties of the group O(4) and its representations; in this
way, both the C—G series and coefficients for products
of the form D;® D;. were obtained. In the present paper,
the product representation /)*® /)~ will be similarly ana-
lyzed. The corresponding symmetry group will turn out
to be 0(2, 2), and the C—G series and coefficients for
products of the form D;® D;, will be determined by the
properties of a special class of unitary irreducible rep-
resentations (UIR’s) of 0(2,2) set up in an 0O(2)® O(2)
basis.

In Sec 1, we set up the unitary representation
H® /)" of SU(1, 1) and display its symmetry under the
group O(2, 2). Section 2 is devoted to expressing the
connection between 0(2, 2) and SU(1, 1), as well as the
action of O(2, 2) on real four-dimensional space, in a
particularly convenient manner. Using the results of
Sec. 2, we show in Sec. 3 how the problem of setting
up O(2, 2) “spherical harmonics” reduces to knowing the
structure of the regular representation of SU(1, 1); by
this means the 0(2, 2) harmonics are set up in the 0(2)
® 0(2) basis. In Sec. 4 the Clebsch—Gordan series for
a general product D}, ® D}, is obtained from the proper-
ties of the 0(2, 2) harmonics. Two types of bases for
the space of the representation /)*® /)~ are constructed.
With their help the C—G coefficients in a continuous
basis are computed in Sec. 5. An important phase ques-
tion associated with the occurrence of the UIR’s (s, ¢€)
in the product D;® D, is analyzed in the Appendix.

1. CONSTRUCTION AND SYMMETRIES OF THE
REPRESENTATION /).~

Let us take two representations of SU(1, 1), one of
type /)* in a Hilbert space 4/(+) and another of type D~
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in //(~), and consider their direct product /)*g/)~.? The
space of the total representation will be 4/ =/ (+)®4/(~):
The variables of the first factor in the product will be
numbered 1, 2, those of the second 3, 4. // then consists
of functions f(x,, x,, x,, x,) with

”f“2 = f.: [.: f.: Lndxldxzdxsdx4 ,f(xv BETEZY x4) |2-
(1.1)
The four independent oscillator operators defined on
A fulfill
la,, a;]=5,,, la; a)=la;, a;]=0,
a—i<x+ a) a*—i-(x a)
1TV ay,) ST VRN T ay,)
j,k=1,2,3,4. (1.2)

The generators of the first factor in the product repre-
sentation /) *® /)~ will involve the variables numbered
1, 2 and will have the forms given in Eq. (I.2.4); we
will write J_(+, 12) for them. Similarly, the generators
of the second factor in the product, written J (-, 34),
have the forms given in Eq. (I.2.18). And the “total”
generators for the product /)‘® /)~ will be
Iy =d(+,12) +J (-, 34). (1.3)
Written out in terms of g;, a] the J, have the forms
Jo=1zlaa, + aya, — aza, - aja,),
J, = ilajal + aja; + a,a, + a,a, — ajal - a0l — a,a, — 4,8,),
Iy =(~1i/4Naja; + aja; + aza; + aja), — a,a, ~ 0,0, — a,a,
- aa,). (1.4)

To make the symmetries of these generators more evi-
dent, let us define new basic operators and a metric
tensor thus:

+ Yt
by=a,, bi=ay b;=a,,

b,=a,,

by=-as b,=-a,

(1. 5a)

_ + + -
by,=-aj, by=—ay,

£1=8»=%1, gy=8u=-1, gp=gs="=0.
(1. 5b)

Then the basic commutation relations (1.2) and the real-
izations of b and b7 become (greek indices henceforth
go over 1,2, 3, 4):

(b,,0]=g,, [b.,b]=[b]0bf1=0,

b,=(-i/V2)(x,+3,), br=(i/V2)x,-2,), 2,
? 1.6)
T fxe a.
Copyright © 1974 American Institute of Physics 1332
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[Raising and lowering of indices u, v, -+ is to be done

using g,,. } The “total” generators J, can be expressed

in terms of b, b* and they then appear as
Jo=35(g"b%b, +2), J,=3g""(b}b;+b,b,),
J,=(—1i/4)g"*(b"b; - b,b,). (1.7

We see immediately that the basic commutation rela-
tions (1. 6) and the generators J, are all invariant under
the group of all real linear transformations

x,—~0,%,, b,—0,', b,—~0,b;. (1.8)
which preserve the indefinite quadratic form
xe x=x0x, = (%, F + (1,)7 = (%) = (x,)%. (1.9)

Such matrices constitute the full pseudo-orthogonal
group O(2,2). There is therefore a unitary representa-
tion of this group acting on //, such that the correspond-
ing unitary operators all commute with the operators

of the representation /)*® /)~ of SU(1, 1) which also acts
on //. For the present purpose, it is sufficient to con-
sider just the component of O(2, 2) containing the iden-
tity; for simplicity we will write O(2, 2) for this com-
ponent. Its representation on /4 is built up using the six
Hermitian generators

M,,=i(bb, —bib,) =i(x,3,-x,3,) (1.10)

which obey the characteristic commutation relations

_i[MuV’ MPU]:gVOMU,O_guﬂMy0+gVGMpLI—gM-OJWPV' )
- (1.11

The symmetry properties of the SU(1, 1) generators J,
are thus expressed by

[/, M,,]=0. (1.12)

For the individual sets J(+, 12) and J (-, 34), we have
only

[J,(+, 12) or J (-, 34), M,, or M,,]=0. (1.13)

We establish next the connections between the various
Casimir operators. For SU(1, 1), we have the Casimir
operators Q,,, @,, for the individual factors in the pro-
duct /)*® /)", and then @ for the total. The first two are
related to M,,, M,, via Eq. (I.2.11):

Q= %(1 _Mfz)v Q= %(1 ‘M§4)-

The Lie algebra of the group 0(2, 2) possesses two
Casimir operators, namely M?=M*""M, and €, M:*M*°,
But the generators (1. 10) for the representations of

0(2, 2) of interest are such that the second invariant van-
ishes identically, thereby restricting the types of UIR’s
of 0(2, 2) present in £/3. @ can now be shown to be essen-
tially the nontrivial Casimir operator of 0(2, 2):

Q=W P+ () = (I, = sM**M,, = - sM".

(1. 14)

(1.15)

On comparing the above discussion with Sec. 3 of I,
the great similarity in the properties of /)*g /)* and
/)'® /)" will be evident. It is just that the symmetry
group O(4) has been replaced throughout by 0(2, 2). The
differences in the two types of C—G series and C—G
coefficients can therefore be attributed to this
replacement.

The product /)*® /)" contains within it all products of
the form D;® D,, for various values of 2 and %’. ‘We
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want to obtain the C—G series and coefficients for the
latter. So we must construct two types of bases in //, an
uncoupled basis () and a coupled one (¥). The uncou-
pled basis vectors & will be simultaneous eigenvectors
of the operators M,,, M, (hence Q,,, @.,), J,(+,12) and
J,(—, 34). Such basis vectors are direct products of basis
vectors drawn one from each factor in a product of the
form D;® D;,. In the coupled basis, the simultaneously
diagonal operators should be M,,, M, (hence Q,,, @,,),
J,, M? (hence @), and where relevant the unitary opera-
tor that implements the outer automorphism 7 of SU(1,1).
(This last because the continuous UIR’s C¢ will be found
to occur in the decomposition of any product D} D;..)
Having M, and M,, diagonal in both bases ensures that
we will be dealing with a single product D}® Dy, and its
reduction. The coupled basis vectors will belong to de-
finite UIR’s of the total SU(1, 1); at the same time they
will be basis vectors for the UIR’s of 0(2, 2) in a defin-
ite form, namely a form in which the O(2)® 0(2) sub-
group (generated by M,, and M,,) is “diagonalized. ” The
allowed eigenvalues of M?, keeping those of M,, and M,,
fixed, together with the forms of the generators J, will
determine the C—G series for a product D;® D,,; the
overlap between a & and a ¥ will yield the C—G
coefficients.

Construction of the coupled basis vectors ¥ can be
seen to involve the breaking up of /4 into simultaneous
eigenspaces of M,,, M,,, and M?, In other words, we
are faced with the problem of setting up a complete set
of “0(2, 2) spherical harmonics” in the real four-dimen-
sional space R, endowed with the metric g,,. This in-
volves going over from the Cartesian variables x , of
R, to new “radial” and “angular” variables. The trans-
formations of O(2, 2) act on the angles alone. The uni-
tary representation of 0(2, 2) obtained by the action of
this group on functions of the angles will yield, upon
reduction, a complete set of “O(2, 2) spherical har-
monics. ” The choice of the angle variables must be
such that these harmonics are obtained in an 0(2)® 0(2)
basis. We will develop all this in the next two sections
by first relating the group O(2, 2) back to SU(1, 1), and
then making use of the SU(1, 1) Plancherel formula as
given by Bargmann. ® We will conclude this section by
putting the generators J, of Eq. (1.7) into a new form.
The purpose is to isolate all angle dependences of these
operators in the operator M? (or Q). The steps are
similar to those involved in Eq. (I.3.17), and yield

1 4 1 2
JOZ Z(xz— ??— - ;g(x' 3)2— Fx- a),

1 4 1
le— Z(x2+ x—?+ ?

Jy=(=i/2)(x+ 3 +2),

(x-8)%+ %x a),

B=xty, X d=x"2,. (1.186)
2. CONNECTION BETWEEN 0(2,2) AND SU(1,1)
AND CHOICE OF NEW VARIABLES

It is well known that locally the group O(2, 2) has the
same structure as the direct product group SU(1, 1)
® SU(1,1), analogous to the relationship between 0(4)
and SU(2)® SU(2). It is this fact that allows us to turn
the construction of the “0(2,2) spherical harmonics”
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into a problem involving the group SU(1,1), and more
especially the regular representation of SU(1,1). We
shall express the 0(2,2)-SU(1,1)® SU(1, 1) relationship
in a particular way which will turn out to be suited to the
choice of angular variables in R, as well.

We know that in the defining representation of SU(1, 1),
each element g of this group corresponds to a complex
2X 2 matrix in this fashion:

£=(5e Ba). lal*-loP=1

Let us split the complex numbers @, B into their real
and imaginary parts by setting

(2.1)

(2.2)

[There is little danger of these real parameters g, -« a,
being mistaken for the annihilation operators used in
the previous section. ] Denote this quartet of real num~
bers by a. Then elements of SU(1, 1) correspond one-to-
one to quartets a obeying

a=a, ~ia,, B=-a,+1ia,.

E+d-a-ai=1 (2.3)
by the equation
gla)=a, - ia,0, — a,0, ~ a,0,. (2.4)

Consider the group multiplication law of SU(1, 1). The
product g(b)g(a) corresponds to a quartet of numbers ¢
which are linear in both b and a. In order to express the
linearity in a, we may write

g(b)g(a)=g(L(b)a). (2.5)

Here, on the right-hand side, a is thought of as a col~
umn vector with a,, a,, a,, a, as entries, and L(b) is a
4Xx4 real matrix that acts on a to give the quartet of
real numbers corresponding to g(b)g(a). The matrix
elements of L(b) are themselves linear in b. Using the
properties of the Pauli matrices, we get

by, =b, b, b,
bz b1 b4 _b3
o=\ , 4 4 s (2.6)

b4 'bs bz b1

Either from the observation that along with a, L(b)a
must also obey Eq. (2.3), or by direct verification, it
follows that L(b) is an element of 0(2, 2). From the de-
fining Eq. (2.5) for L(b) it follows that if g(b)g(a)=g(c)
is an equation holding among three elements of SU(1, 1),
then L(b)L(a)=L(c) as well.

In an analogous manner, another set of 0(2, 2) trans-
formations R(a) can be defined by

g(b)g(a)™ = g(R(a)b),
a &

—a3

(2.7

These too form a representation (nonunitary, of course)
of SU(1, 1). And by comparing Eqs. (2.5) and (2.7) it can
be seen that any matrix of type L will commute with any

J. Math. Phys., Vol. 15, No. 8, August 1974

1334

one of type R. All in all, then, corresponding to each
ge SU(1, 1) we have transformations L(g), R(g)< 0(2, 2)
such that

L(g')L(g)=L(g' ), R(g)R(Q)=R(g'8),
L(g")R(g)=R(g)L(g"). (2.8)

These transformations L(g), R(g) together constitute
the (identity component of the) group 0(2, 2); in fact,

the most general element of O(2, 2) is the product
L(2)R(g’) for some g, g = SU(1,1). Thus, we have shown
that, locally at least, O(2, 2) has the same structure as
SU(1, 1)@ SU(1, 1).

The six generators M, of O(2, 2) can also be separ-
ated into two commuting SU(1, 1) Lie algebras. If we
define

Lo:%(Mm'Ms‘z)y Ly=3Mp+Myy), L,=3M,
—Myy),
Ry=3(My+M,,), R,=3(My=M,), R,=3M,,

+M,,), (2.9)

then the L, obey the SU(1, 1) commutation relations
among themselves, the R, also do so among themselves,
while each L, commutes with each R,. The L, are gen-
erators for the transformations L(g) in O(2, 2), the R,
for R(g). Since 0(2, 2) ~SU(1, 1)® SU(1, 1), a general
UIR of 0(2, 2) consists of the direct product of two
UIR’s, one for each factor SU(1, 1) in the product. Thus
we may denote it by {R,,R,) where the operators L,
generate the UIR R, of SU(1, 1), the operators R, gen-
erate the UIR R, of SU(1, 1) [R =(k,n) for the discrete
series, (s,€) for the continuous series|. Now we have

to deal with the particular O(2, 2) representation which
has the generators given in Eq. (1.10); and we have
noted that in this case, the invariant ¢, , M**M"° van-
ishes. The structure (1. 10) for M, has the consequence
that the two commuting SU(1, 1) subgroups generated by
L, and R share the same Casimir operator. In fact,
we have

L= (Ll)z + (Lz)z - (Lo)2 =Rz = (Rl)z + (Rz)2 - (Ro)z
=— gM>2. (2.10)

Consistent with this, we will find that only two kinds of
UIR’s of 0(2, 2) will appear in our analysis, namely
(R,R)and R, 7(R)); R is a general UIR of SU(1, 1) and
7 is the outer automorphism on SU(1, 1).

Now we shall deal with the action of O(2, 2) on the
variables x, of R,, and the choice of suitable angle vari-
ables. The whole of R, can be expressed as the union
of two regions, V* in which x2>0 and V- in which x®
<0:

vV x220, R,=V'U V. (2.11)

[The lower-dimensional region x*=0 is disregarded. ]
There is a natural mapping P that takes points in V*
into V- and vice versa®:

(2.12)

So (Px)?=~ x2. Under the action of O(2, 2), points in
V* remain in V*, those in V" remain in V~. In both
cases, we define the radial coordinate + as |x?|!/2,
i.e.,

P: (Xy, Xy, %g, X,) = (X, Xy, Xy %),
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xe V' x2=r2, 0<y<w,

xeV: ¥¥=-7%, 0<r<wo, (2.13)

Guided by the forms of Eqs. (2. 3) (2.4) and (2. 12), with
each point x € R,, we associate an element a(x) € SU(1,1)
by

a(x) = (1/7)(x; = i%,0, — %30, = x,0,) if xe V*,

=(1/7)(xy = ixX,0,— %,0, —%,0,) ifxe V. (2.14)

The definitions for the two regions V* are made so as to
satisfy

a(Px)=a(x), any x. (2.15)

It is clear that the element a(x) in SU(1, 1) depends only
on the “direction” of the point x in R,, not on its radial
coordinate », since for any real number p we have

a(px) = a(x).

We may now say that the various possible directions
within V* are labelled one-to-one by the elements of
SU(1, 1), and similarly within V-, [It is obvious that in
choosing all possible points x in V*, a(x) ranges over
the whole of SU(1, 1); similarly for V-. ] Radial and an-
gular type variables have to be introduced separately
in V* and in V-, We may think of the variable group ele-
ment a(x) = SU(1, 1) as being the (generalized) angle
type “coordinate” in both V* and V-. That is, in each
region, we pass from the Cartesian coordinates x, to
the radial and angular coordinates (7, a(x)) or (7, g),
g SU(1, 1). Once a specific parametrization for the
elements of the group SU(1, 1) is adopted, those three
parameters will become three numerical angle type
variables. Since we want to construct O(2, 2) spherical
harmonics in an O(2)® O(2) basis, the appropriate
parametrization of SU(1, 1) will be the one given by
Bargmann, ’

(2.16)

The manner in which a transformation of 0(2, 2) ro-
tates one direction in R, into another can now be ex-
pressed as follows:

a(L(g)x) =ga(x) for all x,
a(R(g)x)=a(x)g™? if xc V*,
=a(x)T(g)"* ifxc V. (2.17)

We will leave the verification of this to the reader. [The
action of 7 on the element corresponding to the quartet
(ay, a5, a5, a,) is to give the quartet (a,, —a,, a;, —a,). |

In the Bargmann parametrization for SU(1, 1), a gen-
eral element is specified by three coordinates u, ¢, u’
by writing the matrix (2. 1) as the product

efn/z coshg/2

sinh¢/2

sinhg/2\ fei»’/2 0

0 gin/? cosh¢/2/\0

e-in'/2 )
(2.18)

The ranges for these parameters are O0< pu< 27, 0
sg¢< o, 0 <y <47 In a generul representation of
SU(1, 1), the element (2. 18) is represented by
exp(iud,) exp(itd,) exp(in'J,). By equating the element
a(x) to (2. 18), we get the equations relating %, to the
new variables in V* and V"
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v x1=rcosh§ COSiL,, X,=- 'rcosh—g- siny,,
Xy== rsinh% COSH._, X,== rsinh% sinp
(2. 19%a)
Vo xlz—rsinhg COS L _, x2=—rsinh-g— sinu _,
g _ .
x3=rcosh§ cosp,, x4_-rcosh-2- siny,;
1 ’
K= —Z-(H. iIJ.). (2.19b)

We can split the Hilbert space // into two subspaces //,
corresponding to functions that vanish in V¥, respec-
tively. A general function f in // can be written as a
pair of functions f_, f, giving the values of f in V- and
V*, respectively. Each of these is in the first instance
a function of 7 and a variable element g of SU(1, 1),
f+7;£); and on using the parameters u, ¢, p for g, each
becomes a function of », u, ¢, and u’. The Jacobian
for the transformation is easily computed; it is the same
in both V™ and V*, and we get
dx, dx,dxdx , = 2n*r*drda(x),
da(x) =%d coshg(dp/2m)(du’/4an). (2. 20)

Here, da(x) is the invariant volume element on SU(1, 1)
as defined by Bargmann. The structure of // then ap-
pears thus®:

fArsugn’)
fx)eH = f= ,
fArsugut)
||f||2=f0” 2w2¢3drfsu(l'1)da(x)( lfdrsmenn)|?
+ [frugp)|?). (2.21)

A4 .) consists of vectors which have vanishing 7_(f,).

0s7,§<e,0sp,p /2<2r,

The 0(2,2) transformations, and so the generators
M,,, leave // and//_ invariant. Each M, can be rep-
resented on each of 4/, and //_ as a partial differential
operator in the “angles” 1, ¢ and u’. We are particu-
larly interested in M, and My, and they have these

forms:
N 0
M34_Z(5—AF + EI),
(2.22)

{0 3 {0 d
H.: Mm""(aw +-BI>’ M34=_l(5—;1’__ﬁ>'

Quite generally, the expressions for M,,, M,,, M,,, M ,,
M,,, and M, in //_ coincide with those for —=M,,, M,,,

M,,, My, M,, and —=M,,, respectively in //,. Therefore,
the operator M? has the same appearance in £/_ and H.

But we shall not need to deal with it directly.

{0 d
H-: MIZ_Z(W - 'a"ﬁ'>,

3. THE 0(2,2) SPHERICAL HARMONICS

Complete sets of O(2, 2) spherical harmonics in both
V™ and V* will be built up via the Plancherel formula for
SU(1, 1).° Let us recall this formula. It states that
every square-integrable function on SU(1, 1), f(g), can
be expanded in terms of the representation matrices
Q'E'{\’)(g) of the principal series of UIR’s of SU(1, 1) as
follows:

)= [ RR TRV L 0. (3.1)
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Here, the process of “integrating” a function ]7 (R) over
the set of relevant UIR’s of SU(1, 1) is defined as

JR7iR=_ 2  Dfem+ > [ dsfs,e .

(3.2)
The weight function u(R) is given by
WR)=(2k =12 if R =(k,7)
=(2s/cothms)/? if R=(s,0)
=(2s/tanhns)!/? if R=(s, 1/2). (3.3)

The coefficients f"m( R) that appear in the expansion are
given by

FunlR)=1(R) [ dgn'BN&) (), (3.4)
and the Plancherel theorem is the statement
S dglf@*= [ RZ |Fum(R)I*- (3.5)

The invariant volume element dg has already been spe-
cified in Eq. (2.20), using the Bargmann parametriza-
tion. We can define a generalized Kronecker symbol
8(&,R") that is appropriate to the definition (3. 2) of
integration with respect to g [see Eq. (I. 4. 3)]; using it,
we easily establish the orthonormality properties of the
matrices [)’("/"\’)( 2):

S 3Ry p RN @) = (R, R )8 B o/ R IBR)- |
: (3.6

In all the above, the Dfn@)(g) were the representation
matrices for the UIR’s of SU(1, 1) in the basis wherein
J, is diagonal. These functions have been given by
Bargmann. With the coordinates u, ¢, p’ for SU(1, 1),
we have

D\RN ke, &, W)= explimp + inu')d(m/}’,)(c). (3.7

A relation that we will need is the behavior of these
functions under the automorphism 7 of SU(1, 1). This
is given by

DR = (-1 TR2).

The expressions for the “little-d” functions d("{fl)(g) will
be presented when needed.

(3.8)

Let us now consider the question of setting up 0(2, 2)
spherical harmonics in the region V*, What we need is
a complete set of functions of the “angle variables”

a(x) which are bases for UIR’s of 0(2, 2), and in terms
of which we may expand the “angular dependence”
[i.e., dependence on a(x)] of a function £,(x,) =f,(r, a(«))
defined in V*. On the basis of Egs. (2.17) and (3.1), we
can see that such a set of functions is given by
iR =p (R (a(x)), xe V", (3.9)
R goes over just those UIR’s of SU(1, 1) that appear in
the Plancherel formula; it is like the “I” in the ordin-
ary three-dimensional spherical harmonics Y} (9, ¢),
while the role of m in the latter is played now by the
composite index (mn).® We can determine the UIR of
0(2, 2) carried by the harmonicsg:’("/"\’))(x) for fixed R by
using Eq. (2. 17) and the group composition laws for the
/) matrices:
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RBL@rEM= T p R By R @), xev.

(3.10)
Now the matrices /) (R)(g)* give the UIR complex conju-
gate to R, and this in turn is just the UIR 7(R). We can
then say that for fixed # and x< V*, the harmonics
g:"/’g)(x) carry the UIR (R, T(R)) of 0(2, 2). The spectrum
of UIR’s of O(2, 2) present in //, is then

Ho: (B+, k=), (k—, k+),(s¢e, s€),k=1,3/2,--,

€=0,1/2, 0<s<w, (3.11)
Any function f,(#;a(x)) in //, can be expanded as

L= [ R uRITAR Y R,

FR D)= w(R) [ dalry R (a0, (3.12)
with

IIP= [ 2wt ar | R T |1 2 (3.13)

In particular, if we have two functions f(r)_(/’gfnﬁ)(x) and

frny {R)(x) in 4., their scalar product will be
v A SRR Bun [ Z o2 -
v L R)(R) fo e dv f (v)* (7). (3.14)

The spectrum of UIR’s of O(2, 2) occurring in /4/_ dif-
fers from that in 4/, and this will have important con-
sequences for the reduction of the representation /)*
®/)" of SU(1,1). To start with, let us define

FBJ=0=pRUax), xev-. (3. 15)

Then under the 0(2, 2) transformation L(g)R(g’), instead
of Eq. (3. 10) we now have

TR were =2 00 Pre w78, ),

xe V. (3.16)

On taking account of Eq. (3. 8), we see that now for
fixed R we have the UIR (R ,R) of O(2,2). IfR is a dis-
crete UIR of SU(1, 1), this is not equivalent to (R, T(R)),
while if # is in the continuous class, it is equivalent to
(R, T(R). The spectrum of UIR’s of 0(2, 2) occurring in
H., is therefore this:

H_ (R, k), (=, k=), (s€, s€),
k=1,3/2,+++, €=0,1/2, (3.17)

Now the UIR (s¢, s€) is present in both 4/, and £/_, and it
is therefore useful to choose the corresponding spher-
ical harmonics in the two cases so that the transforma-
tion laws under O(2, 2) are not merely equivalent but
identical. Comparing Eq. (3. 16) with Egs. (3. 8) and

(3. 10), we are led to the following final choice of O(2, 2)
spherical harmonics in the region V-19;

YisR@ =(=1mp{Ra), xe v, (3.18)

€=0 or ; according as # is integral or half-odd inte-
gral. Then, for R =(s,€) we have, uniformly;

yiRL@rE = 2 0l Wiy dRl @, (3.19)

0 ss< oo,

The analogs to Eqs. (3.12) and (3. 13) in the case of
a function f_(x) belonging to //_ are as follows:

Ttra = RuRTRY R,
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R =R [ datoy Ry s (r;aa,

WP = [ 2rrarf gD AR 12 (3. 20)
and the scalar product of two elements ﬂr)g;&,/,,i)(x) and
f’(r)gzs,‘[\),:,)(x) in //. will be of exactly the same form as
in Eq. (3. 14).

The definitions given in Eqs. (3.9) and (3. 18) for
Y ;%)(x) and // ;%)(x), respectively, constitute a full
solution to the problem of setting up the 0(2, 2) spheri-
cal harmonics in an O(2)® O(2) basis. Taking account
of the differences in the forms of M,,,M,, in//_ and in
/., as expressed by Eq. (2.22), and also the differences
between Eqs. (3.9) and (3. 18), we see that we have
uniformly

Mol = (m + )y {R) ),

3.21

M B == m iR (3-2D

We now have adequate information to write down the
general forms of vectors in /4 that are eigenvectors of
M,,, M,, and also belong to definite UIR’s of 0(2, 2).
While M,, as defined in (1. 10) coincides with the opera-
tor used in I in the analysis of the representation /)* of
SU(1,1), M,, is the negative of that used there in the
analysis of the representation /)”. To pick out the parti-
cular product Dy® D}, in/)*®/) " (which incidentally is
present four times unless # and/or ¥ is 1), it is con-
venient to choose the eigenvalues (2k2 - 1) and (1 - 2k')
for M,,, M,,, respectively. (The former is nonnegative,
the latter nonpositive.) For such values of M,, and M,,,
not all the UIR’s of O(2, 2) listed in Egs. (3.11) and
(3.17) can appear. Specifically, from (3.21) we have
m=k+k -120, sothe UIR’s (&” —, k" +) in 4/, and
(k" —,k” =) in 4/ _will not show up. Given the eigenvalues
for M,,,M,, as above, an element in // belonging to the
UIR (k" +, &’ +) of O(2, 2) must lie within /4/_; in the nota-
tion of Eq. (2.21) it must have the form

f.(V)li(k’ )~ 1)k'-k*e<[) ;f;; :;,k(’)-k(“' ty )> , (3.22)
and its norm will be
2w ) |2 ar. (3. 23)

If on the other hand it is to belong to the UIR (k" +, k" =),
it must lie in 4/, and have the form

s 0 .
1Yy ) (3.24)
its norm will be
fo“’ 2m2R |1 () |2 dr. (3. 25)

Both vectors (3. 22) and (3. 24) possess the eigenvalue
k" (1 - k") with respect to the total SU(1, 1) Casimir
operator @; the former vector will exist only if # =%
+1, the latter only if 2= %’ + 1. This is because in the
Plancherel formula for SU(1, 1) the two UIR’s D3, are
absent, so in the above we must have 2” = 1.

The third type of vector we are interested in belongs
to the UIR (s¢, se) of 0(2,2) (and of course has M, =2k
-1, M;,=1-2k’). Since this UIR of O(2, 2) is present in
both 4, and /4 _, such a vector involves two radial func-
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tions and has the general form:

F(r)(=1)¥ -Fexp(ip(s, D)) polLEr)
B, e)<J+(V) ST ugjr) ) (3.26)

The purpose of the phase factor ¢(s, €) is to ensure that
when the vector (3. 26) is acted upon by the operators of
the representation /)*® /)~ of SU(1, 1), the changes
brought about in f_(7) and f,(») will have the standard
forms explained in I and characteristic of the UIR (s, €)
of SU(1,1). It has been evaluated in the Appendix and
turns out to be ¢(s, 0)=2¢(s, 3)=7. It is evident that the
vector (3. 26) possesses the eigenvalue }+ s* with re-
spect to @. If we take another vector of the form (3. 26)
but with the replacements f () = fI(7), s—=~s', e—~¢,
then the scalar product of this vector with (3. 26) will be

B(s" = )0, f, 2P (FLALN) + £ (N (1)) dr.
(3.27)

This is the analog of Eqs. (3.23) and (3. 25) and has to
be stated in this way because s is a continuous variable.
Of course, all the three equations (3.23), (3.25), (3.27)
are consequences of Eq. (3.6).

4. C-G SERIES FOR THE PRODUCTS D*® D-

We know that the generators J, of the representation
[)*®/) of SU(1, 1), commute with the transformations
of O(2,2). Let us consider the action of a finite SU(1, 1)
transformation on a vector of the form (3. 22). This vec-
tor will preserve its property of being an eigenvector
of M,,, M,, and of belonging to the UIR (#” +, " +) of
0(2, 2); in other words, under the action of SU(1, 1) the
sole change will be in the radial function f_(#). Stated
yet another way, the subspace of 4/ containing all vec-
tors of the form (3. 22) for all possible f.(7) is invari-
ant under /)*®/)"; and the restrictions of J, to this sub-
space yield purely radial differential operators that
act on f (7). These radial operators are easy to get,
since we may use Eq. (1.16) and the facts that in con-
sidering vectors like (3. 22) we may set @ =k”(1 - %"),
x?=—7°. In this way we find

o par =Talk, ). (4.1)
M34=1-2k'

(R &, 1" +)

The operators on the right are the ones defined in Eq.
(I.1.13) in setting up the UIR’s D~ in a standard form.
The similarity transformation needed on the left before
achieving the standard form is to compensate for the
fact that the measure in the radial integration in (3. 23)
is 7% dr unlike the measure »dr in Eq. (I.1.8). There-
fore, the subspace of 4 under consideration carries the
UIR D3.. of SU(1, 1), in the standard form. This UIR oc-
curs in the decomposition of the particular product

D@ D, within /)*®/)", going with the choices M, =(2k
-1), M,,=(1-2F). Since this subspace in // exists on-
ly when ¥’ >k + 1, we draw the conclusion that D,g D3,
contains D3, only if ¥ 2k+ 1 and 7 <k’ —k. In any
case, k" =21, soallinall 1 <k” <k —k is the condition
for D}, to occur in D;® D5, .

In a similar fashion, the restriction of J, to the sub-
space of vectors of the form (3. 24) gives operators in
the standard form for the UIR D3.:
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';'Jm')"1 Hyg=2he1 =Ja(k", +). (4.2)
Mog=1-2k
(B 4y k¥ =)

In this case, we substituted x2=72 and @ =~*(1-%") in
(1. 16); the operators J (k" +) are given in Eq. (I.1.9).
This subspace of // carries the UIR D}, and since it
exists only when 2=k’ + 1, we see that the product

D;® D;, contains D;. under the conditions 1 <k” <k -F%'.

Finally, the restriction of J, to the subspace of vec-
tors (3. 26) will yield differential operators in » which
are simultaneously 2X2 matrices; purely formally we
find

7 7 'M12=2k-1 Mgge1-2k(se,00) =Y o(S) €, (4.3)
where the standard operators on the right appear in

Eq. (I.1.17). The existence of the present subspace
places no conditions on & and #'; ¢ just gets determined
by k +%’ in the natural way. Of course, establishing Eq.
(4. 3) is not enough to guarantee that we have found the
UIR (s,€) of SU(1,1) in the standard form in the subspace
of 4/ made up of the vectors (3. 26). But it is shown in
the Appendix, by considering the finite transformation
exp(iudy) and its action on the vector (3. 26), that this
is indeed the case. We can then draw the conclusion
that within this subspace of // the outer automorphism 7
of SU( 1,1) is implemented by the operation of inter-
changing f_(») and f,(r).

From all these considerations, the structure of the
C—G series,

DioD, =6Fk-F 1)

k=k
2, D

K" =lor3/2

R~k
+0(k-k-1) 2. D;

k" mlor3/2 K
+ [ ds € g2 (4.4)

Bk =%1,%,-+, €=0(3) and k2, ,=1(3) if & + K’=integer
(half-odd integer)

may be inferred. Here, 6(x)=1 for x=0,%,1,%,--- and
=0 for x=- 3, -. We see that the structure

of this series is determined by the spectrum of 0(2, 2)
representations in an O(2)® O(2) basis, present in /4.

3
-1, -3,

We conclude this section with the construction of the
uncoupled and coupled basis vectors for //. Suppose we
had used radial and polar variables separately for the
pairs x,x, and xyx,, namely, set x; +ix,=p exp(i@),
xg +ix,=p’ expli¢’). Then, on the basis of our analysis
of H*in Sec. 2 of I, as well as Eq. (I.1,12) and (I. 1,14),
apart from numerical factors an uncoupled basis vector
would be

exp[~i(2k - 1)@ ](p)?**-* expi(1 - 2%") @’ (p")***"*. (4.5)

This is an eigenvector of M,,, J,(+, 12), M,,, J,(—, 34)
with eigenvalues (2k~1), p, (1-2F"), p', respectively.
It is a basis vector for the product D}® D;.. To express
this vector in the form of Eq. (2.21), we must relate

p, @, P, o towr, u, ¢ K in V*and in V. Comparing
with Eq. (2.19) we get

V*: p=vcosht/2,
V': p=vsinhg/2,

p’ =7 sinhg/2,
o =vcoshg/2,

@ =1+,

@ == U
(4.6)

qoz—“‘«q-’
=7+ L,
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Then the properly normalized uncoupled basis vector &
is

@(};4-)(’2;-') = [th(pw’)-z/zﬂz] exp[i(k +B - 1)“]

><((-1)2"‘1‘(sinhg/2)"""1 (coshy/2)2 - expli(k — k) ']
(~1)*'"Y(coshg/2)*# (sinhg /2)*#" ! expli(k - ¥/ )u’])/’
(4.7)

These vectors obey
(q,(t?;m;i;), U R = By g 001 = DIS(DY 1), (4. 8)

[We are restricting ourselves to nonnegative eigenvalues
for M,, and nonpositive ones for M,, throughout. ]

For the coupled basis vectors ¥ in all three cases,
namely (3.22), (3.24), (3.26), the radial dependences
are determined by the fact that we want J, to be diagon-
al. In addition, in the case of (3. 26), the ratio of f.
to f, is given by the eigenvalue a of the operator A im-
plementing the automorphism 7. The vectors ¥ and their
normalizations follows:

1/2k" — 1\!/2 "
() (R =) RY ) . = ip¥ =2
¥ » 11( 27 ) 7

0
X( o ,
(D b peae (LR )>

E-F 2k =21, (4.9a)
IR _ l(Zk” _ 1)1/2(_1)k'-k+e7;’.1pu-2
" T g\ 27
x( ;f;::;,k'-h(#gli'))
0 H
B -kzk>1; (4.9b)

. S,€) s
PR (R ) (se) P'(_»,,.zm -2
*e 7 2nvw

(=1)* < explio(s, 1), v ptw’ ))
X k+k’ =1,k =R . 4.9
( af) ;ai},zfll,k-k'(ugu’) ( )

Vectors ¥ of distinct types are orthogonal. (In any case,
types (a) and (b) do not exist simultaneously. ] For the
rest

oyt BT
(\Il(kl’)(kl )(klp})’ \I,(lu)(k‘ (& pt'))=6k1k5kik'6k’l’k"6(pq _p/r),
CRy+) (R =) (K =) CRe) (B =) (R" =) ” ”
(¥ Ly ¥ o) = Oy 50 Opr 4 5(py =p"),
(‘I,(kl-r)(k'l-)(.;]:al), ‘I’(k”(kl-)(;'e'c)l)=6k1k6kik'6(sl - s)é(plll _pu)
141

1
X B¢ B0 (4.10)
These results are essentially consequences of Eq. (3. 6).
The normalization conditions (4. 8), (4.10) agree with
the convention expressed in Eqgs. (I.4.4) and (1. 4. 5).

5. C-G COEFFICIENTS IN A CONTINUOUS BASIS

There are three types of C—G coefficients to be cal-
culated, namely C(k+ ¥ -f Ipp’p”a) for R=(F"+),
(k” =) and (s, €). These three coefficients are the scalar
products of the uncoupled basis vector & in Eq. (4.7)
with the coupled ones ¥ in (4.9a, b, ¢), respectively. The
factor 5(p + 2’ - p”) will always be present, its coeffi-
cients in the three cases, written C(k + ¥’ =R 1pp a) will
be computed.

From Egs. (4.7) and (4. 9a) we get
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” 1/2
Cle+k -k + ]pp’):(-—l)z""‘(%—l—)

x J."dt(coshe /22 (sinhg/2) 2 dhy (9. (5.1)

In arriving at this result, the trivial integrations over
W, K, and r have been carried out; the » integration
gives us the factor 5(p +#’ ~ p”) and on dropping it we
get the quantity C. Now the “little-d” function in (5. 1) is
given by Bargmann; it is the matrix element of the finite
SU(1, 1) transformation exp(izJ,) between eigenstates of
J, with eigenvalues £+ % -1 and k- #’, in the UIR

(k" +) of SU(1,1). It can be expressed in terms of the
hypergeometric function as!!:

1 /(m kr;)!m+klr_1)|>1/2
(m=n)I\ (=~ )(n+k -1)!

X (coshg/2)™ " (sinhg /2)™"
X P (k" —n, 1=k —n;1+m —n; — sinh?¢/2),
(5.2)

d:nk':'+)( ;) —

m=k+k -12n=k-¥F =21.

Instead of using this directly in (5. 1), it is convenient
to change the argument of the ,F, function to tanh?¢ /2
using the transformation!?

F (k" —n,1=k" =n;1+m —n; — sinh®¢/2)
=(coshg/2)*2%¥" F (k" ~n, k" + m;1+ m —n; tanh?¢ /2).
(5. 3)

Then, on further substituting tanh®z/2=1¢, the ¢ integra-
tion in (5. 1) reduces to the evaluation of

fO‘ db (¥ -1 (1 = LB (B~ k" +ms] +m - nst).
(5.4)

This can be done, the result being essentially a gener-
alized hypergeometric function of the variety ,F,; the
value of the integral is'?

DF —ip TR+ ip+ip)
(% + k" +ip)
X .F B+ R -, B AR +R-1,F —ip’;1>.
2R\ E + R +ip;

(5. 5)

Putting all the pieces together, the final expression for

the C coefficient for the product D;@ D}, — D,. has the
appearance
A 2k —1\1/2 1
[ —(—-1)%-1
Clle+k =k + |pp/)=(=1) ( o ) (=D
((k +E R - DI+ R + R -2)1)1/2
(k=K -k"){k+R" -k -1)!
o T —ip YD(R" +ip + ip’)
(k' + P +ip)
k" +k -k, K +R +R=-1,F —~ip';l
x s
3F2< 2B K + R +ip; ) (5.6)

In a similar fashion, the C coefficient for the case

Di® D}, — D;. turns out to be
2B 1)1/2 1
N Y —(=1)2k1
Clle+k |2y =(=1) < o k=11
R+ ¥ -

P =1)(k+k +E-2)1\!/2
(R —=k=-k"Y(F+E —k=1)]
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o Dk ip) T + ip + ip)
TR+ +ip)
B+ b—F B+t R =
xaF( 2k, b+ k" + ip;

1,k- ””1> (5.7)
The expressions in (5.6) and (5.7) should be compared to
that in Eq. (I.4.11) corresponding to the case D;g D},
—~D;,.. In all three cases, the final result consists of
just a single term, that being the ,F, function. In all
other kinds of products, the C coefficients turn out to in-
volve two or more F, functions.

The last case to be treated is D@ D —~ C;. Now using
Eqgs. (4.7) and (4. 9¢), doing the trivial 7, u, W' inte-
grations and dropping the factor &p +p’ - p”), we arrive
at

K(s, €
PNE

X (coshg/2)2# (sinhg/2)2%d;e), L WD+ a(- 1)
X (coshg/2)2% (sinhg/2)2%" a3y, . (£)): (5.8)

Now, these d functions are the matrix elements of
exp(itd,) in the 0(2) basis, in the UIR C{, g=1 +s%.
They are given by

C(k+ R - se|ppa)=— ”dg[exp{igp(s, €)= 1)%5 -
)]

45:9(¢) = <1‘(m+§+is)1"(m+§—z’s))1/2
mn (m - n)' T(n+3+is)T(n+ % ~is)

X(coshg/2) ™" (sinhg/2)™ " F (3 —n+is, 3 ~n—is;1
+m—m; -sinh?/2), m=k+¥-1>n=:(F=Fk). (5.9)

It is again preferable to have tanh®;/2 as the argument
of the ,F, function, and this is achieved using'®

(s —n+is, 5 =n—is;1+m—n;~ sinh?¢/2)
=(coshg/2)*m28L F (3 ~n+is, L +m +is;l+m —n;
X tanh?¢/2) (5. 10)
which is the same as Eq. (5. 3) with #” replaced by %
+is. Then (5.8) becomes

é(k+k’ _ se]pp'a)z_ H(s 6) [( 1)k+k‘-e exp{zq) s, 6)}

x I(kp, k' P/ ;) + (= )”’af(k'zf kp;s)],

1 ’ ; VN 1/2
KR, kpis)= T 1)'<1"(k+k L+is)I(k+k -1 1,s)>

T(k~F +5+is)T(k~F +1~1is)

X [~ dt(coshy/2) ¥ i) (sinhPy/2)¥ -i#'-1/2

X, F(3+is+k -k, ~3+is+k+F;2F; tanh?y/2).
(5.11)

The substitution tanh?¢/2 =1t puts the ¢ integral in the
form

J e T e R L R R

+h+E 210, (5.12)

This is the same integral as appears in (5. 4) but with
the change #” —{ +is (and with m=k+ ¥ -1, n=k-F').
Likewise its value is given by setting 2” — %+ is in (5. 5).
All in all, then, the C—G coefficient in the present case
is given by Eq. (5. 11) with the value of I(k’p’, kp;s)
being
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I(klp’, kp;s):

1 (De+R-3+is)I{k+k =-%-is) )1/2
QCr=-DI\T(k=-F +I+is)I{k~ k' + L -is)

< DU —ip)I(z +i(p + P’ + 5))
TE+E+i(p+s))
5 (¥

In contrast to the purely discrete case, we see then that
these C—G coefficients are sums of two terms, each
involving the generalized hypergeometric function ,F,.

—k+i+is k'+k—2+zs B -ip ,1) (5. 13)

2k' BE+i+i(p+s);

6. SUMMARY

Following the approach of the previous paper, we have
related the Clebsch—Gordan problem of SU(1, 1) for
products of the type D;® D, to the properties of the
“gpherical harmonics” for the group O(2,2), and thus
we have understood in a new way the form of the C~G
series in this case. Luckily, the properties of these
spherical harmonics could be gleaned from properties
of SU(1,1) itself, since locally O(2,2) has the structure
SU(1,1)» SU(1,1). The C~G coefficients for such pro-
ducts in a continuous basis have been computed and
again are expressible in terms of the ,F, function. For
the purely discrete cases, D*® D — D* the C—G coeffi-
cient is just a single term, but in the case D'Q D" - C
there are two terms. The fact that the two UIR’s Dj ,
are never contained in a product of the form D;® D;, for
any values of k and %’ whatsoever, including the values
%, is reunderstood in a satisfying manner: it is be-
cause these two UIR’s are absent in the SU(1,1)
Plancherel formula, so we have no “0(2, 2) spherical
harmonics” corresponding to them.

APPENDIX

We shall explain here the need for the phase ¢(s,¢)
occurring in Eq. (3.26), and then determine it. We have
explained in Sec. 1 of I the manner in which the UIR
Ce of SU(1, 1) could be set up in a Hilbert space consist-
1ng of pairs of functions f,(7), f,(#); the forms for the
scalar product and the generators J,(s,€) are in Egs.
(I.1.16) and (I.1.17), However, as noted there, the
expressions for the generators are purely formal; they
must either be supplemented by precise statements about
their domains, or alternatively one could directly write
down the actions of finite group elements. For example,
we have

h=explitdy(s, €1f:

h,(r):é)_/; wdr' 'L O r, v 0)f (7). A1)

The L€ are known, and the value of L,3'*’, which is
all we will need is'*:

-1
7 sint/2

x (exp[ns]+ € exp[- 7s])
X K,, (rr'/sint/2). (A2)

(The € on the right has values +1 according as ¢=0, 3.

L (v, v;t)= expl(i/2)(+" = »?) cott/2]

Now consider the representations of the groups
SU(1,1) and 0O(2,2) which were both defined in Sec. 1 to
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act on the Hilbert space /#/ and which had the property of
commuting with one another. By analyzing the 0(2, 2)
representation, we were able to define appropriate
“spherical harmonics” in the two regions V*, V- of

R,; they served the purpose of fully reducing the repre-
sentations of 0(2,2) occurring in/4_ and #,, respective-
ly. We are interested in the occurrences of the UIR

(se, s€) of 0(2,2) in /. as well as in//,. By means of the
definitions of {/ (( )(x) in Eq. (3.9) and (/- (/\)))(x) in

Eq. (3.18), we were able to ensure the complete iden-
tity of their transformation laws under 0(2,2), for the
case R =(s,¢); this fact is stated in Eq. (3.19). For any
set of constants C,,, and for a fixed (s,¢€), let us con-
sider an element f in// of the form

- f.(’i’) eiv (s,€) Ecmn{/"""(x)

(mn)
(1)

Z}cmyus, ©)(x)

(mn)

_[£0) &0 TC, (=17"D £, (ale)

(A3)
L(7) EC e 35 (alx))

Now the transformations of 0(2,2) can in no way “dis-
tinguish” between the upper and lower components of
such an f since they are constructed in exactly the same
way from functions having identical 0(2, 2) transforma-
tion laws. On the other hand, since the transformations
of the representation /) *®/) - of SU(1,1) commute with
0(2, 2), they can in no way alter the O(2, 2) structure of
an element f in //. So for example if h=explitJ,f, where
f is the above vector and J; is one of the generators of
D*® /)", then h must be of exactly the same form as f,
with the same set of coefficients C; the only change
can be a replacement of f.(r) by two new radial functions
(7). We have here essentially the UIR C of SU(1,1)
acting on the pairs of radial functions f,(+). We must
now choose the phase ¢(s,¢) in such a way that the re-
lations that express h.(7) in terms of f,(») are in exactly
the standard form corresponding to the UIR C¢, namely,
Eq. (A1). The point is that the only freedom we have is
in the choice of this phase, and it should be possible to
choose it so as to achieve the above purpose.

To fix ¢ (s,¢), it is clearly enough to obtain the con-
nection between #_(r) and f,(r), and arrange matters so
that precisely the kernel (A2) is required. We must of
course get the connection between #_ and f, by some
global means; this is quite easy since J, involves just
harmonic oscillator Hamiltonians. In four-dimensional
Cartesian variables, we have [cf. Eq. (1.7)]"°

=3(x*x, —8%3,),
[exp(itdo)fl(x) = hlx;8) = [ d'x'Llx, x";D)f(x"),
L(x, x;) = (27 sint/2)2 exp[ — i((x* + x%) cost/2

~2x+ x')/2sint/2] (A4)
Now suppose f(x’) vanishes when x’ € V-, while we want
to evaluate &(x;f) for x< V-, Then we must change vari-
able from x’* to 7/, u., ¢’ according to Eq. (2.19a) and
from x* to 7, u,, ¢ according to Eq. (2.19b), and re-
write Eq. (A4). Now the invariants have the values
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== xP=+77,

x+x'=vr'(coshZ/2sinht’/2 cos(p, +u!) - sinhE

2

Xcosh% cos(p_+ ). (A5)

Writing k_(7;n&u’) for h(x) when xe V-, (A4) becomes
h(r;utu’)=(2n sint/2)'2f 7 2nyt3 dy’ f1 “ 3d cosh¢’

2r 27
x/ du/ dp.

.y’ 'Y 4 ¢
—_— X + - =
Xexp[z sint/2(COSh2 sinh — 2 cos(u u?) s1nh2

xpl(i/2)(+* = v"?) cott/2]

xcosh% cos(u, + #.))]f,,(?”;u”z’u”'), W

=3p"zu"). (A6)

Let us now put in for f, an expression like the second
element in the column vector (A3), namely,

f+(1” rerptr) f (r’)ZCm,,exp[zmu” +mu"’]d“ e)(g )
(AT)

Then the integrations over u! can be explicitly carried
out using

f;ﬂ do expli(acose + me)] =27 explimn/2]J (a), (A8)

J,(a) being the ordinary Bessel function. One then finds

h(r;ptu’) =(2 sint/2)2 %Cﬂm explimu ]

xexpl —in(p’ +7)]
xf()wdr'v's () expl(i/2)(#* = ") cott/2] fiedcoshC'

Xd$e(eNd,, (@), _(B),

m+n

a =7’ sinh¢/2 cosh §’/2/sint/2, B=wr'cosh&/2
xsinh¢/2sint/2. (A9)

The phase @(s,¢) must now be chosen so that this has
just the form of the first element in the column vector
(A3) and the kernel with which £, (') is being integrated
is precisely L‘s'”('r, v’:t) (except for the change in mea-
sure rdr to v*dr). That is, for appropriate choice of

¢ (s,€), the right-hand side of (A9) must coincide with

explio(s,6)]12C (1) explipm] expl - ip'nldl X0) %

x [Todr x LG (v, v 07 f (7). (A10)

Since both C, and f,(»’) are arbitrary, ¢(s,¢) is to be
determined from the following equality:

[" deoshzrdis, (2)d,,, (@), (P)

4 sint/2

—explio(s,e)explin(@n +1 +¢)] Z22L2 o

d'(: e)(g)
X (e +¢ e )X K,, (vr'/sint/2). (A11)
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This is to be valid for all »v’, ¢, {, m, and n. For each
(s,€), by making particularly simple choices of m, n
we can determine ¢ (s, €).

Take first the case ¢ =0, when € =+ 1. It is then sim-
plest to choose m =n=0, and also set {=0. Using, as
a particular case of Eq. (5.9),

d& (e =F(3 -is, 3 +1is; 1; ~sinh?¢’/2), (A12)

and also writing « for the combination 7+'/sin#/2, (A11)
simplifies to

fl“’ dcoshe’F(} —is, 1+is; 1; - sinh?t’/2)J,(u sinh¢’/2)

[~ explip(s, 0] 2e05hTE

K,, (u). (A13)

But the left-hand side is a known integral,® and its val-
ue happens to be just what multiplies the factor
{-expli¢(s,0)]} on the right; hence we conclude ¢(s, 0)
=7,

Next, when e=3 and ¢ =~1, choose m=—-n=3, ¢
=0. In place of (A12), now we use

A212) (£) = = ssinh(£/2)F(1 —is, 1+is;2;

—sinh?¢’/2), (A14)

Then (A11) simplifies to
[7 dcosht’F(1 ~is, 1+is; 2; — sinh’¢’/2)(sinh&’/2)J,

x (u sinh¢&’/2)

8 sinhws
] Tus Ko,

=explilg(s,3) - 7/2) (w). (A15)

Once again the left-hand side is a known integral, and its
value coincides with the right-hand side save for the
first factor.'® This then yields ¢(s,1)=7/2, so ¢(s,¢)

is fully determined.
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tory behavior of the Bessel function at infinity. A similar
comment applies to our use of the formula quoted in Ref. 13.
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Bernouilli’s principle of insufficient reason is formulated in a noncommutative C *-algebraic
generalization of probability theory. This idea is developed here for general quantum systems, and a
simple illustration of it is given. Subsequent papers in this series will deal with more sophisticated

models.

INTRODUCTION

This paper, the first in a series, is organized in the
following manner. In Sec. 1 we present the general
formalism we want to propose. Section 2 is an outlook,
in which we examine some of the possible applications
of this formalism. Section 3 contains a most simple
illustration of the ideas put forward in Sec. 1.

1. THE GENERAL FORMALISM

Various generalizations of the related concepts of
coarse graining a priovi probability and conditional ex-
pectation from classical probability theory to the non-
commutative probability theory of quantum mechanics
have appeared in the literature for the past twenty
years.'~® However, the continuity of the one-particle
momentum spectrum in infinitely extended quantum
systems renders their momentum coarse graining at
once physically desirable and beyond the scope of these
papers. The present paper offers a general formalism
which allows, in particular, a proper definition of the
momentum coarse-graining operation. This specific ap-
plication will be discussed in details in subsequent pa-
pers in this series, for we want to concentrate here on
the general formalism. For illustrative purposes, how-
ever, we include in the present paper a very simple
model which we treat in accordance with our formalism.

A C*-algebraic* framing of the probabilistic concepts
referred to above has been suggested by one of us
(GGE). Recalling the main points, let ¥ be the C*-
algebra (with unit) of observables of a physical system
%, and let & denote the set of states on . By necessity
or by choice an incomplete set of observables /, as-
sumed to be a C*-subalgebra (with unit) of ¥, is
selected for experimental observation. The experimen-
tal determination, through f, of a state p, of T provides
then only partial information about the state of the sys-
tem; this information is summarized by the restriction
Py of p, to . The question now is whether a rational
choice for p, can be made based on the known informa-
tion given by p,, or, equivalently, whether a “best bet”
for the remaining expectation values can be placed. To
answer this question, one must choose among the non-
empty (2.10.1 of Ref. 5) subset Efj, < & of all extensions
of p, to %. The states pe Ep,, which by definition have
the same restriction to 2, are termed /-equivalent.

Our criterion for choosing the bettor’s extension 50
of p, is a refinement of Bernoulli’s “principle of insuffi-
cient reason. ” In the physical models considered below
there exists a symmetry group G of automorphisms of
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%, which is conjugate to / in the sense that P is the set
of all G-invariant elements of %, 2 =%¢. The existence
of the conjugate pair (2, G) is expected on physical
grounds: An observed effect E is experimentally shown
to depend upon /2 only by demonstrating that transforma-
tion by G does not affect the result. Considering / to

be the momentum observables of a one-particle system
in free space and G to be the group of space translations
illustrates this point. Now, since G acts trivially on 2,
one possesses “insufficient reason,” on the basis of the
determination of 5,, to favor the assignment to (p,:S)

of any value different from that assigned to {p,: g5 for
any Sc¥ or any ge G. Therefore, the bettor’s extension
must be G-invariant. If there should exist a unique G-
invariant extension of p, to ¥, it is then the “best bet”
for p,. It is important to realize at this point that the
question of whether or not the odds warrant betting at

all is not considered here. In applications to generalized
master equations, ® this question must be resolved by
detailed analysis of the “interference term.” We shall
seek, therefore, to establish that the following property
holds for some models Z to be considered below.

Property C: Let (¥, P, G) be defined as above, Then,
each state p on / admits exactly one G-invariant ex-
tension to .

When this property C is established for a model =,
one can define, as we shall presently see: the a priori
probability assignment conditional upon /; the P-coarse
graining map; and, with other mild restrictions (Lemma
1.5), the F-conditional expectation.

The a priovi probability assignment conditional upon
P: Suppose that T possesses property C. Denote by
¢ X @1 P) the unique G-invariant extension to ¥ of the
state & on . The map ¢&*(-1P) :&(P)—&%, of the set
&(P) of all states on P into the set &° of all G-invariant
states on ¥, is an affine bijection called the a priori
probability assignment conditional upon /.

The P-coarse graining operator: Let w be any state on
¥ and denote by & its restriction on /. The mapping
D(1P): &—&°, defined by D(wlP)=EX@!P) is an
affine surjection called the /-coarse graining operator.
For each we &, £*(&1P) is the maximal “coarsening”
of w which preserves the /M-information content of w,
and it is the “best bet” for w based upon the partial
information obtainable by observation of / only.

The P -conditional expectation: The term “}-condi-
tional expectation” shall be reserved for a map
&1 ) : A~ P whose dual coincides on &( /) with EXCLP)

Copyright © 1974 American Institute of Physics 1343
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and which possesses the following properties:

1) EQS+yT|P)=xe(S|P) +¥E(T|P)VS, Te U, W,y €€,
(ii) £(S*S|P)> 0V Sc ¥,

(iii) (1| P) =1,

(iv) ESET| PP =ES|P) ET|P) VS, Ten,
EET|PIS|PY=E(T|P) ES|P).

It would be consistent with Halmos’ nomenclature’ to
call our P-coarse graining operator a /-conditional
expectation. However, we prefer to follow here
Umegaki’s notation.®

We shall prove in Theorem 1. 6 that if G is amenable®
and if ( ¥, G) admits at least one faithful (for #), covari-
ant representation, Property C ensures existence of
&(12); uniqueness is inherent to its definition.

We first examine some of the consequences of amen-
ability of G.

1.1 Lemma: Let G be a topological group, let ¥ be
a C*-algebra with unit, and let @ :G— Aut¥ be a strong-
ly continuous homomorphism of G into the automorphism
group of . Denote by U® (resp. **®) the set of all G-
invariant elements of ¥(resp. ¥*). Let n be a mean on
CB(G). Then,

(a) For each continuous linear form ¢ on¥, the map-
ping n*¢ : ¥~ C, defined by (n*¢:S)=m{d:@(.,HV S
e ¥, is also a continuous linear form on ¥.

(b) The mapping n* : 4* — A * defined in (a) enjoys the
following properties:

(0) n*(xo +yP) =An*d +m*p V ¢, Y A*, VA, yeC;
(1) Inoll< 1ol V¢ e U*;
(ii) 0= 0=20*p =0 Vo c U
(iif) (n*¢p: 1) =(d: LV p € A*;
(iv) n*poS=n*(¢<9),
Sen*d =n*(So ), VScA®, Vo U*;
(v) n*¢ € Colato|gc GF* Vo e u¥;

(vi) if 1 is an invariant mean, then ofn*¢=n*a}¢
=n*¢ Vge G,V¥oc U*, and n* is a parallel projector.

The proof of this result is analogous to that used by
Radin.®

1.2 Covrollary: Let G be an amenable topological
group. Then, there exists at least one G-invariant ex-
tension of each state p on ¢ =0,

Proof: Notice first that Ep is a convex, w*-closed,
G-stable, nonempty subset of &. Let n be any invariant
mean on CB(G), and let e E5. Then, by (v) n*p
e Colarplge G}™* CEp, and by (vi) n*y is G-invariant.
To sum up, amenability of G in a model system Z
assures existence of a G-invariant extension to ¥ of
each state of 7, i.e., guarantees the existence part of
Property C. Uniqueness remains to be proven
independently.

Property C is rather stringent, as illustrated by the
following result.

1.3 Covollary: For any state p on P, let M
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=Nyegs Colahl ge GF**. When G is amenable, the
following conditions are equivalent:

(i) ®°nN Ep contains exactly one point;
(ii) M is not empty.

Proof: From Cor. 1.2 we have already that &N Ep is
not empty. For the present corollary it is therefore
sufficient to prove that ¥+ ¢ both in &° N Ej occurs
exactly when M is empty, but this follows immediately
from the proof of Cor. 1.2 and from the construction
of M.

1.4 Lemma: Let G be a topological group, let// be
a von Neumann algebra acting on a Hilbert space /4, and
let @ :G— Aut/Y be a strongly continuous homomorphism
of G into the automorphism group of /. Denote by A/®
the set of all G-invariant elements of //. Letn be a
mean on CB(G). Then,

(a) For each Sc/V, the mapping n°S://, —C, defined
by (¢ :n°S)=n{¢: 2,5 Vo< /N, is a continuous linear
form on /V/,, and therefore defines an element of /.

The mapping 7° ://V = /V defined in (a) enjoys the follow-
ing properties:

0) S +yT)=n°S +yn*T ¥,y C, VS, Te A,

() ISl < ISl VSenN;

(ii) °(S*S)=0 VSepN;

(iii) n*(1) =

(iv) n®(ST)=7*S+ T ¥SeN, VT c AC,

n°(TS) = Tn®S;

(v) n°ScCola,S|ge G}ottravesx,

{(vi) If » is an invariant mean, then
n°S=a,n*S=1e¢,S Vge G,V¥Se N, and 1’ is a G-
invariant, N -conditional expectation in the sense of

Umegaki.! The proof is analogous to that presented on
p. 180 of Ref. 10.

1.5 Lemma: With the assumptions and notation of
Lemma 1.4, suppose further that (i)  is an invariant
mean, (ii) there exists a C*-subalgebra (with unit) ¥ of
N which is stable under the action of G, and (iii) there
exists precisely one G-invariant extension to ¥ of each
state & on 2= A°. Then:

(a) For each Se %, n°S is the unique G~invariant
element of Co{a,S| ge G}™;

() n°¥%= P, and (n°ly)* p=EX(BIP) Vhes(P).

Pyoof: (ada) Let n be an invariant mean on CB(G) and
let n* : A/* —/V/* be defined as in Lemma 1.1, and
n?: =~ NC as in Lemma 1.4, Now let ¢ be an arbitrary
state on //. Then, by virtue of Lemmas 1.1 (iii, iv, vi)
and 1.4 (iii, iv, vi), ¢on’ly and n*¢ly are two G-
invariant states on ¥ whose restriction to /2 is ¢>|
From the uniqueness assumption of the present lemma,

¢°nb|g[='f7*¢]9[=5*(¢/]\ﬂ|/9). 1.1

Now let {M;};c, be a net of discrete means convergent in
the w* -topology of CB(G)* to n.® Then,™ for ¢ on /V,

n*¢d = o NV*,N) - 11mM ®. (1.2)
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Therefore, for each Sc % Egs. (1.1) and 1.2) imply
n*:8)=1im(¢ : M5 ) =(¢ :1°S). (1.3)

1t follows by linearity and the arbitrariness of ¢ that

n°S=o(V,/V*) —lsiénIM’gS vSed. (1.4)

Thus, for each S= %, 1?Se Co{a,Sige G} =Co{a Slg
€ G}¥ by Mazur’s theorem (V. 3.13 of Ref. 12). Sup-
pose now that S#5’ are two G-invariant elements of
Co{agSlge G}¥. Choose a state ¢ on /V such that
(¢ :5)#{¢ :8"). By G-invariance of n and by continuity
M*¢:T)=n*¢:8) YT eCola,Slgc G}, Thus, we have
the contradiction: (¢ :S)={n*¢ :S)=n*d:8)=(p:5".
This proves (a).

(adb) That n°% = P follows from (a) and the stability
of M under G. The second assertion then follows from
Eq. (1.1).

The following result then follows immediately from
the above lemma.

1.6 Theovem: Let (¥, /, G) be the triple formed by a
C*-algebra ¥ (with unit), a C*-subalgebra (with unit) /
of %, and a continuous group G of automorphisms of %
such that 2 is the set of G-invariant elements of ¥.
Suppose further that

(i) G is amenable,
(i1) (¥, P, G) satisfies Property C,

(ii1) 3 a covariant representation (7(¥), U,(G)) of
(%, G) in the set of all bounded operators B(#4) on some
Hilbert space #/ such that 7:¥% — B(#) is faithful.

Then, the P-conditional expectation ¢(+1 ) : q— P is
defined and unique.

Actually, in applications of this theorem to various
models it is often sufficient to establish a weakened
form of Property C; we establish the existence of a
unique G-invariant extension of each state defined on
some PC AC instead of on ¢ itself. When G is amena-
ble, this weakening is of no consequence as seen from
the following result.

1.7 Proposition: Let (%, P, G) be the triple formed by
a C*-algebra %, a C*-subalgebra (with unit) 2 of ¥, and
a continuous group G of automorphisms of ¥ such that
P CUC. Suppose further that

(i) G is amenable,

(ii) each state on / admits a unique G-invariant ex-
tension to ¥.
Then, P =%C°,

Pyoof: Suppose that 2#¥°, Then, by 11.3.1 of Ref. 5,
there exist states P+’ on ¥ such that (p:S)=(p’':S)
VSe /. Thus, by hypothesis (i) and Cor. 1.2 there
exist G-invariant extensions 3 and ' of ¥ and 7',
respectively, to %. By construction ($:S)=(p':S)

VSc P, and $+9’. This contradicts hypothesis (ii).
Hence P =%°¢.

2. OUTLOOK

The interest of the results presented in Sec. 1 is that
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‘the conditions under which they are valid are satisfied

in models of physical relevance. Our principal motiva-
tion was indeed to develop a formalism in which the
momentum coarse graining of infinitely extended quan-
tum systems can be properly defined so that applications
to nonequilibrium statistical mechanics can be
envisaged.

In particular, one of us has shown* that, in the hereto-
fore available formalism, the generalized master equa-
tion (GME) for momentum observables of quantum sys-
tems in finite volume’® cannot have the semigroup or
Markoff property without being trivial. On the other
hand, we have shown with a dissipative model** that this
no-go result must be bypassed for at least one infinitely
extended quantum system. Many other authors (cf.

Ref. 6) have indeed emphasized the necessity of contin-
uity of the one-particle momentum spectrum for expla-
nation of dissipation at the macroscopic level of quantum
mechanics.

The advantage of our C*-algebraic formulation is
demonstrated by its ability to describe the momentum
coarse graining of infinitely extended quantum systems,
whereas the continuity of the one-particle momentum
spectrum was an essential obstacle (cf, Ref. 2, Prop.
5, and Ref. 3, Cor. 3.1) in doing so within the frame-
work provided by the previous von Neumann algebraic
formulations.

As an illustration of the physical content of the
mathematical structure analyzed in Sec. 1, we establish
in the next section that Property C is satisfied for
momentum coarse graining of multiparticle quantum
systems in free space and demonstrate that the /-coarse
graining operator may be heuristically identified with
the “diagonal part operator with respect to the basis of
plane waves.”

This shows in a most simple example that the consid-
erations presented in this paper do make contact with
the physical world. More complicated situations will be
discussed along these lines in subsequent papers’®:'® in
this series.

3. MOMENTUM COARSE GRAINING OF
MULTIPARTICLE QUANTUM SYSTEMS IN
FREE SPACE

Let £ be a quantum mechanical system constituted by
a single particle confined to move on the configuration
space [R. We first describe this system in the C*-
algebraic language of the introduction and show that it
possesses Property C, where / is the C*-algebra of
momentum observables and where G is the group of
space translations. We further show that the additional
conditions of Theorem 1.6 are satisfied so that all the
terms defined in the introduction (i.e., coarse graining,
a priori probability assignment, and conditional expec-
tation) have unambiguous meaning for this model.

Let A/ = / *(R) be the Hilbert space of all square inte-
grable functions on the real line R. Denote by S(R) the
set of all infinitely differentiable, complex-valued func-
tions on R for which
a’f

—(x)=0 YVN,McZ"*, (3.1)
dx

limx?

x|~
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Let P and @ be the momentum and position operators
defined on §(R) by

(Q)(x) = %f(x)

VieSR).
A =i L ()

(3.2)

Since P and @ are each essentially self-adjoint on §(R),
Eqs. (1.2) define P and @ as self-adjoint operators on
L3R). P and @ generate via Stone’s theorem strongly
continuous one-parameter unitary groups on / %(R):

Ula) =exp(—-iaP) VacR,

V(b) =exp(—-ibQ) VbeR. 3.3)

Ula) and V(p) satisfy the Weyl form of the canonical
commutation relations (CCR’s).

Ula) V(b) = V(b) Ula) expliab) Va,beR.

The C*-algebra ¥ generated in A(/ %(R)) by
{U(a) V(6)!a, bcR}describes the momentum and posi-
tion observables of a particle on the configuration space
R. The C*-subalgebra P generated by {U(a)la c R}
describes the momentum observables. The group G,
conjugate to -/, is identified with the group of space
translations. This group is represented in the automor-
phism group of A(/%R)) by a strongly continuous homo-
morphism « defined by

@, S=U(a)SU(-a) VYacR,VSe B(LAR)). (3.5)

For each a € R, «, restricts to an automorphism of ¥.

(3.4)

We now recall a result identifying the translationally
invariant states on ¥.

3.1 Lemma: Let w be a G-invariant state on ¥ and
denote by ® its restriction to 2. Then, {w : U(a) V(b))
=6, (& :Ula)) Va,beR.

Pyoof: See p. 232 in Ref, 10,

Since A,=/{U(a) V(b)la, b€ R}is a dense linear sub-
set of A, Lemma 3.1 implies, by linearity and contin-
uity, uniqueness of any G-invariant extension of .
This, with amenability of G (Cor.1.2), gives the
following:

3.2 Proposition: Let (¥, P, G) be as above. For each
state & on /2, there exists precisely one G-invariant
extension to . This established Property C.

We now investigate the momentum coarse graining of
the normal states on A(/ ?(R)), heuristically identifying
[ (1) with the “diagonal part operator with respect to
the basis of plane waves.”

The mapping j : L *(R) — B(L*R)) of the set of all
essentially bounded functions on R into A(/ 3(R)), defined
by

I = J, AR)E,, (3.6)
where dFE is the spectral measure associated with the
momentum operator P, is (see Ref. 17, 1.7.3 Th. 2)

a C*- and W*-isomorphism of /“(R) onto the maximal
Abelian von Neumann algebra to which P is affiliated.
Let e,/ “(R) denote exp[—ia(-)]. Since

jled= [, exp(-iak)dE,=exp(-iaP)=Ula) VacR,
3.7
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j establishes a C*-isomorphism of AP(R), the space of
almost periodic functions, onto the C*-algebra /.

Now let xko be the state on AP(B}) defined by evaluation
at ko: (e, ) = flko) V€ AP(R). ky=7*"'x, is therefore
a state on P defined by continuous linear extension from

(ko : Ula)) = exp(~iak,) VacR. (3.8)

Now define ,=*(k,| ). Since %, is translation invari-
ant, dispersion free on P and satisfies (k, :exp(~iPa))
=exp(-ikya), k, is interpreted as the plane wave state
with wave vector %,.

3.3 Proposition: Let p be a density matrix whose
Fourier transform has continuous symmetric kernel
JpF (R, k') with compact support on

Rli.e., Fof ()= [ak’FoF ™ (k, k") Ff (k).
Then
(D(p| P):S)= [ dk FoF (k, k) (E:S) VSeL.

Proof: We first prove that the right-hand side actually
defines a state on Y. Since 7p7'(k,k)=0, and since
[dk FpF™ Mk, k)=1, it suffices to show that the function-
(k:S) is measurable for each Sc ¥, but this follows
from

(B:8)=(0:V(-k)SV(E)) VEcR. (3.9)

and the fact that this is a continuous function of %.
Therefore, the right-hand side defines a state on %. To
prove equality, of the rhs with lhs of the conclusion, it
is sufficient by Proposition 3.2, to prove that p agrees
with the right-hand side when restricted to /. It clearly
suffices to show that

(p:U(a)):fndk}p]'l(k,k)exp(-—ika) VacR. (3.10)

On the other hand Fp7 (B, k") =3\, 0¥ (%) ¢,(k’), where
{¢};cz* is an orthonormal basis of /*(R) and the sum
is uniformly convergent by Mercer’s theorem,
Therefore,

{p: Ula))
=2 fdkdk'(; xpT(R") ¢,.(k)> ¢;(k") exp(—iak) ¢ (k)

=;. A; [ dk exp(=iak) ¥ (k) (k) (8.11)

= f FpF 7k, k) exp(—iak) dk,

where Mercer’s theorem has been used to interchange
the sums and integrals. This proves (3. 10) and the
proposition.

The previous results show the coarse graining opera-
tor D(-1 /) :6—~@&° sends, under the assumptions of the
proposition, the density matrix p into its diagonal part
with respect to the “basis” of plane waves. D(pl /) is
however no longer a density matrix. Indeed, there are
no translation invariant density matrices on / %(R).*°

Now let p be any density matrix on A(#4). Since the
restriction p of p to P is ultraweakly continuous, it
admits a unique ultraweakly continuous extension to
P"=3jf °(R). There exists, therefore, a unique / '-
distribution function £, such that ;(#) = 0, [f(k)dk=1
and

p=7*"f; (3.12)
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or, equivalently,

(p:S)= [HlR)(jS)R)dR VSE . (3.13)
Therefore, by Proposition 1.2,
D(p|P):T)= [f(R) (R : T) db. (3.14)

By virtue of Proposition 3.3, f;(k) may be interpreted
as the “diagonal part” 7pj(k,k’).

Denote by &” the set of all density matrices on
AU ER). It is readily established that the mapping
7*o£*(+1 P) is an affine bijection of the “diagonal”
density matrices )(&" | ) onto the set of all /'-distri-~
bution functions. This fact has been used®® by one of us
(JCW) to rederive by traditional methods the Pauli-type
master equation for the model of Ref. 14.

In closing this section, we want to add that a straight-
forward change of notation suffices to generalize the
preceeding considerations to N-particle quantum sys-
tems on the configuration space R¥, The case of an
infinite number of degrees of freedom might be treated
analogously provided that the test function space is
complete.

*Research supported in parts by NSF Grants GU-4040 and GP-
38626.
TAn earlier version of part of the present work was submitted
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The general C *-algebraic formalism developed by the authors for the coarse-graining operations in
quantum statistical mechanics is shown to be applicable to the case of a Fermi system confined in a

finite volume.

INTRODUCTION

In a previous paper® the present authors proposed a
noncommutative extension of Bernouilli’s principle of
insufficient reason as a possible approach to the prob-
lems concerned with the definition and uses of the vari-
ous notions of coarse graining in quantum statistical
mechanics. A certain “Property C” had to be satisfied
for this extension to be most fruitful. The present paper
shows that this condition is satisfied for a Fermi system
confined in a finite volume; this is done in Sec. 2. Sec-
tion 3 contains a comparison of our C*-algebraic
approach with the W*-algebraic approach suggested by
the work of Kovacs and Sziics.? Section 1 fixes our nota-
tion for Fermi systems.

1. BASIC FACTS ABOUT FERMI SYSTEMS

Let § be the Hilbert space of one-particle wavefunc-
tions for a Fermi system Z. Denote by ®)_, 9, the N-
fold tensor product of copies of §. The permutation

group of N elements, §,, admits of a unitary represen-

tation, U: S, —~B(®¥, 9,) where for each pc §y, U, is
defined by continuous linear extension from

N N
Up,.g fi=§’1 foiiy:

Denote by A the projection (N!)-IEPES (-1)e®y, of
®%, , onto its antisymmetric subspacg.

Let /(D) be the antisymmetric Fock space con-
structed over & ; i.e.,

HF<@=§0® A 1.1)

where
C it ifN=0
sz:{Aégl 9, ifN>1
The creation operator a*(f) [resp. destruction opera-

tor a(f) for a fermion with wavefunction f< § is defined

on A4 £9) by

[ax( P =(VNTI)TA(f®3Y) YN Z ", VD cHAD)
(1.2)

[resp. a(f)=a*(f)*].

These operators satisfy the canonical anticommutation
relations (CAR’s)

la(f),a(@].=0, [a(f),a*(@)].=(f,8) Vf,gc$.(1.3)
The mapping a*: $— B(H 4P)) is linear and satisfies
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la*(Al<1fllg. (1.4)

The C*-algebra % (9) of the CAR is the C*-subalgebra of
BUH (D)) generated by {a*(f) fe }.

The group of all one-particle symmetries of the
Fermi system ¥ is obtained by extension® to automor-
phisms of % (D) of the group of unitary operators on 9.
Let in fact, V be an arbitrary unitary operator on 9.
We define V on A4 9)) by

5 SV&" for N>1, Y& cH4(9),
(Ve)¥ = q) for N—0 (1.5)

Evidently, the mapping ~:(/(9) =~ B(# ) is a unitary
representation of the unitary group (/($) in S(# A 9)).
Denote by a :(/($) —~ AutB(# D)) the homomorphism of
(/(9) into the automorphism group of B(4 -($)) defined
for each Ve /(D) by

o, S=TST* ¥ S B(H AD). (1.6)

Since a,a(f)=alVF) Vfc P, YVe(/(D), a, restricts
to an automorphism of % (§) for each Ve /(D).

A state of the Fermi system Z is a positive, nor-
malized, linear functional on the C*-algebra ¥($). De-
note the set of all states by &(). By virtue of the CAR
[Eq. (1.3)] a state w on (D) is determined, by linearity
and by continuity, by its z-point correlation functions:
WN,M(fu N D TEEE » &x)

E<w :a*(fN) e a*(fl)a(gl) et a(gu))
VYN,Mc Z*, V{f}¥ i’ {,g].}“’1 cP. 1.m
1= J=

We shall, in particular, be interested in the set of
gauge invariant generalized free states on A(D).

1.1 Definition: Let Go(9) ={exp(i$)110< ¢ < 2n} C(/(9)
denote the gauge group of $. G,(9) is represented in
Aut¥(P) by the extension map.

Remark: A state w e®&(P) is gauge invariant if and
only if Wy ,=0 for N* M.

1.2 Definition*: A state w, is a gauge invariant gener-
alized free state on %(9) if the »-point correlation func-
tions have the form

S A 1 N N N
Wy sl frs o oo fwi8ur e, 8u) =Ny y 8% & S;A 8 fi
V{fi}l.v ’ {gj}ﬁ.,_ o,
i=1 i=1
where S=3S, is a linear operator on § satisfying 0<S<1,

Copyright © 1974 American Institute of Physics 1348
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2. MOMENTUM COARSE GRAINING OF FERMI
SYSTEMS IN FINITE VOLUME

We specialize the formalism of the preceeding section
to a Fermi system T confined to an N-dimensional
torus. For the sake of notational simplicity we consider
explicitly only the particular case of the unit circle S,
The Hilbert space & of one-particle wavefunction is
then /%(S') and the appropriate fermion algebra is
A(/ *(S*)) =% . Denoting by / the C*-algebra of second
quantized momentum observables and by G the group of
generalized space translations, we shall prove in this
section (Proposition 2.2 below) that the central “proper-
ty C” postulated in Ref. 1 is satisfied for the specific
situation characterized by the triple (¥, /2, G) considered
in the present paper.

The C*-algebra of second-quantized momentum ob-
servables is defined as follows. Let P be the generator
of space translations on /%(S'). Denote by {P, |k < Z}
the one-dimensional eigenprojectors of P and by {f,|%

e Z} the corresponding orthonormal basis of £*S?!). Let
/. be the maximally Abelian von Neumann subalgebra

of A(®) to which P is affiliated. Since 2, is generated
by {P,lk < Z}, there exists, for each Se p,, a unique
o€ L™(Z) such that

S= 2, f.(r) P,. (2.1)
ke

Since the second-quantization map ~:/4(9) —~B(H {9))

sends S to S=3 ,czf,(k)N,, where N,=afa,=a*(f,)alf,),

it is natural to define the C*-algebra / of second-

quantized momentum observables U{1} to be the C*-

subalgebra of ¥ generated by {N,ik e Z}.

1t is furthermore natural to define the group G of
symmetries conjugate to /7 by extension of the unitary
group G of P,.

We now establish a result identifying the G-invariant
states on %,

2.1 Lemma: Let w be a G-invariant state on % and
denote by ¢ its restriction to 2. Then, for all {f, }”
{g]}” C/*S") and for all N, M c Z*

N - N ~
WN,M(fu N It T ,gM):(sM,NN!(glgi’ KZA gl fi)

where KX(ky, ..., ky) =(@ 1 N,, *+ N, ) is a symmetric
multiplication operator on ®¥, / % Z), and where ~ de-
notes Fourier transform.

Proof: Let w be any state on o and let V=73,
x explif,(k)]P,c G. Then,

(w:afaf, -

rcZ

* .
.-ajlakl...akM)>:<w_a;N- a akl -.akM>

xexp{—d flky) +- -+ flly) (i) - =FGi}

Vi), iV cz,vNMez. 2.2)

The assumptions that w is G-invariant places restric-
tive conditions on the set of correlation functions re-
ferred to in Eq. (2.2) If (w:a} - a} ey "0y 0,
then j,#j;, 1<i#i’< N, and k aék, for 1<1#1’<s M. Now
if for some 1< i< N there existed no 1 << M such that
Ji=Fk, we would have upon choosing fi, (R)=m5, , the
following contradiction:
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ok *
(w:af, - raf ap * akM)=—(w Hap g Gy ).

(2.3)

The conclusion is that the correlation functions vanish
unless the two sets {j,},,, and {#,}, are identical and
unless j;#j; for 1< i#{’< N. Moreover, in this case

: cay) = (=N iN, N, (2.4)

(w:a?

* .
N %)%

where pe S, is the unique permutation such that j i
=k,.,,- Hence, if w is a G-invariant state, then
*

(w:aj, -

@y,)=(® f, , KSA® ;) 5, yN!
(2.5)
where K¥ is the multiplication operator, K¥(%,,...,ky)

=(G:N, -+ Ny).

*
ca¥a, -
aj) %%,

By sesquilinearity and continuity, we have, for all

{7l {gdiacL¥sY),

N v N
WN,M(fl) e I e s M)=6M,NN! (glgi,K@A glfi)-

(2.6)

Since any state on ¥ is determined by its n-point
functions, the preceeding lemma together with corollary
1.2 in Ref. 1 establishes Property C for the present
model, namely:

2.2 Proposition: Let ¥ be the CAR C*-algebra
AL %S, P be the C*-algebra of second quantized
momentum observables, and G be the group of gener-
alized translations. Then for every state & on / there
exists exactly one G-invariant extension of & to ¥ .

3. COMPARISON WITH OTHER APPROACHES

The aim of this section is to compare our C*-alge-
braic approach to coarse graining with the von-
Neumann-algebraic approach suggested by the work of
Kovacs and Sziics. 2 In order for the latter to be at all
applicable to the present model we first must check
that %" =A4(H 7) is G-finite.

Denote by I' the family of all finite subsets y of Z.
Let N(y) denote the number of elements of y. In each
subset ¥ we impose an arbitrary but fixed ordering
y={r,}1’; we define the corresponding antisymmetrized
product of normal modes &,,

N(¥)
@i’: GM,N(r)[N(V)! ]1/2A g’l fk,d
(3.1)
PH=05,,

It is well known that {<I>.,}7Er composes an orthonormal
basis of H;. For each yc T, denote by P, the projector
onto the one-dimensional subspace spanned by &,.

Now, for any Ve G, let f,: Z —~R be so that V
=3 . explif,(k)]P,. It is easily seen that V&,=TIN{
x explif,(#,)]®,, where y={K,, ..., Eyot- Therefore the
state whose density matrix is P, is G-invariant.
Furthermore, since the support of P,in B(H) is just
P, and since 3} . P,=1, B(H;) is a G finite von
Neumann algebra.? Let T TC be the corresponding
G-canonical map.
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We can now exhibit the relations between the two
approaches. Indeed, since 7°¢ is the unique G-invariant
element of Co{a, T|Ve G}t2ve® ¥ T < (4 ), and since
since by Lemma 1.5 in Ref. 1 &£(T1P)e Cola, TIVe G}Y
VY7Tec ¥, we have that £(TP)=T° YT<c¥. Since T~ T°
is normal, it follows from this and the weak operator
density of ¥ in 4(/ ) that the G-canonical map is the
unique normal extension of £(-1/) to A(# ). This im-
plies in particular that, for every ultraweakly continu-
ous state p on A CA(H ), )(plP) is also ultraweakly
continuous. Further, (Cor 4.1 of Ref. 2 each normal
state p on (/4 ;)° admits a unique normal, G-invariant
extension to (4 ) which, by virtue of Property C,
must agree with £*(5!/) on . Thus, every aspect of
our C*-algebraic formulation has its von Neumann
algebraic counterpart for this model, and the two for-
mulations are equivalent provided that only normal
states on (/4 ) are considered.

The fact that our C*-algebraic formulation is not
limited, in more general cases as well, by this restric-
tion could be used to sharpen some heuristic features
often® alluded to in the physical literature.

In the literature of nonequilibrium statistical mechan-
ics, D(-1 ) is called the diagonal part operator with
respect to the basis of antisymmetrized products of
“normal modes” since, as the reader may easily verify,
for any density matrix p we have
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D(p! P)=2 (TrpP,)P,. (3.2)
yer
D(- ) is commonly used to derive the generalized
master equation (GME) for a mechanical system of
fermions in finite volume. We suggest that the C*-alge-
braic formulation of momentum-~coarse graining can
accomplish van Hove’s aim® when he restricts the GME,
for purposes of taking the thermodynamic limit, to his
loosely defined “smooth observables.” This point of
view is supported by the fact that the C*-algebraic for-
mulation admits a generalization for a Fermi system in
infinite free space® whereas the von Neumann-algebraic
formulation does not.

*Research supported in parts by NSF Grants GU-4040 and
GP-38626.
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The C *-algebraic formalism developed by the authors for the coarse-graining operations in quantum
statistical mechanics is adapted to the case of an infinite Fermi system in free space.

INTRODUCTION

The present paper is the third in a series in which we
propose a C*-algebraic formalism for coarse graining.
Our motivation is to obtain a mathematically well-de-
fined theory which would incorporate the following two
features: (a) It should transpose to quantum mechanics
the familiar Bernouilli principle of insufficient reason,
basic to classical probability theory, and (b) it should
provide a way to treat physical situations such as
momentum coarse graining, which escaped from the
scope of previous theories. '™ Part (a) has been dis-
cussed in the first paper? of this series, whereas a
first step in achieving part (b) has been described in a
second paper. ® The aim of the present paper is to
extend the results previously obtained® to the case of
infinite Fermi systems in free space. For sake of con-
ciseness, we use freely in this paper the definition and
notations used in our previous‘l"5 papers.

We shall thus consider in the present paper a Fermi
system in the N-dimensional free space R¥, For the
sake of notational simplicity we specialize to the case
N =1, the generalization to arbitrary N being straight
forward. Let §=/ *(R) be the Hilbert space of one-
particle wavefunctions and denote by $= %{(/ *( R)) the
corresponding fermion algebra. For the basic facts and
notation concerning Fermi systems, the reader is
referred to Sec. 1 of our previous paper. ® Let P and @,
respectively, denote the one-particle momentum and
position operators. In particular P is realized here as
the self-adjoint operator associated with the multiplica-
tion operator defined on ((R) in / *(R) by (P¥)(x)
=x ¥ (x). The obvious obstacle in extending directly to
the present case the considerations developed previous-
ly, ® when Z is confined to a finite volume, is that the
one-particle momentum observable P now has con-
tinuous spectrum, thus making it necessary to resort
to a limiting procedure to define the C*-algebra p of
second quantized momentum observables. Yet the
choice of the group of /-trivial symmetries is still
clear. Let indeed G be the unitary group of the maxi-
mally Abelian sub-von Neumann algebra of £(/ 2 R)) to
which the one-particle momentum is affiliated. To be
specific, we define for every essentially bounded func-
tion S=/ “(IR") on R” the bounded operator T on
L% R") by

(Tsf)(xy, .

ca X =S, LX) (g, L, xy)

Viz /A RY).

The mapping S ~ T4 is a W*- and C*-isomorphism of
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[ “(R™) onto the maximal Abelian von Neumann algebra
of “diagonalizable operators” on / ?(iRY).® Hereafter we
shall simply write S for T (whether S is meant as an
operator or an essentially bounded function will be clear
from the context). Consequently the von Neumann
algebra of “diagonalizable operators” on /?(R”¥) will be
identified with / *(R¥). For N=1, / *(R") is the maxi-
mal Abelian von Neumann subalgebra of 5(/ %(R)) to
which the one-particle momentum operator is affiliated.
The unitary group G of this algebra is represented in
Aut ¥ by the natural extension described for instance in
Sec. 1 of Ref. 5. Similarly the group of momentum
translations is given by a strongly continuous, one-
parameter automorphism group on ¥, {a,=a, ]Vb
—exp(-iQb) Vb = R}. We now outline the argument to be
presented in this section.

In Sec. 1, we introduce the approximate, operator-
valued, momentum correlation densities and use them
for the definition of the set &/ of momentum-mea-
surable states and of the notion of momentum equiva-
lence. Once again amenability of G implies existence of
at least one G-invariant state in each equivalence class.

In Sec. 2, we characterize (Theorem 2. 10) the n-
point correlation functions of an arbitrary G-invariant
state on %, and thereby obtain the principal tool of this
investigation,

In Sec. 3, we use the characterization of Sec. 2 to
establish two lines of inquiry. On the one hand, we
establish (Theorem 3. 3) existence and uniqueness of a
G-invariant state in each f-equivalence class. In line
with the argument presented in Ref. 4, we then define
the pJ-coarse grained representative of a class to be
its G-invariant state, thus defining the p-coarse
graining operator D(- | 2). On the other hand, we define
(Theorems 3.7 and 3. 8) a von Neumann algebra
Focm (%) acting on the GNS representation space //,
associated to an arbitrary G-invariant state w on . We
then investigate momentum-coarse graining on the
island & , of normal states on 7 (%)”. In particular, we
show (Prop. 3.10) that normal states y on 7 (%) are
JF-equivalent if and only if they have the same restric-
tion R 3y to /. Moreover, Prop. 3.11 establishes that
every normal state 3 on /., admits a unique, normal G-
invariant extension £ (41 0)« to 7 (¥)” and, further,
that D(¥| p) =¢&,(R 91 p), for all y=g,. Finally,
Theorem 3. 13 establishes the existence of a normal,
G-invariant, 0 ”-conditional expectation £ (- | ) on
7 (#)” to which & (- |9)x is dual.

Copyright © 1974 American Institute of Physics 1351
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In Sec. 4, we prove, using 0% as a tool, that the set
of all G-invariant states ©¢ on ¥ is a (Choquet) simplex.
Denoting by ¢ the set of all extreme points of &¢, we
show that ¢ coincides with the set of all space transla-
tion and gauge invariant generalized free states on ¥.
We call the reader’s attention to the sharp ergodic
Theorem 4.1, and to the last remark in that section,
which indicates how and why our C*-algebraic formalism
goes further than the usual von Neumann-algebraic
formalism, thus sustaining our last conclusion in
Ref. 5.

In Sec. 5, we define the C*-algebra ) of second-
quantized momentum observables as the set of all con-
tinuous functions on the compact (Prop. 5.1) phase
space §. We prove (Theorem 5. 2) that ¢ is homeomor-
phic to the compact space / “(R), of all essentially
bounded functions F on R such that 0 <F <1. For each
we ¢, the corresponding function F is interpreted as
the momentum number density of the state w on the
Fermi system considered. Once 2 is defined, we can
recover, in only slightly modified form, the structure
described in Ref. 4: (i) There exists a generalized con-
ditional expectation £+ | 2} mapping ¥ into p; (ii) each
J-measurable state admits (Theorem 5.12) a unique
generalized restriction to p0; (iii) each state p admits
(Theorem 5. 13) a unique G-invariant extension 3| 2)*
to Y with £(- { P)* dual to £(+ | ). Finally, we discuss
the implementability of £(- | 2), thus making contact
(Theorem 5. 16) with £ (- | 2) defined in Sec. 3.

1. -MEASURABLE STATES

The purpose of this subsection is to introduce the
second-quantized momentum observables in a language
appropriate to our investigation. We first define the
approximate, operator-valued, momentum correlation
densities K g"(xl, ..., %,); we then indicate suitable cir-
cumstances under which sharp correlation densities
are obtainable by taking the limit § - 0.

For each interval 5 =[~5/2, §/2], denote by x, the
characteristic function of 5 and let A, =y (x = %0)/
8'/2 (A,= A). Since the automorphism group {a,lx< R}
of momentum translations is strongly continuous, the
operator-valued function

Kév(xp ey XN) = axN(a*(A))"' oz,l(a*(A)a(A))--- axN

(a(a)) on R¥
is strongly continuous. Let K( R) be the space of con-
tinuous functions with compact support. Bochner’s

theorem” ensures that, for every f;, g;= K(R), ¢
=1,...,N, N finite, the integral

N
Kév(fp"',f[v;gp"-vg)v)a fRN avx il;Il f{(xi)gi(x‘)

XEN(x,,...,%,)

exists as a norm convergent limit of a sequence of
simple functions. Therefore,

KX fire - &)\ fi, 8 e K(R); i=1,...,N;N
finite} c ¥.

s Jwr 8 - -

Let us now give a heuristic motivation for what we
want to achieve. If the following limits were to exist,
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we would expect them to satisfy

N, N,p, ifizjimplies x, +x,
forall¢,j=1,...,N,

i N,

lim Kgf(x,,...,x,)=

§-0 .
0, otherwise.

We would therefore interpret these limiting observables
as the second-quantized momentum correlations gen-
erating /. It would then be natural to generalize the
notion of restriction of a continuous linear form to
by computing

@(xl, ves

’xN)Elj‘r‘?<w:K§(xu v ',xN»-

We will therefore define the set @/3 of all the states on
¥ for which the idealization § — 0 makes sense. We
show in Lemma 3. 6 that this set is indeed quite large.

1.1 Definition: A continuous linear form i on ¥ is
said to be p-measurable if, for each N= Z* and for
arbitrary but fixed {f,}¥, and {g,}¥, CK(R)

Ve>0 35,
=l (4 a KV (f, ..

-a, K8 (fry -

35,6’ <5,

-;f)v; gp-v-,gy)}

-;fN; g1"--,g1v)}>!<e,

independent of V or V' = G.

Denote by ¥*/7 the set of all p-measurable continuous
linear forms on ¥ and by &P the set of all states in
w*p,

1.2 Definition: For each ye il*p, the restriction J of
y to p is the form § defined as

&N(fp'--’flv; gu---;g)v)

=161_1’g1<¢ :Kév(fp o 9f1v; ESTREI 1gN)>

for all Ne Z*, and all {f,};, {g,}, cK(R). Two
states y and ¥ on ¥ are said to be f-equivalent (which
we denote by ¢ = §’) if their restrictions to 2 coincide.

Remarks; (i) p itself will only be defined later on in
this section (see Sec. 5), but its definition is clearly
not a prerequisite for the above definition. (ii) The
relation =on &7 is clearly an equivalence relation.

1.3 Proposition: 21*/9 is a norm-closed, G-stable,
linear subspace of ¥*.

Proof: w*F is clearly a G-stable, linear manifold. To
show that y*P is norm closed, choose a Cauchy se-
quence {Y,}y- 2+ c o*P convergent to ¥, say. Clearly,

l@ra KX fry e Fui 8 €Y
= aV’{Kg{'(fp v ’fN; g].) L 'vgN)}>|
S I(wu:aV{KN(fl’ L ’fN; g],, are 9gN)}

PN ¢ AV N S SR 1)

+ 20 =gl 111l (1.1)
Now, for any €¢>0,

M3 M > M = lp= Tl <.
Since ¢, < #*P, there exist 5, ./, such that

6,6 < 5}15.5/2",(%, s K (fr oo s frp &us e 8
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- av'{K{sv'(fp L st; Byrvee 1g1v)}>| <6/2.
These remarks, together with Eq. (1.1), imply that

ve A*P.

with a view toward establishing Property C, we
prove the following:

1.4 Proposition: Let e &P and ¢ < Cofa VIV e Glex,
Then d)e@p and ¢ =3.

Proof: There exists® a net {M},-; of discrete means
on CB(G) such that w*-lim M * = ¢. By virtue of the
hypothesis that y=&/”, we have, for fixed {f;} ¥,
{gH cK(R),

ve>0 35,>0 35,8 <8e=¢
’Wa*d):av{K({v(fp .. 'st; gu LA ’gN)]f
= 0 KB fry e e fas 81 oo+ 8] <6 (1.2)

independent of = I or of V or V' = G. By continuity, the
same is true for ¢ replacing M *). Hence ¢ c&P.
Similarly,

ve>0 35, »5<5,
’<Ma*w: Kév(fp---’fn; gp'--)g]v»
=D Sy oo S &uo e E0)| <6, (1.3)

independent of < I. By continuity the same is true
with M *) replaced by ¢. Thus ¢ =y,

1.5 Corollary: There exists at least one G-invariant
state in each /0-equivalence class.

Proof: Choose y from an arbitrary Y-equivalence
class. Since G is amenable, there exists (Lemma 1.1
in Ref. 4) a G-invariant state ¢ = Co{a,*s|V = G}**. By
Prop. 1.4, o=

To establish uniqueness, and hence the central
“Property C” of Ref. 4, we must investigate the set of
G-invariant states. This will be done in the next
sections (see in particular Theorem 3. 3).

2. THE DIAGONAL FORM OF THE
G-INVARIANT STATES

The principal result of this section is Theorem 2. 10
where the form of the n-point correlation functions of
a G-invariant state is characterized., Comparison of
this result with Lemma 2.1 in Ref. 5 and its subsequent
interpretation demonstrates that the set of G-invariant
states provides a mathematically consistent definition
for what one would heuristically refer to as the set of
states which are diagonal with respect to the basis of
antisymmetrized products of plane waves. Unless ex-
plicitly given, the proofs pertaining to results of this
section will be found in Appendix A.

2.1 Definition: Consider the dense linear manifold in
/ % R¥) consisting of all finite linear combinations of the
form
J ’
f: Z.; A‘j

‘|_|_®2

Xi wJ= z', ¥}, c C

m

<
3

and {X7}=1--+7 are characteristic functions of Lebesgue

measurable subsets of R with finite measure. Denote
this set by /%(R¥).
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The (N, N)-point correlation functions W, , of a state
w on A were defined in formula (1.7) in Ref. 5. The
following lemma shows that any such function extends
by linearity to a positive, sesquilinear form on /3(R¥).

2.2 Lemma: Let w be a state on . For each pair
f, &= [Z(RY), thatis
4 N 4y X ¥\
=X 7\,(@ Xm), g=2 v{ e Y%

j=1 mul

form

J K - .
TS Ny, Wy XD X YR YR =W, ). (2.

i=1 k=l

This expression depends on f, g only, not on the parti-
cular decomposition used. We have

(1) WY +for 78+ &) ="FW Y f1, &) AW Y f1, 25)
+YW Y for &)+ Wil S, £2)
Y f1ofor 81 8= LE(RY), WX,y =(
(i) WYAN=0  wfi=/3RY.

We furthermore notice that the extension W§ of the
(N, N)-point correlation function of a G-invariant state
on ¥ is continuous; specifically:

2.3 Lemma: Let w be a G-invariant state on 3. Then

(waf,e)| <NUifllgh, wf, g= L%RY.

As a consequence of this lemma we obtain by continuity
that for every G-invariant state w on ¥, the (N, N)-point
correlation functions define uniquely a continuous,
positive, sesquilinear form W, over /%(R¥) whose
restriction to / 3( RY) is W .

2.4 Lemma: Let w be a G-invariant state on ¥, and
let W, be the corresponding continuous, positive,
sesquilinear form over /2(R¥). There exists a unique
bounded linear operator BY = 4(/ *( RM) such that
W(f,8)=(g,BYf) ¥f,g= [ *(R"). Moreover,

O Wl it £ =W & S & 50)
V{fm}n{tl’ {g}n)zv-lc Lz( R)

(i) 0<BY <N,

(i) [BY U,]=0 wpeg,.

Proof: The existence and uniqueness of BY as well as
(ii) follows directly from Riesz theorem (i) follows from
the sesquilinearity and continuity of the W,.

To prove (iii), it suffices to prove that
N N N
*Bg N —_— N
(m(%l Em UpB“’ U’ m@l fm) _<,§1 Em Bw "?;1 fm)

V{fub: {8t < LR

since the linear span of {®Y, f,.1f,= /%(R)} is dense
in /2(R¥) and since BY is bounded and linear.

By use of (i) and the anticommutation relations we
have

m=1

N N N N
(® Ems U:BZUP ® fm) :(@1 gp(m)’Bz @ fﬁ(m))
m=l m= m=1
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=Wyl Focrys -+ -5 Soms 8pcrys +  + s Epun)
= (_ 1)20(p) WNN(fl’ e st;gD CR ’gN)

N N
— N
~( e g )
This completes the proof of the lemma.

2.5 Notation: We have seen in Lemma 2. 4, that for
each G-invariant state w on %, and each Ne Z* there
exists a unique continuous sesquilinear extension W, to
/ 2(R") of the (N, N)-point correlation functions Wen
defined by w. Denote by {W,}, _ ,. the set of all such
extensions. Denote by {B}, _ ,. the set of correspon-
ding bounded, symmetric, positive, linear operators.

We begin our investigation of the family {B¥}, ,+ of
bounded operators associated to a G-invariant state w
with the following statement:

2.6 Lemma: Let BY be the bounded operator on / ( R¥)
associated by Lemma 2. 4 with a G-invariant state w on
%. Choose a family {Y,},, of disjoint measurable sub-
sets of R. Denote by {P_1¥_ the corresponding family of
orthogonal projections in / *(R) [i.e., P, f(x)
=Y, (x)f(x)¥f</*R)]. Let P, =g¥ P, be the projec-
tion on / *(R¥) associated with the measurable rec-
tangle Y=Y,X « XY, in R¥. Then

PBYP = [ “(R").
We now patch together the P BY P,

2.7 Lemma: Let PY={P |Y=Y,X---XY s Y, mea-
surable; Y;n Y, =@, i#¢}. Denote by I the directed
set of all finite subsets of P¥, ordered by inclusion.
For each yc I, define P(y)=1ub{P|P=y}. Then the net
{P()}, = converges to 1 in the weak operator topology.

For the purposes of the next lemma we make the
following definition. Lety={P, } < I. A set of pro-
jectors {P,}¢_ will be said to be a disjunction of y in
/ “(RY) if

@) {PufiaC L(RY),

(b) PP,=0, 1<kzk <K,
() For each 1 sk <K, there exists an 1 <i <N(y) such
that P,cC Py,

K
d P()= 2 P,

k=1
We remark that there exist many disjunctions of ¥ in
/ “(RY). We, however, have:

2.8 Lemma: Let BY be the bounded operator on
/?(RY) associated with a G-invariant state w on ¥.
Choose y< I' and let {P,}¥, be a disjunction of ¥ in
[ “(R"). Then, F¥y)=3} %, P,BYP, depends on y only,
and not on the particular disjunction chosen to define
it. Moreover,

(1) F¥y)e [ “(RY),
(i) O0<FY¥(») <1,
(iii) ycy = F¥y)=P()Fy'),
(iv)  ycy'=F¥y)<F¥y").
We now patch together the F¥(y):
2.9 Lemma: Let {F¥y)} - be the net in / “(R") de-
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fined in Lemma 2. 8 for an arbitrary G-invariant state
won ¥. Then {F¥(y)} . converges in the weak operator
topology on B(/ * R")) to an operator F¥= 7 “(R").
Moreover,

(i) F¥ is the unique operator in / *(R") such that
FYP=PB'P ¥ P= P¥,

(i) N!F*A=B"

(iii) 0s<F¥ <1,

(iv) [Frulj=0Vp=g,.

We are now equipped to give a sharp characterization
of the n-point correlation functions of a G-invariant
state.

2.10 Theorem: Let w be a G-invariant state on ¥.
There exists a unique family {F¥} _ . such that
. M
) Waglfur e orfs Bure e r ) =Dy, yN! (39 s

=1

N
FYA @ fm>

m=l

v{fn};l:,=1’ {gm}‘::ﬂ c L 2( R).
(i) F¥=/<(R") VN=Z"

Conversely, if w is a state on ¥ and if there exists a
family {F¥ _ ,. satisfying (i) and (ii), then w is G-
invariant, and

(a) O0<F¥<1 V¥V Ne Z%,

(b) [Up’Fg]:o v PGSN.

Proof: Assume that w is G-invariant. Since the gauge
group is contained in G, w is gauge invariant. Existence
is given by Lemmas 2.4 and 2.9 and the fact that w is
gauge invariant. To prove uniqueness, let F¥ F¥
satisfy (i), (ii) above. From Lemma 2.4, N!FYA=BY.
Choose P= P¥, Then

PB¥P=N! PFFA P=PF¥ (= 1) U,\P
p< Sy
= (= 1)"“”PFNUPPU;‘U,
=5
N
= 2, (-1)"® pU,PU¥ F¥ U,

P= Sy

=PF¥ since P= P¥.

by (ii)

Similarly PBYP=PFY Lemma 2.9 (i) gives FY=F}.
This proves uniqueness. The converse part of the
theorem is obvious. For (a) and (b), see Lemma 2.9
(iii) and (iv). This completes the proof of the theorem.

2.11 Covollary: Let w be a G-invariant state on ¥.
Then w is a generalized free state iff F¥=@X, F,
forall Ne Z".

Proof: If w is quasi free, F¥=gX  F'  satisfies (i)
and (ii) of the theorem. Hence F¥=g¥  F. . The
converse is obvious.

3. MOMENTUM OBSERVABLES AND COARSE
GRAINING

Unless explicitly given here the proofs for results of
this subsection will be found in Appendix B.

3.1 Definition: Let w be a G-invariant state on ¥, and



1355 J.C. Wolife and G.G. Emch: C*-algebraic formalism. 111

let {F¥1, - ,. be the essentially bounded functions as-
sociated to w by Theorem 2.10. For each M,Nc Z* and

for {f$},, {g}- CK(R), define

FN’”(f1’- --;f;; gfw .,g‘,’,)c—:L"’(R”’) by
FOM(fr eS8 oo er &) (Kps e v oy %y)
M
= Jou e By TS5 B )P
Ky o ooy Xyy)
Clearly,

M
S &g S Il

We remark that since the F¥ are symmetric, the
labeling in this definition is not critical and the F¥-¥
are also symmetric.

ess sup |FY¥(fe, . ..

The relation between the associated functions F¥+¥
of a G-invariant state w and its sharp momentum-cor-
relation densities is described in the following lemma:

3.2 Lemma: Let w be a G-invariant state on ¥,
{FY¥}y, uc o+ be the associated family of essentially
bounded functmns Let

b {abl {fHalghiucK(R),
(i) lbig)l (w:a*(fy) -+ a*(f,) a JKE(f3, .

Xa(g]_) b a(gN»

=NU(§ £ FLMSL - fis £ EDA G S).

(ii) The convergence of (i) is uniform in Ve G.

VegG.

o fiw 8D &t

Remark: In view of the uses to which we intend to put
this lemma, it might be appropriate to point out here
that the special case N=0 reads:

um Cw: o, {KY(f3, .0 fifs 80 -5 80P
= FOH (S ey [ 8 8D
M
= Jou @ 1L FH) ZHx) A, s %),

The existence of the )-coarse graining operator is now
established:

3.3 Theorem: Every G-invariant state on ¥ is p-
measurable and there exists precisely one G-invariant
state in each pP-equivalence class. For each we@p,
denote by D(z/)I P) the unique G-invariant state -equiva-
lent to 3. D(- ] P): 6P —~&6, called the p-coarse
graining operator, is an affine surjection.

Proof: The special case N=0 of Lemma 3.2
establishes that ©¢c &/”. Theorem 2. 10 then guaran-
tees uniqueness. Existence was proven in Corollary
1.5. The remainder is obvious.

Now let w be a G-invariant state on ¥ and let
(O H s lf o @) denote the GNS covariant representation
of (¥, G) associated with w. Denote by %* the set of all
continuous linear forms on ¥ which are ultraweakly
continuous on I (%) c A(#4 ) and by P (resp. &) those
which are, moreover, positive (resp. states). For each
= Y%, denote by J its ultraweakly continuous extension
to IT (A)”. Denote by PS (resp. &¢) the set of G-in-
variant elements of P (resp. & ).

3.4 Lemma: Let {f}, {f;1,, {gW,cK(R). Letx be
a continuous linear form on 3. The followmg are
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equivalent:

(1) (ab(fya KY(fe, .. . f8:8% .- -, &) converges
uniformly in G as 6 — 0 to a limit which is independent
of Ve G.

(1) Ao KB (fS, .. e 8 - ., 89)1aY f)) converges
uniformly in G as 5 — 0 to a limit which is independent
of V= G.

Moreover, when these limits exist they are equal.
We now prove the more general result:

3.5 Lemma: Let w be a G-invariant state on %. Let

{f}-l’ {gle’ {f }ll’ {go} CK R) Let{h}Nbean
arbitrary ordering of {f;} ¥ U {g,}¥,. Define

ax(h;) if hi={f 10,
a(h)=
a(h;) ifh, <{g;}¥,,
Then, for arbitrary 1<j <2N,
(w:al(n) a¥h)a KU 7, ..
xaq(h‘,d)"'al‘(hglv»

P A A |

converges as § — 0 to a limit which is independent of
Ve G. Moreover, the convergence is uniform in G.

Pyoof: Formally commuting the a‘l(hj) with
a K¥(fe, ..oy fa: 8% -+, &y the problem is reduced to
the case given by Lemma 3. 2. Commuting back by
Lemma 3.4 gives the following result.

3.6 Lemma: ilf,czl*p.
Proof: Denote by
He={l (ab(h ) ali(h ) Q| NE Z°, {;} Y c K(R)}
and by
W= {Wy,00 I, |0, 2 40},

By gauge invariance of w and Lemma 3.5, %*°c %*P.
By Proposition 1.3, / (A*°)* c¥*p, and by cyclicity
of @, /(X )V=9¥.

3.7 Theovem: Let w be a G-invariant state on ¥, and
let (I, // . 4 »» 2) be the cyclic, covariant representa-

tion of (¥, G) associated via the GNS construction to w.
Let 7, =T ()" N T (XY . Then:

(1) I (K¥(fS. s [ 80 - -« £5)) converges in the
weak (resp. ultraweak) topology of B(H ) as 6 —0 to an
operator K¥(fo, ..., fi 80 ... g0 BH ) w{fsti,,
{gH. CK(R).

(i) K fL - S 80 -+ &)

(iii) The convergence of
UV KE(fE, o f 380, 8D V) to
K¥fs ..o fa: 8 ... &) as 5—0 is uniform in VE G
in the weak operator and in the ultraweak operator
topologies.

Zw n {UOJ(G)}’ M

(V) K¥(fDees fii3 8 - -+ E) =TI, KL(F7 89)-
Proof: Since
M
WSS - - S 80 gD < TSIl g5
i=

and since the weak operator and ultraweak topologies
coincide on bounded sets, it is sufficient to prove our
statements for the weak operator topology.
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Since for each § >0, the sesquilinear form

(W, B~ (O, M AEG(fL, ooy fi25 800 -+« Gu)B)

from /X #/, to C is bounded by 1%l 7 ¢!l |l g7 Il,, its
limit, which exists by Lemma 3.6, is bounded as well.
Riesz’ theorem then gives (i). (ii) follows from Lemmas
3.4 and 3. 6. (iii) follows from Lemma 3. 6. Now we
prove (iv). It is sufficient to prove that

U ol A S A -SRI AL )]
= (lP, J'tfll K:,(fjo; g;’)@) V<1>, d)(_:]L/:.
However, since KX(f2, ..., fur & -80S Zu0 {l/ LGV

and since w is gauge invariant, it suffices to show the
result for

¢= Hw{a(fl) oo a(f}v)}a v{fj}jﬁ’li {gj §v=1 CK( R)’
¢ =T,{a(g) - a(g,)} Q.

We prove the result by induction. It is trivially true
for M =1. Assume

M-1
USRS £ 80D =T KL 89,

We will show that

KM oo s fi 80 v e o1 81)

=K (ST Fias 81 oo Bu-) K F 33 800D

In fact
@ KL f 80K (f5s - -
=lim (3, I {Ki (fa ;&) Ko (- -

,85)%)
a1 8- &u1)®)

s Fie13 815 -+

= lim (w, [ [ dx F3 () O, {a(a) a(a )]

XKZ-I(fJO_’ cey f}:-]_;glo.’ s ’glod-l)®>?

where, due to continuity of I , the integral converges
as a norm limit of simple functions on B(4/ ). Since
K*-! is bounded, we have

=lim [ dx f(x) Zal%)

X(LD, Hw{a*(Ax)a(Ax)}Kgul(f;’ b
Since K¥-1c 7 . we have
=lim Jax £2(x) g3(x)
X(Hw{a(Ax) oo a(f]v)} Q: Kﬁ_l(f;, .-
XM {a(a,) alg,)}R).

os fig-13 8L -+ v 2 8i-1)®)-

o 13 &S s Bla)

And, by Lemma 3.2,
=lim (N +1)! S dx £A0)g5(x)
-0
x(Ax & g;, FYHI(f2, ...

J=1

s fi1i 8- Sy A
XA, & f,).
J=1
And, by the argument of Lemma 3.2,

v N
=Nt <1®1 &8s FZ’M(f;’""f;;gf"”’gf’)Ajg f’)

=, KM(fS, e s [0 80 - > E0)P).
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This completes the proof of (iv).

The heuristic remarks made in the beginning of Sec.
1, embodied as they now are in the K (f, g), provide the
motivation for the following definition.

3. 8 Definition: Let P, denote the C*-algebra gen-
erated by {KX(f, g)| f, £ = K(R)}, where K'(f,g) are the
elements of 7 ,n {// (G)} defined in Theorem 3.7. /7,
is called the von Neumann algebra of momentum ob-
servables attached to the G-invariant state w on 9.

In the next theorem we show in which sense 07 is
naturally associated with a number density on the
momentum space R.

3.9 Theorem: Let w be a G-invariant state on ¥,
/%, the von Neumann algebra of momentum observables
associated with w. Consider the mapping K% : K(R)
XK(R)—~ (4 ,) defined Ki,(f X g)=K,(f,g). Then:

(i) KL : K(R)XK(R)— A(4 ) admits a unique exten-
sion to a norm-continuous, operator-valued, positive,
sesquilinear form over /% R).

(ii) Ki(fie)e p, Vfrige [%R)
(iii) KL(V/;Ve)=KL(f, &) ¥f,g=[*R), VV=G.

(iv) There exists a unique operator-valued, weak-
operator measurable function K (x) such that

K f,8)= [ def(gxK ().
Moreover,
(a) 0 <K (x) <1
(b) K (x)e P2
Proof:

a.e. —dx.

(adi) We first remark that for each
5> O’fpfz’ 81182 K( R)y 7\’ Ye C.

(1) O {KH(fr + M58+ Y& = Hw{Ké (f1r 80}
+ 1 K5 (f1, &)}
+ N, {KG (f2380)}
YT {K(f238:)1

(2) 1 (K Sfy, g < H1f N,
(3) n {K3 (VA Ve)}=1, K f;2)}
(4) I (K5(f;F)=0.

Therefore, K'(f;g)=w — lim; ., I {K}(f; £)} enjoys all
these four properties.

(1) and (iii) then follow trivially from the continuity of
K! over the dense subset K(R) of /2% R). (ii) is im-
mediate since, for f,g< /% R), KL(f;g) is the limit of
a norm convergent sequence in /2 which is, a fortiori,
norm closed. We now prove (iv). For each y,®<H,_,
Riesz’ theorem defines a unique bounded operator
N (¢, @)= A(/*R)) such that

(g, N (4;@)f)= (9, KL(f; £)®).

The invariance (iii) implies that N (@;y) commutes with
the maximal Abelian von Neumann algebra / “(R).
Hence N, (#;®)= / “(R) and there exists an a. e. unique
essentially bounded function N (;®) (x) such that
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N, (#;@) h(x) =N (¥;9) (x) h(x)a. e.¥
Now

ess sup [N (9, 8) (x)| = sup | (g, N (;8) 1),

1Al =1,

=sup [(, KL(f, D) | <llvll lI2ll,

=1,

Moreover, since N (4, ®) is clearly a positive sesqui-
linear operator-valued form on B(H ), N (¢, ) (x) is a
positive, and by the previous remark, continuous,
sesquilinear form for a. e.x< R. Hence, again by Riesz’
theorem, there exists an almost everywhere unique,
bounded, weak operator-measurable density K’ (x) such
that (9, K (%)®)=N_(¢, ®) (x) a.e. —dx. It is clear, by
construction, that 0 <K (x) <1 a.e. and that

KNF38)= [ K0 (%) gx) dx.
To prove b, let T« p; then
[T, K1, 918)=[_ @, [T, K (0)]2) fx)E(x)dx=0.

Thus K (x)= 0% a.e. —dx. This completes the proof of
the theorem.

ke { ¥ R).

llglly=1,

lgll,=1,

To sum up, we have shown that, in the representation
associated with any G-invariant state w, one may define
a number density operator K (x) on the one-particle
momentum space of the Fermi system. In the center
Z . of the representation canonically associated with w,
we have isolated the algebra of momentum observables
7., it is the von Neumann algebra “generated” by the
number density operator referred to above. We shall
see in the next subsection that 07 is rich in information
about the state w.

The following proposition establishes the role of
/7%, in connection with the concept of J-equivalence
introduced in 1. 2.

3. 10 Proposition: Let w be a G-invariant state on ¥.
For each p€ P denote by Rwi the restriction of J to
Pa- The two states ¥ and ¥ =&, are P -equivalent if
and only if R _$=R_{'.

Proof: By Theorem 3., for each =P we have

&M(fu cee ’fM;gp - --,gM)516{?<¢1Kg(f1, .. -;fM;gp .. -ng»
:<$:Kﬁ(f11 . 5fM;g1’ e ’gM»
:<Rw$:Kg(f17 e y]}cw;gly e ,gy»

V{fi}ﬁl’ {gi}[itl CK(R).

Therefore, if ¢ =’, we have, by the ultraweak density
of the linear span of the {K¥} in 07 and the ultraweak
continuity of R ¥ and R_J’, that R ¥ =R_¥. The con-
verse is immediate.

We are now ready for the next step outlined in the
introduction, namely, the assignment of a P} -a priori
probability. We shall also indicate its relation with the
J-coarse graining operator, defined in Theorem 3.3
and now restricted to & .

3.11 Pyoposition: Let w be a G-invariant state on¥.
Let E , be the projector on /4, defined by E 4, =[p Q.
Then:
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(i) For each S= 11 (¥)”, there exists a unique
Se 3E,SE, =ES.

(ii) For each y e P, denote by R} the restriction of §
to 7. The mapping R, : P~ { P}, is an order iso-
morphism. Denote its inverse by & (- | Px. (1 P
is called the p”-a prioyi probability assignment.

(iii) For each ¢ ‘{/DJ,' ¥, there exists a vector

EcE Hy 5 Eu (Pl PIx=W, o 10,
(i) DRI P)=E (R, I PIxE &L Ave®,.

Proof: (adi): Since E {[E,SE,, TI'E, =0¥ S= )7 by
Theorem 3.7 (ii) and since E, = 0, E,SE , commutes
with the maximally Abelian von Neumann subalgebra
(see Cor. 2, p. 89 in Ref. 6) 7, g, of B(EH ), there-
fore, there exists S= p? such that E SE =E_S. How-
ever, since the central support of E, in /7 is the pro-
jector upon [ p,Q]> [0 (¥)Q} =4/, the mapping
PL— Ptz is an isomorphism (Prop. 2, p. 19, of
Ref. 6). Hence S is unique.

(adii) R, is clearly order preserving. Injectivity: It
clearly suffices to show that 07, separates &S. This is
immediate from proposition 3. 10 and Theorem 3. 3.

Surjectivity and (iii): We have seen that the mapping
P:p,—~ P, lg, is an isomorphism. Consequently, the
dual map gives a positive linear bijection P*:

(PL1g )% = {Putk. Let ¢ be a positive normal form on
P%. Since all the normal forms on the maximally
Abelian von Neumann algebra Q7| , are vector forms
(see, for instance, exercise 4, p. 120, in Ref. 6), there
exists a £ E_// such that (&, SE)=((P*)"¢:S)
=(¢:P1S)¥S= 0" |, . Suppose that T(= p?)=Ps,
Then, (&, T £)=(§ E TE)=(,St)=(¢:PS)=(¢: T).
Clearly, the vector form w, ,°Il = PS and its
restriction to 27 is ¢.

(iv) Since y=D(y|L) and by Prop. 3,10 £ (R, ¥| M=y,
and since both are G-invariant, equality follows from
Theorem 3. 3.

Our final task in fulfilling the program of the intro-
duction is to define the 0 -conditional expectation, and
this can now be done:

3. 12 Definition: Let w be a G-invariant state on¥.
For each S< I1_(#)", let £,(S|P) denote the unique ele-
ment of 07 such that E S E =¢£ (SIDE,. &0+ 1))
II(%)" — p» is called the p7-conditional expectation on
()"

We now establish that the 07 -a priovi probability as-
signment is dual to the /7 -conditional expectation, and
we detail the properties of £ (- 12).

3.13 Theorem: Let w be a G-invariant state on %

and & ,(+10): I (A)" — )i, be as above. Then,
(1) ELOS+HYT | P)=0E (S| PY+vE LT[ P)
VYA, y=C, VS, T<1,%),
(if) £L1] ) =1,
(i) &, (SELT] P PY =, PIELT | P)
(iv) £,(5*S|P)=0 wSe I (%),
W IELS| PN <l

VS, T=1,(A),
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VSE 11 (%) and £,(+ |P) is normal.
D Ewir Uk | PY=ELSIP)  VSED (WY,
VVeG.
(vid) (9 : &S| PN = (£, (0] P)+:S) VSem (%),
vie (P)s

Proof: Properties (i)—(vi) are immediate from the
definition.

(ad vii) Since Po&, (- | ) and £ (9] P)« = PS have the
same restriction to P, they are identical by
Proposition 3. 11 (ii).

3.14 Corollary:
(D) & a*(f)e a*(falg,) - alg,)| P)
“byw O (=1 K (fi3 &)
pESN =
vifil, {gH4, © K(R
(i) &,(I (M) | PYc p,, (not only pm.

Proof: (ad i) Follows from Theorem 3.13 (vii), G-
invariance of £ (¢|/)*, Theorem 3.7 (i) and (iv), and
Theorem 2. 10.

(ad ii) Follows from (i) and linearity and continuity of

E P
4. G-ERGODIC STATES AND THE GEOMETRIC
STRUCTURE OF G¢

The principal aim of this section is to prove that &¢
is a (Choquet) simplex whose extreme points coincide
with the set of all translation invariant, gauge invariant
generalized free states.

4.1 Proposition: Let w be a G-invariant state on ¥,
and let E  be the projector onto the closed subspace
[p.]. The following are equivalent:

) p={dre c},

(1) E, is one dimensional,

(2) w is extremal G-invariant,
Zo=Prech

(4) w is a generalized free state.

(3) wis a factor state (i.e.,

Proof: (0)=(1): trivial.

(1)=>(0): If E, is one dimensional, then /9”|E
={CI}|5 . But since the map /2 ~ /¢ | ; is an isomor-
phism [cf proof of Prop. 3.11 (i)], this“implies that

re={ct}.

(i)=(2): ¥ G-invariant and dominated by ¢ would im-
ply ¥ PS.° By Prop. 3.11 (iii) and (i), this implies
p=20.

(2)=(1): If w is extremal, we have

VT<¥, VScp? 0sS, and (2,5Q)=1.

Hence due to the density of {lI (T)Q!T< %} in 4/, S9
= Q. Since every operator S< /2 may be written as a
linear combination of positive elements of

P, arsC 25Q=x,Q VS pr. Therefore E  is one
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dimensional.
(3)=>(0): Since p7,c 7 (Theorem 3.7).

(4)=>(3): This follows from the result of Dell’ Antonio'®
and Rideau, !

It remains to show (0)=(4): Let p”={CI}. Then by
Lemma 3.2, Theorem 3.7 (i) and (iv), and assumption
(0), we have

M

(ié g?, F‘w' ig f:)) :<a:Ku(f;7 e ’f;;g;)-' -yg;»
=(@: I'I K (fi;8)

=ﬁ1 @:KL(f,; g

M M
=<® g, ® Fj,
i=1 i=1

T@a

%)

Vi, {giHuc K(R).

Thus FY=g¥, F.  for all M= Z* and, by Corollary
2.11, w is a generalized free state. This completes the
proof of the proposition.

4.2 Theovem: The set of all G-invariant states &€ is
a simplex whose extreme points coincide with the set of
space translation and gauge invariant generalized free
states on ¥.

Proof: The proof that &¢ is a simplex is done along
classical lines., It must be proven that the cone P¢ of
G-invariant positive linear forms on A is a lattice (cf.
p. 218 of Ref. 9) i.e., thatall ¢,, ¢,c P® have a
unique l.u.b., ¢, vé,, and g.1.b. ¢, Ad,). As ¢,, O,
are dominated by the G-invariant state
(P, + @, : D), + ¢,)= w and hence are ultraweakly
continuous on 7 (%), it suffices to show that PS isa
lattice. This is the case since P¢ is order isomorphic
to the set of positive normal forms on the Abelian von
Neumann algebra /% by Proposition 3.11 (ii).

The characterization of extreme points follows from
Proposition 4. 1, and the result of Balslev and
Verbeure. 1

Remark: Consider the Fock representation of ¥,
(s Hpy Q). Since 7, is irreducible n (%) =B(/4,); Ep
is one dimensional; 07 ={CI}; and &¢={w,}. Let
f20= /" (R) and define (A ®)Y=0,N=#1; fé ,N=1.
Clearly, A;,c @, (9Y'N {/ G), yet(®p:A,)=0 so that
T(¥)” is not G-finite. This remark should be contrasted
with Kovdcs and Sziics’!® assumptions which are thus too
restrictive from the physical problem considered here.

5. THE C*-ALGEBRA OF SECOND QUANTIZED
MOMENTUM OBSERVABLES P AND THE
P-CONDITIONAL EXPECTATION

5.1 Proposition: The set ¢ of extremal G-invariant
states is a w*-closed (hence compact) subset of &.

Proof: By proposition 4.1, ¢ is the intersection of the
w*-closed set ©¢ with the w*-closed'? set of gauge in-
variant generalized free states.

Theorem 2. 10 defines for each G-invariant gen-
eralized free state w a unique operator F_ <= /“(R)
such that
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(w:aXfa(gh=(g,F,f) V¥f,.g= [AR).

5.2 Theorem: The mapping 7:w—F_ of (§, o(§, #))
to (/ “(R);, o{/ “(R);, /*(R))is a homeomorphism.

Pyoof: T is clearly injective.

T is surjective by the construction of Araki and
Wyss!® and Theorem 2. 10.

7 is continuous. In fact, let {w }, -, be a netin ¢,
convergent in the w*-topology to w, say. Then

lim(w, :a*(fla(g) =lim(g, F, f)=(g, F, f)
ac aE I o«

Yf, g/ R).

Therefore 7 is continuous. 7 is a homeomorphism since
any continuous bijection of 2 compact space onto a
Hausdorff space is a homeomorphism. !® This proves
the theorem.

Proposition 5. 1 defines a classical phase space ¢
which we shall interpret below as the spectrum of the
C*-algebra of momentum observables. Theorem 5. 2
gives a physical description of §. To see this, we
recall (379):

(@:K(f, )= [p F(XEXF [(x)dx
= [ F()B(x) (@ : K ,(x))dx;
therefore
F (x)=(@:K (x)) a.e.—-dx

Therefore, F (x) is the number density on the one-
particle momentum spectrum of the state w of the
Fermi system.

5.3 Definition: (i) Denote by p the C*-algebra of all
complex-valued, continuous functions on the compact
Hausdorif space ( §,o(§, %)).

(ii) For each pair f, g= /% R), define K(f,g)€ p by
K(f,@[Wl=@:a*(falg)) wyegs

5.4 Remark: K(f, &) [9]=(@ : a*(f)a(g)) = (g, F, f)
=(§:K,(f, £)), where the last equality results from
Theorem 3.7 (i) and Lemma 3. 2.

5.5 Theovem: Define £(- 10): ((&)—~ p by
ET[PWl=@:T) Vy=§5, VT=(C(e).
Then, £(- |) enjoys the following properties:

(1) XS +yT| P)=rE(S|P)+vAT p)
Y\, y=C, VS, T=C®).
(i) S(T*T|Ip)=0 T=cC(B).
(i) £@|p)=1.
() E(a,S|p)=£(S[p) Vveg, seu.
V) HES|ME<lIsll vs=9.
The proof is immediate.

The following lemmas aim toward proving that
E(A: PYy¥=p. (Proposition 5. 8).

5.6 Lemma. Denote by 0, the sub*-algebra of p
generated by {K(f, g) ]f,ge K(R)} U1l. Then /9, is norm
dense in p.
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Proof: 1t suffices, by the Stone—Weierstrass theorem,
to show that ), separates §. To that end, let ¢+ 9= (.
By Theorem 5.2, F,+F,. Hence, there exists
This proves the lemma.

5.7 Lemma: Let {f;},, {g;}}; CK(R). Then,

W‘;}im f(K{V/M (fp v ny; g],’ e, ’gM)‘p):ﬁlK(fng;)-

Proof: For each = § we have, by Theorem 3.7 (i)
and (iv), Theorem 4.1, and Remark 5. 4.

];}Ele €(K1/M(f1, LR ’fN;gp . ,gN)|/9) [l!)]
:};;ril <w:K1/M(f1, .. "fN;gp' "’gN»

=($: ﬁlle(fi; gi»: ﬁl @ (K (S5 g,-) = ifi K(f;; gi) [d)]

Therefore, the bounded sequence
{EEY W fose oo fi3 &+ o &)1 P}y cONVerges point-
wise to the continuous function 11, K(f;; g;). From Ref.
17, Theorem 6.11 and its Corollary 6. 12, we get the
weak convergence.

5.8 Proposition: S(A| P YV =]

Proof: £(¥1 D) is clearly a convex subset of 0, weakly
dense by Lemmas 5. 6 and 5.7. By virtue of Mazur’s
theorem (V. 3.13 of Ref. 17) £(¥!/9) is also norm dense.

We remark that £( |0): — 2 may be viewed as a
generalized conditional expectation. Indeed, there
exists, by 5.16 (taking direct sums if necessary), a
HilbertA space which supports faithful *-representations
Il and II of ¥ and 2, respectively, such that £( |p)is
implemented by a normal conditional expectation of
(%) onto I(P). Query: Is Surpy=p?

The following lemmas aim toward showing how each
P-equivalence class is associated to a unique state on
P and toward defining the a priori probability assign-
ment conditional upon 0 (Theorem 5. 13).

Denote by A(&) (resp. A()) the o-ring of Borel sets
of & (resp. §). Since ¢ is w*-closed (Prop. 5.1), the
o-ring A(&)N §={an SlA=z 4(&)}is a sub-o-ring of
A(&) and isomorphic to 4( ). Therefore, if u isa
regular measure on (&, A(&)), its restriction
u® (cf. MI. 8, Ref. 17) with respect to (&))" § defines
by Riesz representation theorem a continuous linear
form on p.

Now, since &€ is a (Choquet) simplex (Theorem 4. 2)
there exists (p. 218, Ref. 9) for each state wc g% a
unique, normalized, positive regular measure u  on
& such that

(a) <w:A>=f@<¢ tAYdu (¢)

(b) i, is concentrated on (.

VAc ¥,

Thus, pE defines a state on p.

5.9 Definition: Let w be a G-invariant state on ¥,
,, the measure on & associated to w by Choquet’s
theorem, and let uF denote its relativization with
respect to A(&)N . Denote by Rw the state on P de-
fined by Rw : f) :fS (@:f)dug(¢) Wf= p.

5.10 Remark: Evidently,
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(A= fg (¢:AVdp (@)= [c (6: E(AIPY duE(e)

=(Rw:EA|P) VA A, VYw=&C.

5.11 Lemma: Let w be a G-invariant state on ¥, and
let {f;}¥., {g;}¥, CK(R). Then,

(@:KN(f, ... e 8 =QRw: II'VIK(fi;g,-)>

i=1

S 8us e

Proof: By Remark 5.10 and Lemma 5.7, we have

<6:Kz(f1,.. .,fN;gp e :g}v)>
:}}}E(w:K{v/u(fu'”’fN;gU'--:gN»
:hm(Rw: é—(K]),V/M(fp ~--7f1v;g19 .. "gN)»

=(Rw: n K(f;80-

The nezt theorem identifies the “restriction” of a
JP-measurable state to 0.

5.12 Theovem: Let y be an arbitrary /)-measurable
state.

There exists a unique state J) on Y, such that

l[”(fl,. -:fN;gp"-,gN): <dj ﬁl K(f{;g,)>

VNe Z%,
v{fiti {g

Proof: By virtue of Theorem 3. 3, there exists a G-
invariant state pP-equivalent to . Existence then follows
by Lemma 5. 11. Uniqueness follows by linearity and
continuity from Lemma 5.6, The next theorem gives
existence of a unique G-invariant “extension” to % of
every state on 0 and thus defines the a priori probability
assignment conditional upon 2.

CK(R)

5.13 Theovem: Let § be a state on 0. There exjsts
a unique G-invariant extension 3 of § to % (i.e., b= 2.)
Denote by £*(- 12): &(P)—~ &€, the mapping defined by
EBIP)=3 ¥ =&(P). Then,

(DI : Ay =@: EAlPY VA=Y", J=&(p).

Proof: Existence: Define 3=}o £(- | 0). By Theorem
5.5, 3 is a G-invariant state on . Since {b is G-in-
variant, ¢; =R7 (see proof of 5.12). By 3. 10,
<f]) AY=(R}: £(A|P)) VAc A. Thus,

B EAIPY=(:A)=(RD: EA]PY)
_ =d:capy vaey
Hence, by 5.8, J=13.

Uniqueness follows from Theorem 3. 3. The last
assertion follows from the existence argument. Finally,
we discuss the implementability of £(- |2).

5.14 Lemma Let w be a G-invariant state on ¥,
(m, H,, Q) the GNS triple associated to w, and let E be

as in 3.11. Let
M IN

N .
g=X,+ 2. E Ay JI'-=I1 K(fji;g;)e/:)o

N=1 i=l
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where M, N,I,c Z* and {f%}, {g‘} cK(R).
The expression

¥ Iy N .y .
E ; Beoot)l=1]°
oot Zo 2y M T K (5 8)1= 1K)

depends on g only, not the particular decomposition
used to define it.

Proof: Choose £< E H, and compute;
M

(%) (wgypirg 1+ 4? Z L FI K (f};80
={R(w,,,°11,) :q), by Lemma 5.11,
Independence follows by polarization.
5.15 Lemma: The mapping ¢ — 72(g) of 2, into
B(E H,) admits a unique extension to a*-representation
of p.
Proof: Clearly,
(1) HS(AS +yT) = AI(S) +y1I%(T) WA, 7 C, VS,Te p,,
(2) IE(ST) = M(S)I(T) VS, T
(3) M(K(f; ) =M (K(g; /N =E K (g3 ])
=T(K(f;2)*  Vf,2 K(R),

(4) ImeS)IP= sup (w,,,:T2(S*S))
(=B yHy

HeH=y

= S
(=Bt

I &l=1

(R(w,  ° II,):S*S) <{ISIP?

vSe p,.
The result then follows by continuity.

5.16 Theorem: Let w be a G-invariant state on ¥, let
(H,, m,, ) be the GNS triple associated to w, let /9, be
as in definition 3. 8, let £ (- | /) be as in definition 3. 12.
Then:

(i) The mapping K(f;8) ~K (f;8) V¥f,2=K(R) ad-
mits a unique extension to a representation 7, of
P in B(H ).
(i) 7 (P)= P,
(i) 11, o £ 1P)=E, (- 1p)e1,,
Pyoof: (adi) Since P, /9le is an isomorphism (cf.
proof of Prop. 3.11) the existénce of the extension of

assertion (i) follows from Lemma 5.15. Uniqueness is
trivial.

(adu) It is clear that 71 () is norm dense in ), . Since

7, () is closed, (ii) follows.

(adiii) It suffices to show that Bl o & |)9)
=E _ &,(+ | p)e II,. By polarization it suffices to show
that, for each £ E //,

(W, M(EAL P = (w51 ELTLHA) I P)) VA=Y
By virtue of remark 5.10, we have
(W, 2 &L LANPN =(w, .t E T (AE )
= (W, DAY =(R(w, ,° II,): EA| PN,

Further, by continuous linear extension from Equation
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(%) of Lemma 5. 14, it follows that (R(w, (° T EAIP)
= (W, T, (EATP).

This proves the theorem.
APPENDiX A: PROOFS FOR SEC. 2

Proof of lemma 2.2

We first prove independence of decomposition. Due
to linearity of Wy(f; g), it suffices to consider the two
cases, f=0 and/or g=0. Since taking the complex con-
jugate of Eq. (2.1) interchanges f and g, it suffices to
choose g=0 and show that each addend of },; in Eg. (2. 1)
vanishes. Choose a finite family {Z,}%, of charac-
teristic functions of disjoint measurable subsets of R
with finite measure such that

L
=2,k Z,, 1<k<K, l1sms<N,'y:=0o0rl.

1=1

(A1)
Substitution into Eq. (2.1) yields
K N L
g=2 v, ® \2'wz,
k=1 m=1 I=
K L N
= E Y E TI!I lmyfn ® Zl
k=1 Lyseoes Iy m=l m=1 m
L K N N
= X 2 Y, I Imyt ® z, =0, (A2)
Isesenlpyg kel m=1 m=1 m

the vectors @, Z, are
,1,). Taking the
.., 1) yields

Since Z,Z, =0 for 1+V,
orthogonal for distinct n-tuples ({,,
scalar product with @ ¥ Z,m for fixed (l

m=l

K
Sy MimE=0 V{1 }¥, (A3)

k=1 m=1

Consider for fixed 1 <j <J the corresponding addend
in Eq. (2.1). We show it vanishes when g=0:

Eyk Wy (XD, oo X0 YE L YE)
Ko L L

= S Al X S 2 B 1)
X _ L N, : .

:3?_; k llv-Z;INﬂ mr=[1 "V Wy (X, ’XﬁV;le’ ’Z’N)

3 AT AT

= ’1' "N=1 (kz____; kmr=ll van) WN.N(XD $XN le’ ters ZIN)

=0 by (A3). (A4)

This proves independence. Property (i) is immediate.
To prove (ii), choose f=37 1, (®¥,X!). Define A(f)
=Y 7, X;a(X]).+ a(X%). Evidently, W5 f,f)

={w :A(f)*A(f)) = 0. This proves the lemma.

Proof of lemma 2.3

By virtue of Schwartz’ inequality,
IWe(f, &)l sW(f, FI2Wilg, g)*/2, it suffices to prove
that Wy(f,f)<NUIfIZ ¥ f< /3R

We simplify as in Lemma 2, 2. Choose a finite
family {X }£_, of characteristic functions of disjoint
measurable subsets of R with finite measure such that
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L
f: Z: le,_

=1

N
® Xy, {th....,z}lf 4CcC
Bysesarly= mal

ity M.

[compare (A2)].

Clearly,
L
W;(f,f): 11""E'IN=1 >tJ‘l,...,J'N )\111 Iy WN.N(Xil’ e ’XJN;
Jrresariy=l
> S & ). (A5)
We investigate Wy (X, , ,X, ). Notice

that since the {X ,}, » are mutuaﬁy orthogona.fv one has,
by straightforward application of the anticommutation

relations, Wy y(X,,..., X, ;X,,...,X, )=0 if either
X, =X; - orX, =X, . for 1 sm+m’ <N. Moreover,
W wX oo, X, 5 X, X, ) 01f{X} a#1X, }=,

due to é-mvarlance Indeed assume the converse:
(i) WNN(XJ. X,N,X ..,X,N)qeO,

(ii) For some 0 sm <N there exists no
1sm’' <N ]m:l "

Assumption (i) implies that X; X , =0, 1<m#+m’ <N,
while assumption (ii) implies that X mX L, =0,

1<m’ <N. Choose V=exp(inX; )cG Smce w is G-in-
variant we have

WXy X, 5 X X))

E<w . a*(XjN)'" a*(le)a (le) oo a(XlN»

=(atw: a*(X].N) a*(le) a(X,l) a(X,N)>

={w: a*(XjN)-- a*(e''X; e aX (X )alX, ) a(X,N)>

=- Wy (X; "XjN;Xll....,lN)’

1,..

contradicting hypothesis (i). Therefore

Wyl Xy oo, X, 5 X500, X, )=0 3 {X, 1
#{X,, -
In the event that Wy, (X, ,...,X; 5 X, ,... ,X,N);EO,

there exists a unique permutation p= §, such that j,,

=l,m 1sms<N. Moreover,

/N0 SRS SN SRS S

— o( .
=(=1)"® WNM(XJI’ R ,X,N,le,
Define the symmetric operator F. on / ?( R¥) by

LX)

L
F= (n||x||2) Wy X, 5 Xy, X,)

iyseeesiyey \mal N

N
Xe P, , (AB)

m=1

where Pi,,, is the projector on /?( R) associated to the

characteristic function X, . Since

0<WolX,,...,X, X,l,.. » Xy ) <t Xy 1,

0<F;<1. We compute N! (® _lX, ,F°A&>m=1 X )
L

1 2
N! i]_,...Z,iN=1 <m1'_1 X, “2) WNN(Xils X;N,X XiN)

x(%xl,éP.Aéxjm)

m=1 m om=1 tm m=1
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L -1
=<MET1"X:-M“§) LZN0 SIS S TS o)

N

X3 (=1)7 ] (X, , X
m=1 m

’GSN

)

Jotm)

0 ifl,=1I,,
= (0 if {ij}gu*{xtm}gﬂ
(=D Wy Xy oo o, X3 Xy, X, )

lsm+m’ <N

j1?
where lm-——jjp(m), 1sm <N, otherwise.
Collecting these results, we have

N N
N6 AP A SIS SRES (m% X, FAS ij)

(A7)
Substituting of this result into Eq. (A5), we have
Welf, F)=NUf, Fg Af)=NI(f,AF; Af) <N!IIfli§
(A8)
This completes the proof of the lemma,

Proof of lemma 2.6

It suffices to prove that P, B¥P < / “(R¥) since the
von Neumann algebra, / *(R”), is a maximal Abelian
subalgebra of B(/ 2(R¥)). Moreover,

L r={ 8 e R

N N ’
= gl Vm I{Vm}mﬂc G
It therefore suffices to prove that
N
[PyBgPy’ m@l Vm]=0 V{Vm}ﬁﬂcc'
Since the linear span of {®Y, f,.|{f.}.Y.c/ ¥ R)} is dense

in /% RY), it suffices to show

N N
& V- BBl Py} & fm) —0

mz

N N
(@ hm,{"ﬁ VP BYP,

V{fnh abc[¥R), VY{V,}cG. (A9)
In fact,
(87 872 ot § 5 8 v, §17)
m=) m=l m=l ms=l m=1 msl
N
®

N N N
Z(m%l Vumhm’ Bg m@I Vm mem> =<m-1 V‘pm hm’ Bx "?;1 VPm frr)

N N
[where V=), PV, + <1—Z Pm) EGJ

msl n=l
= NN(VPJ.fl’ .
=Wyn (Pifiseoos Pyfys Pl oo

o VP f i VPihy, ..o, VPR,
< Pyhy)

N
=<"§1 Ry P,BYP, ’S%;I f,,,).
This proves (A9) and the lemma.

Proof of lemma 2.7

Since {P(y)}, =r forms an increasing bounded filter in
the von Neumann algebra / “( RY), it converges in the
weak® operator topology of B(/ ?(R")) to its least upper
bound P.
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Since P(y)P(y')=P(y) for ycy', P(y)P
=w-op lim, - P(y) P(y’)=P(y). Thus F*
=w-op lim . . P(y) P=w-o0p lim,c . P(y)=P. Moreover,
since P*=w-op lim - P(y)*=P, P is a projector in
[“(R"). To prove that P=1, first notice that 1 =P zv _o»,
where DV={X<c R¥|X,= X,, for some 1 si#i <N},
since D¥ is a set of measure zero. But it is clear that
RY - DY=u{y=y,X Xy, 19 Ny, =¢; 3 measurable;
V1s<i#i’ sNL

Thus P 5 Pgy_pv = 1. This completes the proof of the
lemma.

Proof of lemma 2.8

Choose two disjunctions {P,}£,, {0}/, of ¥ in /*(R¥).
Notice that P ,BYP,, O,BY 0, = / “(R¥). Indeed, if
P,CP, =y, say, PkBng:Pkui BgPyi P,=/(RY).
Thus,

Zk} PkBng=P(y)§) P,BYP,
:kZ} jE p,0, B¥O,P,
:P(y); 0, BYO, :;Oj BX0;.
This proves independence of the chosen disjunction.

(adi) P,B¥P,= / *(R" VI <k <K.

(adii) We first remark that [|[PBY Pll <1 YP=P¥. In-
deed, it suffices to prove that

|(f, PBEPF)| <IIfIE wre [ARM.

Since Pf= / (R¥), there exists by the explicit con-
struction of Eqs. (A6) and (A7) an operator 0 sF? s1
on / 3(R¥) such that

|(f,PB¥Pf)|=N!I(f, PF2 APS)|.
By construction PF; = F_P; therefore
|(7, PBLPS)| = |(f, Fg PF)| <IIfIE.
Thus,
0s Zk)PkBngs Zk) P,<1.
(adiii). Let ycy’ and let {Pk},’f:l be a disjunction of '
in / "(RY). Then P(y) F¥(y") =P¥)3, P.BYP,

=5, P(y)P,BYP,P(y)=FXy) since {P, P(y)}L, is a dis-
junction of v.

(adiv) F¥y') - FY(y)=[1- P()] FX(y")[1 - P(y)] = 0.

Proof of lemma 2.9

By Lemma 2. 8 (iv) {F(y)},- is an increasing,
bounded filter in / “(R¥) and therefore converges in the
weak operator topology of B(/ (R¥)) to its least upper
bound F¥, Since / “(RY) is weakly closed, FY¥e/ "(R").

(adi) Suppose that F¥= / “(R¥) is such that FYP
=PBY¥P ¥Pe P¥ Choose y< I' and let {P,}¥ be a dis-
junction of ¥ in / *(R¥). Then FYP,=P F¥v)P,. Indeed
suppose that P,c P=y. It follows that

F¥p =FYPP,=P,PBYPP,=P,BYP,=P, Fly).
Thus,
F¥ P(y) :§ F¥ Pk:‘kz FY¥y)P,=FXy)
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where we have relabeled with j —j+M. This expression

=w-op lim Ply)FYy')=P() F.
€ splits into a sum over permutations of three types:

Hence

F¥—w-op lim P(y)F¥=w-op lim F}P(y)=F}.
yYer =y

This proves uniqueness.

(adii) Consider the operator N! F¥A - BY on / ?(R").

Since /%(RY) is dense in / ¥(RY), it suffices to show that

(hy, (NV FYA - BN f)=0 Wf, he [ 3(RY).

By virtue of the decomposition (A3), it suffices to show
that if {X,}¥, is a disjoint family of measurable sets
with finite measure, then

(éf X,,NIF¥a & Xk,) =( & x,,BY& Xk,).
i=1 i i1 i=1 i izl

The left member vanishes by inspection if {&}#{#},
while the right vanishes by the invariance argument of
Lemma 2. 3. On the other hand, both sides vanish if
k,=F] for 1 <i#4 <N by antisymmetry. It remains to
be shown that

5 X,, NIFYA @ X, )= gxk_,BﬁéxJ
=1 i O TS W TS D) i

i =1

gince the other permutations follow trivially. But, this
last equation is true by part (i) of this lemma and the
fact that F¥ </ “(R¥Y).

(adiii) The intersection B(/ 2(R"),n B(/*(R™, is
closed in the weak operator topology of B(/ *(R)).

(adiv) Choose p< §,. Clearly (/¥F¥(/, = [ “(R"). For
each Pe P¥, (¥ P(/, € P". Therefore

UsFall v P=Uf3 F(.",’(é/, PUN s
:U:WPPU:)Bﬁ(UP Pm)é/p
=PBYP.
Hence, by the uniqueness of F¥ U¥F¥U,=F¥ypcS,.
This completes the proof of the lemma.

APPENDIX B: PROOFS FOR SEC. 3

Proof of lemma 3.2
(adi)
(W:a*(fy)e a*(f)) a JK¥(f3 .oy /5585 - -
algy) - algy)

= o @ 1702) Elx)
X{w ra@a*(fy)e+e a*(f,) a*(VA,M) a*(VAxl)a(VAxl)

Xa(Va, )a(g,) - algy)
:fm de(lﬁlfj(xj)E;(xj)) (N + )1

- &)

M M+N M N+M
x va ® FNed A va ;
<j§1 ¥i g1 8y j?i X5 jgu /3

= T (mpw [ dix (1"’1 f,~°(x,)§*;(x,))
pES)\HM rH J=t
M N+M M N+M
X va ., FNeM
(18;1 % j:%u 8y %y j?l VA"'j j?‘du fj) ’
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Type 1: p()=j, 1<j<M;
Type 2: p(j}sM for some j=M+1;
Type 3: j <M =>p(j) sM but p(j)#j for 1 <j <M.

First consider a type-1 permutation characterized by

PESH

(- l)u(p)f de(ﬁ 4fj°(xj)§;(xj)>
r¥ =1

M M M+N
V. ol¥
((gl 1@ 1) 2 By 1 5 8P

M M N+M
FN*M i N A ;
w J;®1 V.I ® 1 18;1 ¥ ;S?m fP(])

=(-1)7® _/;M d'x (,fi fj°("j)§?("j)>

X p Mo FiM M My
A ;
J?x By jgu Epfu B By ,S?,,,lfp(;)

M
_ o(p) o —0
= (-1 fau at (11, 13008,
of X FHoN M
(gl ij’ w Sy e e Soemr 8o o - sgN)ﬁl ij>

M —

=(- 1)”’/ dxd'y) T £,V EX,)A%Y, - x,)

RZM j=1

xFﬁ'N(fp(l)y '-'yfp(N);gp '-',gN)(y]_,-- "yN)'

Changing variables x;=x,, y,=y,;~x; and changing the
order of integration by Fubini’s theorem, one obtains

=(- 1)”‘”/; By 1 a%y,)

M j=1
Pl oF0 , .
x<1§1 ffgi ° FZM(fP(l)’""fP(N)’gl""’gN)>
(_yiy .. ',_y,M))

where o denotes convolution.

Since the second term in the integrand is a continuous
function on R¥, the expression converges as § —~ 0 to

M — '
(_ 1)0(”(!?1 f;gj ° Fg,M(fp(l)’ ey fp(N);gp oo ’gN)
(0,0,...,0))
M
=(— l)q(p) (J'?l g?’ Fg’M(fp(l)’ cc fP(N); ATERE ’gN)

i=1

u o4

.®f,~>

:(_l)o(p) g FM,N ° o, o ¥
(E’l 8p FUN(f s il 80 -8 8 Fon

since F¥¥ ig symmetric.

Now consider type-2 permutations. We will show they
converge to zero as § — 0 uniformly in V. We consider
for the sake of notation the special, but typical, case

pPM+1)=1, p(V)=M~+1, p(il=j W¥Wj+l orM+1.
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We have

l de I‘![ fo(x )_O(x )\(% MéN FN+Mf

’ Y im Y B j=l VA"J' F=M+l EpFw Jun
M M+N
j=2 4 M2

] f dx, dy F)EA)NTE, ) 0) A()

X fa”‘l dxz"' dxu f2°(x2)§§(x2)---f,j(xu)gj(xu)

XF:),N*M-I(VA,‘Z, ceey, VA, VAxl, Jareoos fa

M

XVA_,...,VA

% xy 2 8180 )

<If3llal g3lly += gl ggllallgy Il e gyl ll Folly o £ M

X Joz @xay | £310 8| X) [va, (0] £i] ).

Since V= / (R), [VALI(3)=A,3)=A,y~x)a.e. —dx

Finally, calling X the (V and § independent) constant
preceding the last integral, we have

=x81/2 [ | Fol (%) |g2] (%) [ @y | £, 9) xo (v — %) /5
a2 |15l Hgslis Ny o xe /01l
sl gell £yl e

Thus as 6§ — 0, terms of type 2 converge to zero, uni-
formly in VeG.

Now consider type-3 terms. Again we consider for
the sake of notational simplicity a special but typical
case:

p)=2, p(2)=1,
We have

pG)=j wj#lor?2.

M M M+N
U;M as 11 £ )8, (@ va, 8" g,

j=1 i d=M+1

M M+N
Nt YA A .
Fy . ® Yoy 18-32 VA"J‘ j=%+1 f]>

= { fm o dy dxdx, £3(x)F5(x,) f 5 (%,)825(%,)

X(VA,) |(0)(Va,) ()
f Xg0er dXy .IA!I 1) g7 (x,)
rM j=3

KELAAAVA,, Vi, fi VB g)l) |
N
< B, It £ WAl

X fos dvaxdn| £3](x)|83](e) [ £5 () 5] (%)
XA(Y —x,) A(Y — x,)

A Jon dedy | £3](0) 87| () F2](xe) | 85 1)
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X Xg (xl—xz)
son [ x| £2] (%) g2 l(x,) [ ax,| £31x) 5] (x)

Xxg (%, _xz)/5
<onlifgll, gl I | Figsl o xs /81
SN THN P NTHRPH

Thus expressions of type 3 converge to zero as 6 —0
uniformly in Ve G.

Collecting these results, we have

lim (@3 a%(f) - @) @y (KEFS, oo fis g £5)
Xa(gy) -+ alg,))
=9CES( 1)""’(®g FYM(F L fegt )

;eilfp(j))
1 4 N.M({ fo 0, 4O o 4
=N1! j%g,» Fw' (fp0--’fu;g1"":gu)Aj@1fj ’

which proves (i). Moreover, since the first expression
is a finite sum of terms uniformly convergent in Ve G,
this limit is reached uniformly in V& G. This completes
the proof of the lemma.

Proof of lemma 3.4

We prove the result for ah( fY=a(y); the argument for
a*(f) is similar. Since X is continuous and linear, we
have

Mra(H)aJKE s fis 80 - 890D

M _
=fRM d¥x jrglf?(xj)g‘,’»(x,-)

(zalf) aX( VAXM) a*(VArl)a(VAxl) s af VA,M)>

M —
= fﬁ b A TR

{(7\ : a*(VAxM) e aX( VAxl)a( VA,I) a(VAxM)a(f))

M

+2(=1)MH(f, Va,)

i=1

A raX( VAIM) -a¥(yaA, ) *Va, )a( va, ) a(VAxM»}
by use of the anticommutation relations. The lemma will
be proven if we can show that the commutation terms
converge to zero uniformly in Ve G. We consider the

term =1 without loss of generality:

[, s

XA :a*(VArM)--- a*

£ VA, T) pee digy 11 505, )g5(x,)

RM-I

(VA )a(VA, ) a(VA, )]

<IN I75Ligsl, S, dxdy| 73] @) ] () A0
-2)[f])
M
sllhlll‘:rl el gl N f o xg /842,
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“
< A g AN 22,
j=1

Therefore the commutation terms converge to zero
uniformly in Ve G. This proves the lemma.
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Rigorous derivations are given of two time-independent formulas for the multichannel scattering
operator for nonrelativistic charged particle systems. The derivations are based on Dollard’s
time-dependent theory and use techniques of spectral integration. The formulas involve a complex
power of the resolvent operator, in contrast to short-range formulas. Bilateral Laplace transforms are
used to derive a generalized multichannel resolvent equation and to prove existence and uniqueness of
the solution. The formulas are applied to recover the well-known two-body Coulomb scattering

amplitude.

I. INTRODUCTION

A substantial body of literature (see Refs. 1—6 and
references cited therein) exists on how to employ the
Faddeev—Yakubovskii™® equations to study the scattering
of systems of charged particles. Most papers on the
subject have been restricted to situations in which there
are at most two charged bodies in the open channels.

In such situations the asymptotic effects of the long-
range Coulomb interaction can be treated exactly, thus
avoiding the principal complication of the problem. At-
tempts to treat more general processes have not been
satisfactory. ™3

Remarkably, none of these papers seriously pursues
the question of whether the time-independent scattering
theory represented by the Faddeev—Yakubovskii equa-
tions is appropriate for charged particles. This is
especially noteworthy in the face of evidence to the
contrary.

For example, when the interactions have short range,
the time -independent theory is justified on the basis of
the physically more transparent time-dependent theory
(see Ref. 9 and references cited therein). For some
reason such a procedure has not been repeated for mul-
tichannel scattering involving Coulomb interactions.
This omission is especially remarkable, since inclusion
of Coulomb effects is known'®" to require modifications
of the time -dependent short-range theory. One would
expect the time-independent theory to require similar
modifications.

There is also evidence from relativistic theory. Re-
cent work®~!® demonstrates that the relativistic prop-
agator for “free” charged particles is 2 momentum-
dependent complex power of the usual free propagator.
Such complex powers do not appear in the multiple
scattering gxpa.nsions16 corresponding to the Faddeev—
Yakubovskii equations.

Even in the thoroughly studied two-body Coulomb
problem one finds evidence that the basic equation, the
Lippmann-—Schwinger equation, needs modification.
Calculations based on this equation are plagued by
divergences, > 1"~!® which are usually absorbed into con-
veniently ill-defined normalization factors. Statements
abound!®~2° that the transition amplitude defined by the
Lippmann-Schwinger equation vanishes, or at least is
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not unitary. Yet such statements are known!®~22 to be
false for the two-body Coulomb amplitude.

In this paper we propose to take this evidence serious-
ly and to reinvestigate the foundations of the time-inde-
pendent scattering theory for charged particles. We
begin in Sec. I by recalling the essential elements of
the well -established multichannel time-dependent theory
of Dollard. "2, This formulation was chosen, instead
of alternative ones, 2172* because of its similarity to the
familiar short-range theory. The theory is then recast
in a more convenient two-Hilbert space setting. In
Sec. III two time-independent formulas for the multi-
channel scattering operator S are derived with the aid
of techniques of spectral integration.® It turns out that
these time-independent formulas involve a complex
power of the resolvent of the Hamiltonian. This is in
marked contrast to the standard short-range theory
where the resolvent appears only to the first power.

An elementary theory for complex powers of the resol-
vent operators is developed in Sec. IV. Specifically,
bilateral Laplace transforms are used to derive a gen-
eralized multichannel resolvent equation and to prove
existence and uniqueness of the solution. The formulas
of Secs. II and IV reduce, in the absence of Coulomb
interactions, to familiar short-range formulas. We
turn to the two-body problem in Sec. V to demonstrate
that the well-known Coulomb scattering amplitude is
recovered from our formulas in a straightforward,
albeit tedious, way. The calculation is rigorous and
no divergences need to be explained away. Concluding
remarks are found in Sec. VI.

1l. TIME-DEPENDENT FORMULATION

In Dollard’s formulation!® 2 of time-dependent multi-

channel scattering one contemplates a system of N dis-
tinguishable spinless charged particles interacting via
Coulomb-like potentials. Asymptotically the particles
are in a particular channel g which consists of an ar-
rangement of the particles into n, 2<n<N, clusters,
each of which is in a specific quantum mechanical
bound state. The basic assumptions of the theory are
the following, collectively called assumption (D).

Assumption D:

D1. The total Hamiltonian H is of the form H=H,

Copyright © 1974 American Institute of Physics 1366
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+ V+V,, where H, denotes the free Hamiltonian, V the
short-range potentials, and V. the potentials for the
Coulomb interactions. The operator H is self-adjoint
with domain/) , in a separable Hilbert space /.

D2. The “distorted” free channel Hamiltonians Hy(?)
are of the form H(¢) = Hgt + a €(f)Hy(t), where the H,
are the free channel Hamiltonians and the H;(¢) repre-
sent the “anomalous” behavior. The symbol « denotes
the fine structure constant, and €(f) is equal to +1 for
t>0 and equal to — 1 for ¢t<0. The Hy(f) are of the form
H(f) = Fslnl¢] + Ay for certain time-independent onera-
tors F, and A, [cf. Eq. (71) of Ref. 11]. The Hy(f) and
Hi(#) are, for any {, self-adjoint operators with domains
in separable Hilbert spaces /; C// and with absolutely
continuous spectra. The Hilbert space //, correspond-
ing to a clustering with only one particle per cluster, is
the entire space /.

D3. The “modified” channel wave operators

QB = S_hmethe-iHB(t)P
+ 8
t=3©

2.1

exist on /4 for all channels B, where P, are the orthogo-
nal projections of // onto //z. If the channels B and ¥
have the same clustering but possibly different bound
states, then

(2.2)

where 5, is the Kronecker delta function. The orthogo-
nal projections E'® of // onto the ranges of Q* satisfy

E®EY =6, B® (2.3)

PgB=0g Py,

for ali chénnels B é.nd Y.

In order to work most efficiently with the multichan-
nel problem, it is desirable to place the theory in a
two-Hilbert space setting. Proceeding as in the short-
range case® one defines the direct sum Hilbert space
H’ =&,/ and the bounded injection operator J:4/ =4
by JBzbs=Zs¢s. Then the adjoint of J is J*xP= @, Py,
Define the multichannel “distorted” Hamiltonian H,(#)
for ® =@,¢, in its domain ) (H,(1)) c/ by

Hp(D® = D Hy(Dbs. (2.4)

The decomposition of Hy(#) in Assumption D2 implies
the decomposition

Hp()=H't + ae(DH} (), (2.5)

where H'® =@, Hyd, and Hy(H)® = ©; Hy(¢)dg. Furthermore,
the time-dependent part of the operator H;(f) may be
isolated by a decomposition of the form

Hp(H) = Fln|t|+ A. (2.6)

The operators H', F, and A are all self-adjoint and
commute with each other on properly restricted (dense)
domains. "% The “modified” multichannel wave opera-
tors 2,: /' -/ are defined by

R,2=2,0"¢,, 2.7
and the multichannel scattering operator S: 4’ -4’ by
S=0*Q.. (2.8)

The properties of this two-Hilbert space formulation
that are important for this paper are contained in the
following proposition.
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Proposition. Let Assumption (D) be true. Then the
following statements are valid.

(1) The wave operators £, defined by Eq. (2.7) satisfy

Q*: s_limethJe-iHD(H,
tetew .

2.9

and the adjoint wave operators Qf:/4 —/4' have the rep-
resentations

QF = w-lim ¢! o't He,
teiw .

(2.10)

In addition, the wave operators satisfy the equations
Q*¥Q,=I1 and Q,F=E,, (2.11)
where I is the identify on 4’ and E,=Z,E®.
(2) The scattering operator S defined by Eq. (2.8)
satisfies

S=w-lim et#pi#) xg-2iHt foilplt) (2.12)

t=
As in the short-range case, the weak limits in Eqgs.
(2.10) and (2. 12) may not, in general, be replaced by
strong limits.

Proof. The propositions follow from the corresponding
single channel properties in essentially the same way
as the short-range analogs.® QED

11t. TRANSITION TO TIME-INDEPENDENT THEORY
A. Lemmata

Lemma 1. Suppose the following statements are true.

(i) There exists a strongly measurable, essentially
bounded® mapping f:R*—~#, where R* is the (open) posi-
tive real line and /4 is a Hilbert space, such that

fo=limf(t)

tew

(3.1

exists.

(ii) There exists €,> 0 and a measurable function
E: (0, €)% R*~ R* that for each €in (0, €] is integrable
with respect to £ on R*. Moreover, the conditions

lim [ dtk(e t)=1, (3.2)
e-0*"0
T
lim [ dtk(e t)=0 (3.3)
e -~0*
are satisfied for all 7, 0< T< o,
Then, the vector
K.f= [" dtk(e 1 f(1) (3.4)
is well defined (in 4) for all €in (0, €], and
fo=lmK.f. (3.5)
e~ 0*

Proof: The integrability (for fixed €) of k(¢ ) and the
measurability and boundedness of f imply the existence
of the Bochner integral K, f (Theorem 3.7.4 of Ref. 26).
To prove Eq. (3. 5), consider

Ko f ~fo= [7atk(e D10 ~f]+ £l [, dtk(e, 0 = 1},
(3.6)
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The second term on the right in Eq. (3. 6) vanishes in
the limit e€— 0* by virtue of the assumed boundedness of
f. and by Eq. (3.2). It remains to prove that the first
term also goes to zero. Let 6> 0 be given and let -1
denote the norm on /4. Then, Eq. (3.1) implies the
existence of T >0 such that Il f(f) = f., N < (6/2) for t>T.
For ¢< T the bound !l f(f) — £, < 2f; <=, where f; is the
essential supremum of Il f(#)ll, is valid. The inequality

I [7 dtl(e, D7) = £ Il < (8/2) [” dth(e, 2) + 2y fDT dtk(e, 1)
(3.7)

follows. It is clear from Eqs. (3.2) and (3. 3) that there
exists €,c(0, g) such that the right side of Eq. (3.7) is
less than 6 if €< €,. Since 0 was arbitrary this proves
that the first term on the right of Eq. (3.6) also van-
ishes in the limit €~ 0* and hence that Eq. (3. 5) is true.
QED

Lemma 2: Assume the following.

(i) Spectral families E{" and E{¥’ are defined on re-
spective separable Hilbert spaces 4/, and #,.

(ii) There is a family of essentially bounded?’ linear
operators B, /j,—/ that are labeled by a parameter ¢
that varies over a (finite or infinite) interval A of the
real line.

(iii) There exists on AX A, where A is an interval
(finite or infinite) of the real line, a measurahle com-
plex-valued function «(¢, A).

(iv) There is a real-valued Lebesgue integrable func-
tion v(?) defined on A with the property that {u(f, A)|
<v(f) for almost all A, xecA. Then the following state-
ments are true.

(1) Suppose that the integral [, u(t, \)dE\"¢ exists for
almost all <A and all ¢=//,. Then the existence for
some e/, of one of the integrals

[ atB(fut, VAEY) or [ ([ dtBut, NMEY
(3.8)
implies the existence of the other and their equality.

(2) Suppose that the integral [ u(t, \)dE®¢ exists for
almost all /€A and all $</#,. Then the existence for
some Y= //, of one of the integrals

[oat( [ult, VAE)BY or [ dEP( [ dtut, 2)BY)
(3.9
implies the existence of the other and their equality.

Remark: Lemma 2 is but a minor modification of pre-
viously published results® and hence will not be proved
here. The modification is necessary because Hp(?) is
not defined at £=0.

Lemma 3: Assume the following:

(i) A spectral family Ei" defines a self-adjoint linear
operator H,= [M\E!" with domain,) (H,) dense in a
separable Hilbert space /4,.

(ii) A family of (possibly unbounded) linear operators
U, is defined on,/(U,) CH, and has range in a separable
Hilbert space #,. The labeling parameter A varies over
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an interval A, finite or infinite, of the real line R. At
each point A € A the domain /) (U,) contains /) (H,), and
for each finite subset K C A there exists a nonnegative
integer m and constants b,=b,(K), k=1, ..., m, such
that for all A= K the inequality

IIU,}PIIszEO bl (3.10)

holds for each ¢ c, /(HT). By convention H¥ =&, In Eq.
(3. 10) the subscripts 1 and 2 indicate that the norms
are to be taken in the spaces /4, and //,, respectively.

(iii) There is a complex-valued function w(n, A) de-
fined on RX A such that the integral

w(Hy, N = [ w(n, NAED (3.11)

exists for all A€ A and all ¢ ¢,)(H,). For every finite
subset K C A there are nonnegative constants L = L(K)
and y=y(K), with y >3, such that the inequality

lw(m, X) =w(', ) |[<L|n-n'|
holds for all n, ', A e K.

(3.12)

Then, the existence for some Y </, of one of the
spectral integrals,

J Uy, NAEPY or [ UmwO, NAERDY,  (3.13)

implies the existence of the other and their equality.
Further, if § €/, belongs to )(U¥) for all A A, the
existence of one of the spectral integrals,

J AE{Pw* (Hy, NUXY or LAELPw*(, VUL, (3.14)

implies the existence of the other and their equality.

Proof: The proof of a similar previous result applies
with the exception that inequalities (3. 10) through (3. 12)
of Ref. 9 are to be replaced by the following:

m
||r,wnzs§) kEOkalH’;B,zplll, (3.15)

m
< LZ)O bkiE =X [7IHTED (A, (3.16)
ka

sLln |72 =)V 20 blIHE (@, b)Yl
(8.17)

B. The scattering operator
In this subsection time-independent formulas for the
multichannel scattering operator S= Q% Q. are given,
The first formula is a multichannel Coulomb analog

of a short-range result that was discovered for individu-
al channels by Hunziker. (See Theorem 3 of Ref. 9.)

Theovem 1: Let Assumption (D) be true. Then the scat-
tering operator S has on //’ the representation

S=w-lim[e?/T(y)|e'** [dE; [ [ dF,[L(y+ia[o+7],
e~0* T

[\ + p+i€]/2)dF, dE,e***. (3.18)

Here vy is any positive number, and I'(:) is the gamma
function. The operator L(v, z) is defined, for complex

v and z, by
L, 2)= (/2T (w)J*(z - H)™J. (3.19)

The integral in Eq. (3.18) is a repeated spectral inte-
gral which may be evaluated in any order of integration.
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Proof: Define
ct = eiaHbtt)J*e-ZthJeiaHb(t)-

(3.20)

The operator >Ct is strongly ndeasurable and bounded in
norm by IIJ12. Thus for ®c/’, €>0, and x € R=(~ o, ©)
the Bochner integrals

Q&= [ dte 7™ et C e e,
5(X)¢ = J;m dtei(r+ie)tty-lctq>

(3.21)
(3.22)

both exist and define bounded linear operators @, and
C(x), respectively (Theorem 3.8.1 of Ref. 26.) The
properties of C,, the fact that H' commutes with H}(¢)
on a dense subset of /', and Lemma 1 with k(¢ 1)
=[e/T(y)Jt7 e, y> 0, imply that the asymptotic limit
of Eq. (2.12) may be replaced by an Abelian limit to
obtain

S=w-lim{e' /T(]Q.. (3. 23)
e~

The limit S is independent of y. Now replace the factors
e''t in Eq. (3.21) with their spectral representations,
and use Lemma 2 to interchange the order of the ¢-

integration with the spectral integrations (cf. the proof
of Theorem 3 in Ref. 9). The result is

Qb= J dE] [ C(x+ wdEL®,
where € is defined by Eq. (3.22).

(3.29)

It remains to compute C. Recall that A commutes
with F on a dense subset of /4'. Then, by Egs. (2.6),
(3.20), and (3.22), and by the boundedness of K=¢e'*4,

6(X)‘1> =K J;)‘ dtei(x+ie)tfy-leiaFlntJ*e-2thJeiaFlntK¢.
(3.25)

Replacing the factors e!*F!" in Eq. (3.25) by their spec-
tral representations and using Lemma 2 to interchange
the order of the /-integration with the spectral integra-
tions yields

e =K fo dF, fT L(v,(x +i€)/2)dF,K®, (3.26)
where v=y+ia(c+ 1) and
L, 2)= [ T dtp-ighiet px g tit (3.27)

In order to find a formula for L(v, z), first take the
bounded operators J and J* outside of the integrand in
Eq. (3.27). Second, replace the factor e*%¥* by its
spectral representation. Third, use Lemma 2 to inter-
change the order of spectral and ¢-integration. This
gives

L(v, 2)=J* [ dETD(v, 2, 1), (3.28)

where EZ (- © <5< «) is the spectral family for H. The
function D(v, z, 1) is defined by

Dy, z,n)= fow dtprteriemt = [ - 2i(z —-n)T(v) (3.29)

for Re(v) >0 and 0< Argz <7, By the functional calcu-
lus?” Eq. (3.28) can therefore be rewritten

L(v, 2) = (i/2)’T(v)J *R"(2)d, (3.30)

where R"(z) is the vth power of the resolvent of H. Com-
bining Eqs. (3.23), (3.24), (3.26), and (3.30) yields

Eq. (3. 18)’in the indicated order of integration. To
obtain a different order of integration, apply the spec-
tral representations to the factors in Eq. (3.21) ina
different order. The proof then proceeds in essentially
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QED

The main point of Theorem 1 is that the time-indepen-
dent theory of charged particle scattering is deter-
mined by a complex power v of the resolvent (z-H)"!,
This is in contrast to short-range theory in which v is
strictly real. The consequences of v having a nonzero
imaginary part in charged particle theory seem not to be
widely appreciated, as will be discussed in more de-
tail in Sec. VI.

the same way as before,

It is also worth noting that the parameter ¥ in Theo-
rem 1 is always set equal to unity in short-range cal-
culations. The desirability of using a different y for
Coulomb scattering will become apparent in Sec. IVB,

Before discussing these matters, however, a Cou-
lomb generalization of the usual transition operator will
be presented. Define for all ®=®;¢; in 4’ a “Coulomb
identity” operator I.:4’ —~4’ by the equation

Io=Bpdgdy,

where 64 is zero if channel 8 has two or more clusters
with nonzero charge and is one otherwise. If all of the
channels have only neutral clusters, as is the case in
short-range scattering theory, then I; is the identity
operator. Coulomb transition operators are then pro-
vided by the following theorem.

(3.31)

Theorvem 2. Let Assumption (D) be true. Then the
operator S -I; has on £/’ the representation

S ~Ie=w-lim(-2m)[ /T (n]e'** [ B} [ [ dF, [ 6.0~ 1)

xTW, [A + 1+ i€]/2)dF,dE, &'*A (3.32)

where
5.(x)= (e/m(x + &)°!
for all real x,
T(v, 2)= ()" 'TW)(z -H)J*R*(2)J (z ~H') = (z ~H'}*" ]
(3.34)

for all complex z with nonzero imaginary part, v=y
+ia(c+7), R(2)=(z —H)™Y, and I'() is the Gamma func-
tion. The limit (3. 32) is independent of ¥, v > 0. The
integral in Eq. (3.32) is a repeated spectral integral
which may be evaluated in any order of integration.

(3.33)

Proof: 1t is easily seen by an integration by parts
that

w-lim exp[20iH, ()] =1,

t=

(3.35)

(cf. Ref. 12, p. 29). Therefore, the operator (S -1I.)
has the representation

S —Ic=wt—1ime"”"(C, -Cpetf't (3.36)
where C, is defined by Eq. (3.20) and
C;Eeiailb(t)e-ziH'teime(t). (3.37)
Proceeding as in Theorem 1 one obtains
S —IC.—_w-loime“‘AfxdE; X(e, N)eioA, (3.38)
£~ +

X, =@/t [ dF, [AL@, [x+ n+i/2)
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= Ly(v, [+ 1w +i€]/2)}dF,dE", (3.39)

The operator L(v, z) is defined by Egs. (3.27) and
(3.30), and the operator Ly(v, 2} is similarly defined by

Lo(v, 2)= [, dit*-1e?i#te 88 = (/2P T () RY(2), (3.40)

where Ry(z)=(z —H’)!, Comparing the operator T(v, z)
defined in Eq. (3.34), one notes that

L(v, 2) = Lo(v, 2)= (i /2)Ro(2) T (v, 2)Ro(2). (3.41)

The proof now proceeds in the same manner as the
proof of Theorem 4 of Ref. 9. Consider the operator

Y(e, \)=
[-2e/T(] [ dte"™ 9t (A ~H')(C; = CORy(A i€’ #"t
(3.42)
and show that
S =Io=w-lime'** [ dE{X(c, e ®, (3.43)

where )?(e, A)=X(e, A) 4+ Y(e, 2). The operator X can be
written in the form

Xie,N)= (- 2mi) e /T [, dFs [0 = 1)

X T(v, [\ + 1 +i€]/2)dF,dE!, (3. 44)
[cf. Eqs. (3.38) through (3.45) of Ref. 9]. In order to
duplicate these steps in the present case, one needs to
know that the operators H'Ry(2) T(v, z)Ry(2) and T(v, 2)
satisfy the conditions of Lemma 3. This may be proved
as follows. Consider the operator

D(v, z)= fo T dttveledtHt ol — (1 2V T (V)R (2)  (3.45)

for Re v>0 and Im z> 0 [cf. Egs. (3.27) through (3. 30)
above]. Since

ID(v, 2)ll< [ dtt Be¥-lem21™ = 1(Rev) (2Imz)"™,
(3.46)

D(v, z) is a bounded operator for Rev> 0 and Imz > 0.
Now consider the operator

(z=~H)L(v,2){(z —H')= (2 ~H')J*D(v, 2)J (z = H'),
={(z ~-H)J*R(2)}D(v, 2){(z - H)

XJRo(2)Hz = H' ), (3.47)
The operators in braces in Eq. (3.4%7) are bounded for
Imz >0 by Lemma 1 and Proposition 1 of Ref. 9. Hence,
the operator (z —H')L(v, z)(z ~ H') satisfies inequality
(3.10) with m =2. Similarly, the operator (z ~H’)

X Lo(v, z)(z - H’) satisfies inequality (3.10) with m =2,
Therefore, for Rev>0 and Imz >0, inequality (3. 10) is
satisfied by T(v, 2) for m =2 and by H'Ry(2)T(v, 2)Ry(2)
for m =1, The steps leading to Eqs. (3.43) and (3.44)
may now be carried out by using L.emma 3 of this paper
in place of Lemma 5 of Ref. 9. QED

Rewmarks: Some remarks regarding Theorems 1 and 2
are in order.

(1) Theorems 1 and 2 make use of a general Abel
limit which contains a parameter v > 0 rather than the
usual Abel limit (y= 1). The reason for this generaliza-
tion is that Theorem 3, below, requires 0<y<1. The
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fact that a general Abel limit may be used in place of
the usual one is no doubt well known, but apparently

has not previously been exploited because no one had
reason to do so.

(2) In two-body theory the operator F may be con-
sidered as a function of H'.2® This is not true in many-
body theory. Thus the operators H' and F must be given
equal status, as is done in Theorems 1 and 2.

(3) Note that the resolvent operator appearing in
Theorems 1 and 2 is raised to a complex power v. The
presence of this complex power serves to eliminate cer-
tain mathematical divergences which arise when Cou-
lomb potentials are present (see also the remarks in
Secs. I and VI).

(4) Theorems 1 and 2 reduce to the usual short-range
results (cf. Theorems 3 and 4 of Ref. 9) if y=1 and if
all channels have only neutral clusters. In this case
v=1and F=A=0, so that K=I,=1I. It is clear from
Eq. (3.34) that T(1, z) is just the usual short-range
transition operator.

(5) It is to be emphasized (cf. Sec. IV of Ref. 9) that
the spectral integrals are to be performed before taking
the limit - 0*,

(6) The function 6.(x — ), which is supposed in the
limit €- 0*to enforce energy conservation, has been
introduced in Theorem 2 in analogy with the short-
range case. As will be seen in Sec. V, this may not be
the most natural way to exhibit energy conservation for
charged particle problems,

(7) Since 9; in Eq. (3.31) vanishes if channel 8 has at
least two charged fragments, Theorem 2 gives in this
case a formula for the (channel) operators S,, g rather
than S, g -1, 5. This is not unreasonable, since I.
Herbst®® has recently shown in the two-particle case
that the Coulomb scattering operator is more singular
than a delta function, That is, S in the momentum space
representation is more singular as a distribution than
I itself. Thus there is no apparent reason why the iden-
tity operator should be subtracted from the scattering
operator for channels with charged clusters.

IV. THE OPERATOR L{v,z)
A. Bilateral Laplace transforms

The principal mathematical tool that will be used in
the study of the operator L(v, z) is the bilateral Laplace
transform of Hilbert space-valued functions. The essen-
tial elements of the theory of such transforms are re-
viewed in this subsection.

To define the bilateral Laplace transform, suppose
that f:R-H is a strongly measurable mapping from the
real line R into a Hilbert space /4. Then the Bochner
integral

fis)= [ ate=t7 o), (4.1)

when it exists, is called the bilateral Laplace trans-
form of 1.

Two useful properties of these transforms are the
following:

(1) If the integral f(s) converges at two points s, and
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s;, Re s;<Re s,, then it converges and is holomorphic
in the strip Re s;<Re s<Re s,.

(2) If the two mappings f, and 7; are such that £,(s)
=f,(s) in some common domain (strip) of convergence,
then f,(¢) =f,(¢) for almost all £. The proof of these prop-
erties for //-valued functions follows from a change of
notation in the well-known proof for complex-valued
functions. 30

It is also useful to have an inversion theorem.
Lemma 4. Assume the following.

(i) The spectral family E, of a self-adjoint operator
H=[)dE, is defined on a separable Hilbert space /.

(ii) A complex-valued function f{s, A) is defined on
§XA, where §={scCl s=0+i7, a<o<b} (here C de-
notes the complex numbers), and A is an interval, finite
or infinite, of the real line R. The function f(s, A) is, for
fixed A€ A, a holomorphic function of s in the strip §
and such that

'11_ilr_n*f(0+z'7, A)=0 (4.2)

uniformly in every closed subinterval of (a<o<b).

(iii) There is a real-valued function %(s) such that
If(s, A)I<h(s) for all s € § and A € A and such that for
fixed o < (a, b) the function k(o + i) is Lebesgue integra-
ble on (- < 7<),

(iv) The integral f(s, H)¢ =/, f (s, A)dE,® exists for all
seSandall ¢ cff.

(v) The integral f(x, H)$ = [, 7(x, \)dE,¢ exists for all
x<Rand all ¢ €/, where

g +ico
Fos, A)sz—},;f dse™f(s, ) (a<o<b) (4.3)
0 ~jc

is the inverse bilateral Laplace transform of f.
Then for all ¢ =4

fls, B)o = [ dxe™*f (x, H)®, (4.4)
for a<o<b, and

~ 1 Geiee

f(x, H)(P:-Z‘;T‘Z—/ dse"sf(S, H)¢, (4. 5)

g=jw

for a<o<b and x € R. The integrals in Egs. (4.4) and
(4.5) are to be understood as Bochner integrals.

Proof: The integral in Eq. (4.3) converges by hypoth-
esis (iii), and it is independent of ¢ by Cauchy’s integral
theorem and hypothesis (ii). Equation (4.5) then follows
from the definition of f(x, H)¢ and Lemma 2. To prove
Eq. (4.4), choose, for a given o< (a, b), @’ and b’ so

that a<a’<o<b"<b. Let fi(o)= (2= k(o +iT)dT. Then
h(a’)e %) for x » 0,
Ie's"f(x, A) Is
h(b' )~

for all A< A, and the right-hand side of inequality (4. 6)
is Lebesgue integrable on (—©<x< ). Therefore, Eq.
(4. 4) follows from Lemma 2 and from Theorem 19 of
Ref. 30. QED

(4.6)

for x<Q,

Finally, a convolution theorem is useful.
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Lemma 5. Assume that the functions f, and the self-
adjoint operators H,= [ME{® satisfy the assumptions
of Lemma 4 on the separable Hilbert spaces //,, k=1, 2,
respectively. Let f,(x, H,) be the inverse bilateral Lap-
lace transforms of f,(s,H,), k=1,2. Suppose that B is a
transformation from /4, into /4, for which the products
fils H)Bfo(s,, H,) (a<o,=Re s, <b, k=1, 2), and
f1(x, H)Bf ,(x, Hy)(x € R), are well-defined on/,, and
for which f,(x, H,)B is bounded. Then

~ - 1 gsio
Filx, H)Bf 5 (x, Hg)d’—‘—'é?n-. dse*F(s) (4.7)
o-i=
(@ +o,<o=Re s<b+0, xcR), where almost
everywhere
1 uz»iw
P e[ T dsafils=se, HIBf(se, B9
Go=feo
: (@<0;<b).  (4.8)

The integrals in Eqs. (4.7) and (4.8) are to be under-
stood as Bochner integrals.

_ Proof: Choose 0,=Re s, (a, b), k=1, 2. Since
f1(x, H)B is bounded, it maybe moved inside a Bochner
integral. Hence, for ¢ ¢/,

f~1(x9 Hl)sz(x, H2)¢ = '2%[

gz-i-o

1 opvie oy+i® x(Sq+S9)
= ds ds,e™**1*%2
210 f 2
( ) Og=i® opmie

xfl(sh HI)BfZ(SZ9 H2)¢

1 j’oz"‘i” 0+ i®
= ds dse*s
(27”)2 zj;_i.g

gz-i 0

02+{eo

dsye*2 fy(x, H)Bfy(s, Hy)®

Xf, s —sg, H)Bfy(s5, Hy)®

(a+oy,<0=Re s<b+0y,).
(4.9

The order of integration in the last integral may be in-
terchanged by Theorem 3.7.13 of Ref. 26. The result
is given by Eqs. (4.7) and (4.8). QED

B. The generalized resolvent equation

The starting point for most investigations in the time-
independent scattering theory for short-range forces is
the resolvent equation, or some further development
thereof (such as the Faddeev—Yakubovskii equations).
Such an equation for L(v, z), 0<Re v<1, is developed
in this subsection.

It is more convenient to write

L@y, z) =il2T(1 = )2 M(v, 2)J, (4.10)
where
My, 2)=(i/2)"'T' (1 - v»)T'(v)(z —H)™,
= /2y Ya/sinmv)(z —H)™. (4.11)

The theory is then developed in terms of the operator
M.

The fact that R(z)=(z —H)"! is raised to a complex
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power in Eq. (4.11) is a considerable inconvenience.
For this reason a representation of M(v, z) as a linear
function of R is presented.

Theorem 3. For fixed nonzero z, 0<arg z<7, and for
v in the strip 0<Re v< 1, the operator M(v, z) has on
/1 the representation

M@, z)= f dtet ™™ (z + zie* —H)? (4.12a)

zf dyy™ (z+ziy - H)™. (4.12b)
0

Proof: Define f(f, \) = et(z — A+ Sie*)"! for fixed non-
zero z,0<arg z<7, and all real (£, ). The bilateral
Laplace transform f(v, A) of 7 is given by f(v, X) = (/2)*™?
X(m/sinmv)(z —A)™, provided that 0<Re v< 1. [This fol-
lows from Eq. (6.2(3)), p. 308, of Ref. 31 with the
variable changes s -v=1-5s, x-{=Inx. ] The function
f(v, 1) satisfies the requirements of Lemma 4, yielding
Eq. (4.12a). A change of variables f-y=e¢! yields Eq.
(4.12b). QED

Remark. The fact that sin 7mv has zeros at the integers
means, in particular, that the representation of Eq.
(4.12) is not useful if Re v=1. For this reason it is ex-
tremely useful to have the flexibility allowed by Theorem
1 in assigning the value of the parameter y.

Resolvent-like equations for M(v, z) and for

M, z)=el(z + 5iet —H)™? (4.13)

can now be derived in a straightforward way. For each
channel 8 let a self-adjoint extension Hjy of the channel
Hamiltonian Hy be defined. This extension must have
the same domain as the full Hamiltonian H and must
satisfy the equation HyPy= P3Hy on that domain, (Exam-
ples of such extensions are provided by the so-called
cluster Hamiltonians. * %), Operators M and M, are
defined in the same way as M and I\~4, respectively,

but with H replaced by Hy.

Theorem 4. For 0<Re v<1and O<arg z<, the
operator M(v, z) is the unique solution of

M(v, z)=
c+iv
My, 2)+ ﬁf ATM (v =7+ 1, 2)(H - Ha)M(r, 2),
o (4.14)

where 0< Re v<c< 1. For all real { and all z with non-
zero imaginary part the operator M(, z) is the unique
solution of

M(t, 2)=Myt, 2) + et My(t, 2)(H-Hp)M(t, 2).  (4.15)

Proof: This theorem is proved in essentially the same
way as Theorem 5 below. QED

This theorem provides the Coulomb analog of the
resolvent equations that form the basis of the time-in-
dependent theory of scattering with short-range
interactions.

It is interesting that Theorem 4 can be rewritten in a
slightly more general way that does not refer to exten-
sions of the channel Hamiltonians. To do this define the
operators M’ and /M’ in the same way as M and M, re-
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spectively, but with H replaced by H'. Let V* denote
the adjoint of V=HJ -JH’,

Theorem 5: For 0<Re v<1and O<arg z<m, the
operator M(v, z) is the unique solution of

J*M(v, 2) =

Cy i
M (v, 2)J * +2%/ drM'(v -7+ 1, 2)V*M(7, 2),
omix (4.16)

where 0<Re v<c< 1., For all real ¢ and all z with non-
zero imaginary part the operator M(¢, z) is the unique

solution of
JHM(t, 2) =M’ (8, 2)T* + e tH (8, 2) V*II (L, 2).  (4.17)

Proof: The proof follows the standard treatment of
the usual resolvent equation. The operator M is a solu-
tion of Eq. (4.17) since

M'J* + M VEM = M'J* + (2 + Siet — H')Y'*M
=(z+3iet —H')MI*(z + 3iet —H)
+JHH -H'J*} M,
= (2 +iet —H') Yz + Siet ~H)J*M,
=J*M. (4.18)

To prove that the solution of Eq. (4.17) is unique, con-
sider solutions N of the homogeneous equation

J*N=(z + Liet —H')"'V*N. (4.19)

Equation (4.19) implies that J*N maps # into/),., the
domain of H’, and hence that

0= (z + ie* -H')J*N - V*N
=J*(z +3ie’ ~H)N.

(4.20)

Recall that P,, where 8 =0 is the “free” channel, is
the identity on /. It then follows from the equation

J*P= D, Pa¥, (4.21)
valid for all yc//, that J* is nonsingular (although J is
singular). Equation (4.20) thus implies
(4.22)

The self-adjointness of H and the fact that Im z # 0 now
imply that N=0 and hence that the solution of Eq. (4.17)
is unique.

(z+3ief —=H)N=0.

To obtain Eq. (4.16) take the bilateral Laplace trans-
form of Eq. (4.17), using Lemma 5 to deal with the
second term on the right side. Existence and uniqueness
of the solution of Eq. (4. 16) follow from that of Eq.
(4.17) and the uniqueness and continuity properties of
the bilateral Laplace transform. QED

Direct comparison of Theorems 4 and 5 is facilitated
by writing the equations of Theorem 5 channel by chan-
nel. Equation (4.17) is, for example, equivalent to re-
quiring for all channels g that

PyM = MuPs + e My(Py H - HyP)M, (4.23)
where 11718 is defined in the (now) obvious way. It is clear
that not only does Eq. (4.23) not refer to extensions of
the channel Hamiltonians but also requires equality only
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on P,/{ =/{,. This subtle distinction between the equa-
tions of the two theorems is, of course, of no conse-
quence when the extensions Hy are known, but may be
important for the construction of more general theories.

Comparison of Eq. (4.16) with the resolvent equation
JH(z ~H) '=(z ~H'YYU*+ (z —H')'WW*(z ~H)"! (4.24)

is also of interest. For this purpose one notes that
M(v, z) is, for z fixed, meromorphic in the right half v
plane with poles at the positive integers. In particular,
the residue at v=1is (H - z)"!. The Cauchy residue
theorem (Ref. 26, p. 97) can therefore be applied to
move the contour of integration in Eq. (4. 16) to the
right of the pole of the integrand at 7= 1. The resulting
equation is

J*M(v, 2)=M'(v, 2)J* + M' (v, 2)V*(z —H)™!

1 csiw
4

- dt™M'(v = 7+ 1, 2)V*M (7, 2),
27

(4.25)

where O<Re v<1<c< Re v+ 1. Upon substitution of ..
Eq. (4.11) into Eq. (4.25) one obtains an equation for
(z — H)™ that is valid in some open domain containing
O<Rewvc<l:

¥z =H)" = (2 = H'Y"J* + (2 = H')VV*(z = H)

. . 1 caio
+ _1_1 I-VM___ 7 —_
(z) T 27 dtM'(v~1+1, 2)

X V*M(T, z). (4.26)

The strong limit as v— 1 of the last term on the right
side of Eq. (4.26) is zero, leaving one with Eq. (4.24).
Thus, Eq. (4.16) can be properly said to generalize
the usual resolvent equation, Eq. (4.24).

The equivalent equations (4. 16) and (4. 17), or alter-
natively Egs. (4.14) and (4. 15), are the Coulomb ana-
logs of the resolvent equations of short-range theories.
They suffer the standard ills of multichannel resolvent
equations, but these can, with one exception, be over-
come with a development of a Faddeev— Yakubovskii
type. ™ ® Such equations will not be written here, since
further work should be done to ascertain the most natu-
ral way to define the transition operator 7T (cf. remarks
following Theorem 2 and also Sec. V). Once this has
been done and the analogs of the Faddeev—Yakubovskii
equations written down, there remains the problem of
compactness of the kernels of these equations. How this
is to be circumvented remains, of course, an important
matter for further research.

V. THE TWO-BODY AMPLITUDE

The formulas of the preceding sections can be used
to compute the two-body Coulomb scattering amplitude
in a mathematically rigorous way. The calculation is
done in the center of mass momentum coordinate sys-
tem and recovers the well-known® amplitude

2 2
st k) = oL - 5B, k. (5.1)

The function f is defined by
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iaz,z, ( 2k )2‘“"“”1"(1+ian(k))

A k)= = ek 12 ATk, — K] (1 -ian®)’
(5.2)
where 2= |k,| = |k; | and
(k)= pzezk™l, (5.3)

1 being the reduced mass of the system. This result is
obtained in a straightforward, although lengthy, manner
that is not plagued with the divergences encountered in
many previous calculations, 17~1?

In the two-body calculation the motion of the center
of mass is suppressed so that the operators H,, F, and
A are defined in terms of relative coordinates. The ex-
plicit representations are

(Hof) (%) = (2m)%/2 [ dke'*%(|k|2/2 0)F (k), (5.4)

(Ff)(x) = (2m)%/2 [ dke™ *n(k)7 (K), (5.5)
where 7(k) is defined in Eq. (5.3); and

(Af)(®x)= (2m)/2 [ dke*  *n(k)in(2 |k |2/ w)F (k).  (5.6)

In Egs. (5.4)—(5.6) the function 7 is the Fourier trans-
form of f. The spectral measures E; and F, correspond-
ing to Hy, and F, respectively, have therefore the
representations

(ELf)(®) = (2m)2 [ dke'™* *6(x ~[ |k|2/20])F (k)
and
(F,f)(®) = (2m)2 [ dke™ *0( - 1 ()7 (K), (5.8)

where 6 is the usual Heaviside function. Finally, the
operator J is in the two-body case just the identity.

(5.7)

Now let ¥ and ¢ be Schwartz test functions such that
their Fourier transforms ZI; and ¢ have nonintersecting
compact support. It is further assumed that the origin
k=0 does not lie in the support of either § or ¢. Then
it follows from the previous paragraph and from Theo-
rems 1 and 3 that the equation

(#, S¢)=lir | dk; dk,P* (k)P (k,)S . (&, k;) (5.9

holds, where S, has the form
i (4T )i ang 4T.)i ang
5.l k) = G T AT

x[wdyy-vc([m T +ie+iy]/2; K, k). (5.10)
0

In Eq. (5.10) the parameter ¥ can be arbitrarily chosen
from the open unit interval (0, 1). The parameter v is
given by

v=y+ia(n+ 1), (5.11)

where 7, =7(lk;[) and 7; = 7(Ik;|). The parameters T,
and T; are the final and initial kinetic energies, Ty
=(Ik,13/2p) and T,;=(lk,1?/2u), respectively. The func-
tion G in Eq. (5. 10) is the usual Coulomb Green Func-
tion, for which the representation (2’) of Schwinger?®’

is adopted:

G(& Ky, ki) = (£ =T, 5(k; — ki) + G (& Ky, k), (5.12)

where { is a complex number and
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Gy= - (@uz,z,t /1% [ dpp' (1 - p?)(20¢ ks —K |2

= (& = T(E -Ti)(1 =~ p)?]?, (5.13)

(5.14)

The problem now at hand is to compute the limit of Eq.
(5.9) explicitly.

w=az,z,(28/u)2,

The contribution to (3, S$) corresponding to the first
term on the right side of Eq. (5.12) is easily calculated
to be
lim { dk P* (RS T(y + 2ian(®))[T ()] exp| - 2ian(®)ine].
e-0*

(5. 15)

It is straightforward to prove with a change of variables
k|~ n(k) and an application of the Riemann—Lebesgue
lemma that the expression (5. 15) is zero.

Equation (5. 9) is therefore true with S, replaced by

. LYY AL S
SFI)(kf’ kt) - 21"(7)1"(1 —_ V) . dl’y

XGy([T; + T, +ie +iyl/ 2k, k,). (5. 16)
A change of variables p~o=2p"%(1 -p)~! in Eq. (5.13)
and subsequent substitution of the result into Eq. (5. 16)
yields

_2icouz z,(AT,) P (4T, )”"'if o
(l) 1521\ f 2
sv= SR : dyfo doPD2,

“(5.17)

where

. o 2wy
P=oy™(T; + Ti+1€+23’)(1+(1+oz)1 2) , (5.18)

D=0k, —k; |2(T; + T, +ie+iy) + u[(Ty = T2+ (e+ )%,
(5.19)

Here v is defined by Eq. (5.11) and w, is obtained by
substituting {= (T + T; +i€+iy)/2 into Eq. (5.14).

As long as €>0 the integrations over the variables
k:, k;, v, and o can be performed in any order. The
proof of this relies on the estimates

|P|<oy”| Ty + T; +ie+iy| (5.20)

and

[D|%> etp?+ yp? + ot |k — K [T, + T;)2. (5.21)

These inequalities follow from straightforward algebra
and the observations that Imw; >0 and that both Re D and
Im D are sums of strictly positive terms. It follows
from Eqs. (5.20)—(5.21), the assumed properties of

P and $, and Tonelli’s theorem that the multiple inte~
gration in Eqgs. (5.9) and (5. 17) is absolutely convergent
and hence, by Fubini’s theorem, can be evaluated with
any order of integration.

Further, if T;# T; the first term on the right side of
Eq. (5.21) can be dropped. This permits the applica-
tion of the Lebesgue dominated convergence theorem to
prove that S'! vanishes in the limit €~ 0 uniformly on
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compact subsets of the complement of the set 7,=T.
One concludes, not surprisingly, that energy is roughly
conserved and that only the region T;= T, contributes to
the integral in Eq. (5.9).

Assume, therefore, that | T, — T;l<§,, for some
arbitrarily small but nonzero §,, for all k; and k; in the
(compact) supports of P and q> respectively. Let @,
denote the integral in Eq. (5.9) with S, replaced by the
SV given in Eq. (5.17). Then, in terms of the variables
X=(Ty, ke/ 1% |, K/ 1K 1) and 6= T; — T, the integral @,
takes the form

P s 6
Q.= e fdX [“dy [“do [ "dSRPD?, (5.22)
%0
where
_ _ _dioptz2,(4Ty) (4T ) o
R=REX, 0)= ETG)T( - v)
X TAM2(T, - §)1/ 2% 5.
¥ Ty - 8) 2P (5.23)

The problem now is reduced to showing how the energy
conservation delta function emerges from the integra-
tion with respect to &,

For this purpose various estimates of the -depen-
dence of the integrand are needed. Application of the
mean value theorem of the differential calculus yields

R(X, 6)=R(X, 0) + 6R,(X, 3), (5.24)

where R;=(6R/98) and 0<6< 5, Because of the assumed
properties of ¥ and ¢, the function R, has compact sup-
port and is bounded in that support. A similar expan-

sion can be made for P,
P(X, 8,y,0)=P(X, 0,y,0) + 0P4(X,5,9,0),  (5.25)

with Py= (3P/36) and 0< 8< 6. A bound for P, is easily
constructed from the equation

P‘1P5=—1nP~ 1ny—

35 (2T, -6 +ie+iy)?

3
+2i—2 ln (W) (5.26)

The functions (8v/8d), (2T, -5 +i¢ +~z'y)“ , and (3w,/88)
are all bounded in the support of ¥*¢. One needs also
the straightforward estimates

1n(~1—mf_—027177) <In3+ |lno| (0<e<w), (5.27)
and

|2T; ~6+ie+iy|<(const) (1+y) (0<e<1), (5.28)
valid on the compact support of ¢*&. These facts,
together with Eq. (5.20), yield the estimate

| Py | < (const)oy™ (1+3)[1+|lny|+|Ina]]. (5.29)

The denominator function D must be estimated with more
care. Let A denote

A(X, 8)= |k, -k %, (5. 30)
and let Dy be given by
Dy=d?A(X, 02T, +ie+iy) + p[6% + (e+ 9)2]. (5.31)

Then
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D, Dl-1=

2D Y[A(X, 0) - A(X, 6)](2T; +ie+iy) + BA(X, §)}.
(5.32)
Since Re D is a sum of positive terms, the estimate

(5.33)
From Egs. (5.32) and (5. 33) it follows that
(5.34)

ID|20?|A(X, 8)||2T; = 6+ i€+ iy
holds.
|DyD™t = 1|< (const) | 5|
for (X, ) in the support of J*¢ and for y, 0> 0.

Let R, and P, denote R(X, 0) and P(X, 0, y, 0), respec-
tively, and write the identity

RPD? -RyPy,D#=DE{DED3[(R ~R)P+ Ry(P —Py)]
+ Ry Py(Dy D™+ 1)(Dy D' = 1)}, (5.35)

The boundedness of Dy D! and R, and the Eqs. (5.20),
(5.24), (5.25), (5.28), (5.29), and (5.34) imply the
inequality

|RPD™ - Ry P, D | < (const) | Dy | 2

6’03;'7(1 + )

><[1+’lny|+ ’lno’],
(5.36)

valid for y, o> 0 and (X, 0) in the support of *¢. Now
substitute the estimate

| Dy |z Re Dy > (const) (o + y% + 62) (5.37)

into the right side of Eq. (5.36) and integrate with re-
spect to 8. The result is obviously integrable with re-
spect to (X, 0, y) for all X in the support of $*& and all
y, 0> 0. By Tonelli’s theorem the right side, and hence
also the left side, of Eq. (5.36) is absolutely integrable
for all € 0< e<1. Furthermore, by Fubini’s theorem,
the integrations can be done in any order. It then fol-
lows that in the limit as €— 0 the integrand in Eq. (5.22)
can be replaced by R(X, 0)P(X, 0, v, 0)D.

The problem now is to calculate the integral

«© o ]
Qio)ze”fdxfo dyfo dafﬁodGR(X, 0)P(X, 0, y, 0) D
=90

(5.38)
=efdx fo “dy [ doR(X, 0)P(X, 0, y, o) 2
b DP/2 (D +ib
X[ 0 + 1 ” h’l( 1 n 9 ’
D,(6,2+ D 27) VD, —ib
10+ Dy v (5.39)
where
D= (e+ )2+ ulPA(X, 0)(2T; +ie+iy). (5. 40)

The principal sheet of the logarithm is assumed cut
along the negative real axis. Using the bound

]DllzyhzTTfA(X, 0)c?, (5.41)
one easily proves that the first term on the right side of
Eq. (5.39) is absolutely integrable, with the estimate
being independent of €. Application of the Lebesgue
dominated convergence theorem then shows that it does
not contribute to the limit. It only remains to estimate
the second term. Since Re D,>0 for €> 0 the log term
in Eq. (5.39) is well defined and bounded. Since also
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|Dy |22 (e+ p)t +(e+y)20* u2A%(X, 0), (5. 42)
one finds with the aid of Egs. (5.20) and (5.28) that

| PD/2 < (const)oy (1 + y)(e+ )/ 2[(€+)* + o*]*/ .
(5.43)

This inequality, the boundedness of R(X, 0) and the log
term, and Tonelli’s theorem imply that the second

term of the integral of Eq. (5.39) is absolutely integr-
able with respect to all variables for all €>0. Make now
the change of variables o~ p= €'0, y—~x= €'y, Then the -
second term on the right side of Eq. (5.39) becomes

u? e’def: dx fo” dpR(X, 0)vxvp(2T, +ie(1 +x))

2iw -3/2 .
X N DPE ) (€D ti0)  (5.44)
\1+1+ épd) 2i /D, ~i6,
where
Dy= (1+x)%+ ulpPa(X, 0)(2T; +ie(l+x)). (5. 45)
The term in (5.44) proportional to ie(1 + x),
w2 fax )7 dx [ ap REX, 0) érxvp(1 4 )
€\/2)-+ 10 (5.46)

L Biwg o372 ( PRAAYY
111+ 2172 - ¢
“Tras ez DaIngp T,
also does not contribute in the limit €~ 0. To see this,
write the integral as

Jax [TaxR(X, 0)f.(X, ), (5.47)

where

1%, x) mebrspragr (1

+x)f € 2iwg

2 _[O dpp(1+(1+ )T 2)
_3/2 €vD. +26 .

*De 1“(;_&“‘“@-1-50

The integrand of Eq. (5.48) can be bounded by using the
fact that the log term is bounded (even for €= 0) and
also the estimate

(5.48)

|D, |2 ReDj, > (const)[(1 +x)%+ p?], (5.49)
valid for X in the support of R(X, 0). Thus
|f.| < (const) ex™*(1 + x) f;dp p[ (1 + x)2 + p?]"3/2
< (const) ex™, (5.50)

Thus, f(X,x)~ 0 pointwise as €—~ 0. Since f, is absolute-
ly integrable for €>0 [cf. remark following Eq. (5.43)]
and approaches zero pointwise, the Lebesgue dominated
convergence theorem would imply that the integral of
Eq. (5.46) vanishes if some integrable bound for f,
could be found that is independent of €. This is provided
by the inequality

Dy [22 (const)[(1 +x)* + p*(1+ 0], (5.51)
valid for X in the support of R(X, 0), which leads to
|fe | < (const) ex™7(1+ x)fD dpp[(1+x)t+ Ep(1 +x)2]3/4
(5.52)

The Lebesgue dominated convergence theorem thus ap-
plies, proving that the limit as €- 0 of the integral of
Eq. (5.46) is zero,

< (const)x™7(1 + x)™1,
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Finally, consider the remaining term in (5. 44),

r b «
u'zf.—f de dxf dp
t 0 0
) )Ziwo

XR(X, O)E'Vx"’pr(l T (1t €512

xDéaxzm<£@—z.ﬁ§m>. (5.53)

6@ - ibo

It is easy, using Eq. (5.49), to see that the Lebesgue
dominated convergence theorem holds so that the limit
as €~ 0 can be taken through the integrals in (5.53). In
that limit, w, approaches an,=an; = (v -¥)/2 and the
log term approaches ¢w. The limit is

(%, S¢)= [ax [“dx [ “dp uEaT, R(X, 0)x~0(3p)""

x[(1+x)% + 2T, u™a(X, 0)p2]%/2, (5. 54)

where now it is understood that ik;| = [k;|. This inte-
gral can actually be done. By making the change of
variables p—~p=(1+x)[2T,u"'A(X, 0)]'¥?p in Eq. (5.54)
one obtains

) _ = - U 1+{v-y)/2
(w,s¢)~f dXR(X,0)u-2nT,2" <2TfA(X,O)
X f, = dx (1 +x) vy [ = dpBlever(1 4 p2)3 2

(5.55)

727y U (w=y) /2
2A(X, 0) 2 (ZT,A(X, o))

DA - TAST[L+ v = n/2]T]s - v - n/2])
r(1+y-v)f| 2r(z)

= [dXR(X, 0)

—

o

(5.58)

Now recall the classical doubling formula [cf. Eq.
(1.2(15)), page 5, of Ref. 34] for the gamma function,
T(22) =7 /2227 P ()P (2 + 1), (5.57)
and recall that T'(3)=2"171/2, Setting z=(1+¥-v)/2 in
Eq. (5.57) and substituting the result into Eq. (5.56)

yields

w-7) /2
L) [l .
X, 0)\2T;A(X, 0)

(¥, S¢)= [dX R(X, 0) 5

L TA-NTOT[1+ (v -1/2]
wr{1- @ -v/2]

(5.58)
Substituting the definition of R into Eq. (5.58) and writ-

ing the result in terms of the original momentum vari-
ables yields the result

@, S¢) = [ dk,dk; i* (k) B (k;) 8(T, ~ T,)f(k,, k;),  (5.59)

which was to be proved.

Remarks. (1) The wave functions ¢ and ¥ have been
chosen to be of a type that are dense in the space of
square integrable functions. Since S is bounded, exten-
sion of the left side of Eq. (5.59) to arbitrary square
integrable functions is immediate. Extension of the
right side would also be immediate were it not for the
strong singularity of the function f(k,, k;) when k;=k;.
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An extensive discussion of this problem has been given
by I. Herbst.2?

(2) In Theorem 2 an approximation 8.(T; — T;) to the
energy conservation delta function was introduced. This
was done in analogy to short-range formulas. It is note-
worthy that the function 6, does not appear in a natural
way in the two-body calculation. Energy conservation
is enforced in a far more subtle way by the function D,
in Eq. (5.38). This leads one to suspect that exhibiting
energy conservation via the function d; may not be use-
ful. One should look for alternative, more natural, ways
of achieving that goal.

VI. DISCUSSION

In the foregoing sections the foundations of a time-
independent multichannel scattering theory for nonre-
lativistic charged particle systems have been examined.
An important feature of the theory is that the scattering
operator is specified, not by the resolvent operator,
but by a complex power of the resolvent operator. As a
first step in development of the theory a generalized
resolvent equation was developed to encompass these
complex powers. This equation was shown to have a
unique solution and to reduce to the usual resolvent
equation in the absence of Coulomb potentials. Finally,
the two-body problem was treated in the context of this
formulation of scattering theory.

The objections to the present theory that were outlined
in Sec. I are apparently circumvented by the theory of
this paper.

For example, the channel operator F; is multiplica~-
tive in the momentum space representation with the
form [cf. Eq. (71) of Ref. 11]

Fogky oo o, K=ok, .00, R)g(R, .0, k), (6.1)
where
fB(kl, LIRSS kn) = Kr(s("zrzs | (kr/mr) - (ks/ms) \-l. (6o 2)

Here it is assumed that there are »n clusters in channel
B with charge numbers z,, masses m,, and momenta
k.. In this representation the differentials dFj,, are to
be replaced by 6(t-fz(k,, ..., K,))d7, where 6(-) is the
Dirac delta function. The imaginary part of the complex
power v in Theorems 1 and 2 therefore consists of
terms of the form af;, where « is the fine structure
constant. As this is what is expected on the basis of
relativistic theories, *~% the objection raised in this
regard in Sec. 1is apparently overcome.

In addition, none of the previously encountered diver-
gences appeared in the two-body calculation of Sec. V.
This can be directly attributed to the incorporation of
complex powers of the resolvent into the theory. We
conclude that previous difficulties® '""2° with the two-
body problem are the result of studying the wrong
operator!

The next step in the development of the theory is to
write down equations of the Faddeev—Yakubovskii type.
The problem here is how to exhibit energy conservation,
a matter of some subtlety as was pointed out in Sec. V.
Research on this topic is in progress and will be the
subject of a forthcoming paper.
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A general method is proposed for obtaining all conjugacy classes of maximal solvable subalgebras of
an arbitrary semisimple Lie algebra over a zero characteristic field F. The method is applied to
explicitly construct all ¢ +1 maximal solvable subalgebras S, of the algebra of SU(p,q) for

P >4 >0 (over the field of real numbers). The dimension of S, for O<k<gq is 2x+1)X

(p +9 —x)—1 and it contains p +q —k—1 compact elements. The low-dimensional pseudounitary
groups with 0<p +¢ <4, 0<g <p are considered in detail and different realizations of the maximal
solvable subalgebras are presented. Finally, all subalgebras of the physically interesting algebra
SU(2,1) are found (not only the maximal solvable ones). The invariants of the subalgebras are found

in all cases when they exist.

. INTRODUCTION

In many applications of group theory and group repre-
sentation theory in physics it is important to know all
the subgroups of a given group, in particular to classify
all possible chains of subgroups into equivalence class-
es with respect to inner automorphisms of the group
itself.

There are several reasons for the interest in this
problem. Thus, a typical situation is when a physical
system has a certain symmetry, described by a group
(e.g., a Lie group) G, then a further interaction is in-
troduced, e.g., an external field, decreasing the
symmetry to G, G. A list of subgroups of G will thus
provide a classification of possible breakings of the
initial symmetry,

A further reason for the importance of subgroup
chains is their connection to group representation theory
and in particular to the choice of bases for representa-
tions of Lie groups. Thus a basis for the representa-
tions of a given Lie group G may be obtained by con-
sidering a complete set of commuting operators, con-
taining all the Casimir operators of the group, some
further operators from the algebra or enveloping alge-
bra of G (and possibly some further operators like re-
flections, etc). The basis functions will be the common
eigenfunctions of such a set of commuting operators and
nonequivalent sets of operators lead to nonequivalent
bases. In particular, if all the continuous operators in
the set are chosen to be Casimir operators of G or its
subgroups, then we obtain the most commonly used
“subgroup type” bases. In the opposite case we obtain
“nonsubgroup type” bases which are also of considerable
physical interest, ' but will not be discussed in this
paper.

The wavefunctions (or state vectors) of quantum
theory can very often be identified with basis vectors of
the representations of a certain group, e.g., the
Poincaré group?® (inhomogeneous Lorentz group), the
Galilei group, 3 the group SU(3) (e.g., when considering
internal symmetries of elementary particles? or the
motion of nucleons in the average field of a nucleus®) or
some other group. Different complete sets of commuting
operators, determining the basis, correspond to the
observability of different physical quantities (to the
appearance of different quantum numbers, e.g., linear
momentum versus angular momentum) and thus to dif-
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ferent physical situations. Consider for example the
group SU(3). In elementary particle physics the impor-
tant chain of subgroups is SU(3)> S[U(2) x U(1)] > U(1)

X U(1), where the SU(2) subgroup is associated with
isotopic spin, In nuclear physics, on the other hand,
the important chain is SU(3) 2> 0(3) D 0(2), where the
group O(3) is imbedded irreducibly into SU(3) and corre-
sponds to the angular momentum of the particles
involved.

A very important application of group representation
theory in physics is due to the fact that it is possible to
expand physical quantities, e.g., scattering amplitudes
in terms of the basis functions of representations of a
given group. Thus, the group O(3) provides the standard
formulas of partial wave analysis, the group 0(2,1)
underlies Regge pole theory, ® etc. The homogeneous
Lorentz group O(3,1) has been used to provide two-
variable expansions of relativistic scattering ampli-
tudes, 7°® the Galilei group to provide the same for non-
relativistic amplitudes.® The different subgroup reduc-
tions, corresponding to different bases, lead to expan-
sions in terms of different special functions, each of
which may be particularly appropriate in a definite
physical situation. Thus, the reduction 0(3,1)> O(3)

D 0(2) leads to expansions that simplify specifically for
low energy scattering; those corresponding to the re-
duction 0(3,1) D 0(2,1) 2 0(2) simplify to the contrary
for the limit of very high energies.’

The subgroup structure of the groups 0(3,1),%'°
E(3),° and their subgroups has been completely clari-
fied. Some work has also been done on the subgroups of
the Poincaré group™ and SU(2,1).'? Dynkin'® has solved
the problem of finding all the semisimple subgroups of
an arbitrary complex semisimple Lie group (see also
Ref. 14). The case of real semisimple Lie algebras has
also been treated.'®

For physical applications one would like to know all
subalgebras, not only the semisimple ones and particu-
larly those with invariants; thus we attack the problem
from the opposite end, namely find all the maximal
solvable subalgebras of the algebra of SU(p,q). The
method is however directly applicable to the case of
maximal solvable subalgabras of an arbitrary semisim-
ple Lie algebra.

Let us finally mention that the SU(p, ¢) groups and
their algebras are of interest in physics for a multitude

Copyright © 1974 American institute of Physics 1378
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of reasons. Thus, SU(1,1), being isomorphic to the
three-dimensional Lorentz group O(2, 1), underlies
Regge pole theory® and also figures in various models

in elementary particle physics'® and also in atomic
physics.!” The group SU(2,1) can be used to provide
crossing symmetric expansions of scattering ampli-
tudes. '® The group SU(3, 1) has been studied in various
connections in elementary particle theory'® and the group
SU(2,2) is of course of special importance, being locally
isomorphic to the conformal group of space —time (for
reviews see, e.g., Ref. 20). Higher groups, in particu-
lar SU(6, 6) have been studied® in attempts to combine
intrinsic symmetries [like SU(3)] with the Lorentz group.

A complete classification of all subgroups of SU(p, q)
is thus of considerable interest. One-parameter sub-
groups (and the corresponding subalgebras) have already
been classified.? The classification of maximal solvable
subalgebras, given in this article, should together with
the work on one-parameter subgroups and on semisimple
subgroups considerably simplify the task of finding all
subalgebras. In this article we do indeed list all sub-
algebras of SU(2,1).

Ii. MAXIMAL SOLVABLE SUBGROUPS OF
SEMISIMPLE GROUPS

A. Discussion of the problem of finding all classes of
subgroups of a given Lie group

We consider the problem of classifying all chains of
subgroups

G=G,2G,2G,D+++2G,=1 (1)

(the G, for =1, ... ,n are continuous subgroups of the
Lie group G) under the continuous automorphism group
of G,

In terms of the Lie algebra L = L(G) of the infinitesi-
mal operators of G, the problem is to classify the
chains

L=L,2L,DL,>-+-DL, =0 (2)

of properly descending subalgebras of L over the real
number field R under the automorphism group Aut(L)
of L over R.

In the final analysis one wants to represent the
classes of conjugacy of the R-subalgebras of L under
Aut(L) by a list of representatives.

In more general terms one wants to establish a list
[(L, F) of the classes of conjugacy of a finite-dimen-
sional Lie algebra L over a zero characteristic field F
under the group of automorphisms Aut (L) of L over F.

By Levi’s theorem?® for every F-subalgebra S of L
there exists a decomposition

| S=R(S) +X (3)

of S into the direct sum of the maximal solvable ideal
R(S) of S and a semisimple subalgebra X of S.

Moreover, assuming F to be the real number field,
any two Levi decompositions (3) are conjugate under the
group of automorphisms Inn(S, L) of L that is generated
by the automorphisms
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explad (x)]:L—~L
explad,(Wu= 5 g_(_i_?('xi uw (xeS, uel)
i !

of L over R with the adjoint representation
ad:L—L

over R refined by Lie multiplication
ad;(YJu=[x,u] (xeL, ucl).

According to Whitehead’s proof, which later on was
greatly simplified by various authors,?* the task of per-
forming a Levi decomposition (3) can be carried out by
solving certain systems of inhomogeneous linear equa-
tions over F. In particular, for any given semisimple
F-subalgebra Y of L, one can find a solution X contain-
ing 7.

In view of these facts our task can be broken up into
the following four tasks.

(i) To represent the conjugacy classes of solvable
subalgebras S, of L under Autz(L).

(ii) To determine the normalizer subalgebra
Nor;(S,)={x|xc L and [x, S,]C S}

for any solvable F-subalgebra S; in L and to determine
its maximal solvable ideal (radical) R Nor ,(S,).

(iii) To perform a Levi decomposition of Nor (S,):
NOI'L(SO) =R(NorL(So)) :" Y.

(iv) To represent the conjugacy classes of the semi-
simple subalgebras of ¥ under the normal subgroup
Inn(Y, ¥) =Inn(Y) (inner automorphism group) of the
automorphism group of Y over R.

The task of determining the normalizer subalgebra
Nor,(S) of a subalgebra S reduces after extending an
F basis by, ..., b, of Sto an F basis b, ..., b, of L to
the task of finding a solution basis £,y 4, ... , ¢, ;
(1< i< p) of the system of linear homogeneous equations

inasmuch as the o +p elements b,, ... ,b, and
Y r-oi8r,iby (1< i< p) form an F basis of Nor(S).

The task of determining the Killing radical KR(S) of
the F-subalgebra S with F-basis b,,..., 5, and multipli-
cation rule

[bi,b,.]= 2 YD, (YheF)

reduces to the task of finding a solution basis
Ty« sNow (15 k< p’) Of the system of linear homoge -
neous equations

J
3 % YiY,m, =0

i=1 j=1 (1 sa <ﬁ$ (7)

with Killing constants

g
Y= i 2 YgiYBQ;’

a=1 B=1

inasmuch as the elements 3% ,7,,b; (L < k< p’) form an
F basis of R(S). Similarly deal with centralizer, radical.
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Regarding task (iv), we view it as an extension of the
task of the ordinary representation theory of classical
Lie algebra, which is simply the task of representing
the classes of conjugacy under InnDFf of the F-homo-
morphisms of a semisimple Lie algebra X of finite
dimension over F in the simple matrix algebra DF™
formed by all matrices of degree f over F with vanish-
ing trace. Progress has been made for F= C. For the
field of real numbers, we are still far away from a
complete solution of task (iv), though we believe we
know the methods to achieve it.

Task (i) of representing the conjugacy classes of
solvable subalgabras can be reduced to the following
steps.

(i.a) To represent the classes of conjugacy of the
maximal solvable subalgebras of L under Autg(L).

(i.b) To represent the classes of solvable subalgebras
S, of a maximal solvable subalgebra S of L under
Aut.(S, L), the stabilizer of S in Aut,(L). Reduce to:

(i.b.a.) To represent the conjugacy classes of the
F-subalgebras S, of the radical R(L) under
Aut(R(L), L).

(i.b.b) To determine for a given F-subalgebra S, of
R(L) the normalizer Nor,(S,,) and a representative set
of the classes of conjugacy under Aut{Nor(S,),L) of
those solvable subalgebras S, of Nor,(S,,) that intersect
R(L) in Sg,.

In regard to (i.a) we remark that every maximal
solvable F-subalgebra S of L contains the radical R(L)
of L and that for any Levi decomposition L =R(L) X
of L there exists the decomposition S=R(L) +(SN X) and
vice versa (SN X is a maximal solvable F-subalgebra
of X).

Finally the following task remains:

(i.a.a) To form a representative set MS(L) of the
conjugacy classes under Autp(L) of the maximal solvable
subalgebras of a finite-dimensional semisimple Lie
algebra L over a field F of characteristic zero.

In view of the fact that L is the direct sum of its mini-~
mal ideals

'M*

L,

i

L=
1

-
W

where L, ... ,L, are simple non-Abelian finite-dimen-
sional Lie algebras over F and that a solvable F-sub-
algebra S of L is maximal solvable precisely if SN L, is
a maximal solvable Lie subalgebra of L, fori=1,...,7
and S=37%., SN L,, it follows that we need to solve task
(i.a.a) only for simple non-Abelian Lie algebras of
finite dimension over F.

Since for any solvable F-subalgebra S of L also the
F-subalgebra of L generated by S and by the scalar ring

S(L)={olocEnd(L) &V x [xc L=>0 ad(x) =ad (x)o]}

is solvable, it suffices to deal only with the case in
which L is centrally simple and finite dimensional over
F. Hence

S@)={1,JaeF}h
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In this paper we develop a general method for solving
the task (i.a.a) and apply it to the special case of the
special pseudounitary Lie groups SU(p, q). Note that
S(L) is Abelian if L is semisimple.

B. General theorems on maximal solvable subgroups

We shall derive a theorem, stated precisely in the
end of this section, giving a criterion for a subalgebra
S of L to be maximal solvable. The theorem is stated
in terms of a certain decreasing chain of linear sub-
spaces, called a flag (defined below).

By Lie’s theorem, for any finite-dimensional Lie
algebra L over a zero characteristic field F and for any
solvable F-subalgebra of L, the elements X of S for
which the adjoint linear transformation ad,(x) is nilpo-
tent form a nilpotent ideal N(S, L) of S with an Abelian
factor algebra.

For any field extension E of F we obtain the extended
Lie algebra

L®E=EL=L,
of L over E such that

N(Sg,Lg)=NI(S,L);.
This is because of the linearity of the definition of
N(S,L).

The Killing ideal KR of L is defined as the radical of
the Killing bilinear form on L. Since the Killing bilinear
form on L stays invariant under field extension, the
same is true for the Killing radical:

KR(L;)=KR(L).

For any ideal X of L also the radical ideal R(X) of X
is an ideal of L (N. B. : only for characteristic zero!).

Because of linearity the normalizer concept is invari-
ant under field extension, in other words for any F-
subalgebra S of L we have

Nor, (Sg) = (Nor(S)) 5.
The centralizer of S in L is the ideal
Z,(S)={x|x<c L &[x,S]=0}
of Nor;(S). Again we have the invariance
ZLE(SE) = (ZL(S))E‘

The intersection, sum and product of ideals are also
invariant under extension, in particular the center of S
defined as z(S)=Z,(S)N S and the derived algebra
DS=(S,S], also R(L)/KR(L) = z(L/KR(L)) and R(L).

A solvable F-subalgebra S of L is said to be of
maximal type if

$2 R(Nor (N(S, L))).

This concept is invariant under field extension. For
any solvable subalgebra S of L we have

[S, R(Nor .(N(S, L)))] C R(Nor (N(S, L))),

and hence S +R(Nor (N(S, L))) is solvable. An invariant
embedding of S into another solvable F-algebra is ob-
tained in this way, such that the new solvable subalge-
bra coincides with S precisely if S is of maximal type.
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For any solvable F-subalgebra S of L the factor alge-
bra Nor (N(S, L)) over its radical is semisimple so that
there is a Levi decomposition

Nor ,(N(S, L)) = R(Nor (N(S, L)) +X,

where X is a semisimple F-subalgebra X of
Nor,(N(S, L)).

Supposing now that S is of maximal type, then we have
NS, L) S R(Nor (N(S, L)) € SC Nor ,(N(S, L))
so that it follows that
N(R(Nor (N(S,L))),LY=N(S, L),

S=R(Nor(N(S,L))) +SN X, @)

SN X is Abelian, and N(SN X,L)=0,

Note that the nilpotency of ad,(x) for some element x
of the semisimple Lie algebra X implies the nilpotency
of A(x) for any representation A of X in a ring of
matrices over F (or an extension of F). Conversely, if
for some faithful matrix representation A of X over F
or an extension of F the matrix A(x) is nilpotent, then
ad,(x) is nilpotent, also ad, is nilpotent.

Hence in particular
N(SNX,L)=N(SN X, X)=0, (5)
If Sis a maximal solvable subalgebra of L, then SN X
is a maximal solvable subalgebra of X. Because of (5)
we find that SN X is a Cartan subalgebra.

An element x of a semisimple Lie algebra X of finite
dimension over F is said to be compact if it is contained
in a Cartan subalgebra of L that is a maximal solvable
subalgebra. A Cartan subalgebra H of L consists only of
compact elements precisely if H is a maximal solvable
subalgebra of L. This is due to the existence of ele-
ments of H which belong only to one Cartan subalgebra
(regular elements).

The Cartan subalgebra H of a finite-dimensional
semisimple Lie algebra over the real number field is
compact precisely if all roots are purely imaginary on
H. Indeed, if for some element x of H one of the roots
would not be purely imaginary, then among the roots of
H there is one, say o, for which the real part of xa
would be maximal and positive. If ¢ is real on H, then
the sum of the root space of @ and of H is a solvable
subalgebra of X larger than H, which is a contradiction.
Hence a is not real on H which means that the complex
conjugate a* of o is a root distinct from ¢ and that
there is a two-dimensional linear subspace M of X,
intersecting H in zero and invariant under H with roots
a and o*. In view of the maximal property of H we find
that M, M]=0 so that again M +H is a solvable subalge-
bra of X larger than M, which is a contradiction.

Our concept of compactness finds its justification by
the remark that a Cartan subalgebra H of X is compact
precisely if the set of linear transformations exp ad(x)
(x € H) is compact in the standard topologization of
Endp X.

We note that an element of a finite-dimensional semi-
simple Lie algebra X over the complex number field is
compact precisely if X vanishes. Hence a solvable sub-
algebra S of a Lie algebra L over the complex number
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field (or any algebraically closed field of zero charac-
teristic) is maximal solvable precisely if it coincides
with the radical of Nor,(N(S,L)).

Without proof we mention that all maximal solvable
subalgebras of L are conjugate under Inn{L) and also
that any two compact Cartan subalgebras of a semisim-
ple Lie algebra L of finite dimension over A are conju-
gate under Inn(L).

We continue the study of a solvable subalgebra S of
maximal type of finite-dimensional semisimple Lie
algebra L over a zero characteristic field F, using
some faithful representation space M of L of finite
dimension over F or over some extension of F (e.g.,
for the adjoint representation we have M =L). Again
we note that the application of an element of L to M is
nilpotent if and only if its adjoint representation is
nilpotent.

Using this remark, we associate with S a properly
decreasing set of linear subspaces My,=M, M, ,
=N(S,L)M,,

M=M,DM,>---2M,=0,
called a flag.
The flag normalizer in L is defined as

Nor,=Nor (Mg, ...,M,)={x|xc L& xM,CM, (0<i<)}

The flag centralizer in L is defined as
Z,=2 Mo, ..., M)={y|lyeL&yM,cM,, (0<i<n)}

Both subsets are subalgebras of L such that Z,
=N(Z,,L) is an ideal of Nor,.

Moreover, for the particular flag associated with S
we find that N(S,L)Z Z,, SCNor,, and Z, N
Nor.(M(S, L)) is an ideal of Nor (N(S, L)), contained in
the radical of Nor (N(S,L)). Since S is of maximal type,
it follows that Z, N Nor .(N(S, L))

N(S,LYC Z, N Nor (N(S, L)) CN(S, L),

Z, N Nor.(N(S, L)) =N(S, L).

However, the normalizer of a proper subalgebra of
any nilpotent Lie algebra is always larger than the
proper subalgebra itself.

Hence

N(S,L)=Z (Mg, My, . . . ,M,)=7Z,. (6)

The flag factors M, /M, define representations A, of
Nor;(M,, . .. ,M,)=Nor; over F (or an extension of F)
by setting

ALx) (/M) =xu/M,

for u of M, and x of Nor, (i=1, 2, ...,%). The rep-
resentation A, maps the radical of Nor, onto the radical
of A; (Nor,) as is well known from the representation
theory of Lie algebras of zero characteristic.

Hence

Z, < R(Nor;)

={x[xeNor & A,(x) € R(A,(Norp)), (1<i<n)}
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Asuming now that S is a maximal solvable subalgebra
of L it follows that S contains R(Nor,) as an ideal.
Moreover, from the general representation theory for
zero characteristic fields we know that

[Nor,, R(Nor;)] < M(Nor,, L).

Since R(Nor,) is contained in S, it follows that [Nor,
R(Nor,)] belongs to S and hence

[Nor,, R(Nor;)]CN(S,L)=2Z,,
ay([Nor, R(Nor,)])=[a(Nor,), R(A(Nor ))]=0
l<i<7).

1t follows that the Lie algebras A, (Nor,) are the
direct sum of the center and the derived algebra.

Hence the center z of A (Nor,) satisfies
z(a,(Nor ,)) = R(A,(Nor,)). (n

Using the Levi decomposition

Nor, =R(Nor,) + ¥, (8)
we find that
S=R(Nor,;) +SnY, (9)

where SNY is a compact Cartan subalgebra of Y.

Conversely, let us assume that for the solvable sub-
algebra S of L we have (6)—(9), where SN Y is a com-
pact Cartan subalgebra of the semisimple subalgebra
Y of L. For any solvable subalgebra S, of L properly
containing S we either have

MS,L)C N(S,, L), N(S,L)CNorN(sllL)(N(s,L)),
Nory s ,1,(MS, L) C Z,,

which is a contradiction, or
N(S,L)=N(S,,L), SC§,, S,CNor;.

However, according to (6)—(9), S is already a maximal
solvable subalgebra of Nor; and we again have a
contradiction.

It follows that S is a maximal solvable subalgebra of
L. We have thus established the following theorem.

Theorem: A solvable subalgebra S of a semisimple
Lie algebra L of finite dimension over a zero character-
istic field F is maximal solvable precisely if for a given
faithful representation space M of finite dimension over
F (or an extension of F) the conditions (6)—(9) are
satisfied by the flag associated with M under § and its
centralizer and normalizer under L [note that SN Y is
a compact Cartan subalgebra of the semisimple Lie
algebra Y as is mentioned after Eq. (9)].

The proof of the above theorem also yields the follow-
ing result.

Covrollary: Every nonzero solvable subalgebra S of a
semisimple Lie algebra L of finite dimension over the
field F of characteristic zero determines a maximal
solvable subalgebra S* of L containing S as follows. If
SCS+R(Nor N(S, L)), then set S*=(S +NorN(S, L))*.

If R(Nor  (N(S,L)))C S, then let S, be a maximal solvable
subalgebra of Nor;(S) N Nor (N(S, L)) containing S and
set S* =S¥,
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C. Application to the SU(p,q) Lie groups

Let us now pursue the case when F=R is the field of
real numbers and

L=LSU(p,q)
={x|xec g (@ -1)+(I,® -1)x=0,,,
p=q>0}

(where I, is the unit matrix of dimension p and x* is the
matrix Hermitian conjugate to x).

In this case the complexification of L is the simple
algebra LSL(p +q,C)=DC'***#*0 of dimension (p +¢)*
-1 over the field of complex numbers C,

The maximal solvable subalgebras of L. over C are
known to be conjugate under Inn(SL(%, C)) to the rings of
matrices LST(p +¢q,C) formed by the upper triangular
matrices of degree p +¢ and zero trace over C [Borel
subalgebras of LSL(p +q,C)].

We want to determine the maximal solvable R-subalge-
bras of L =LSU(p,q) under Inn(L), We use the faithful
representation space M =C%"9! of L over the extension
C of R that is formed by the (p +¢)-columns over C.

After a suitable Hermitian equivalence transformation
of I,® ~ I, to an Hermitian symmetric nonsingular matrix
D, the R-algebra N(S, L) is contained in the upper tri-
angular nilpotent algebra

DLT(p +4,C)
={yly=(yp)eCt* gy, =0if i> k}

so that we have

N(S,LYCS N(fy, « + + » f3C)

={Y=(Y,)& Y,e Crg Yy =0; s,
ifizk, i,k=1, 2,.

Sy fiy e

fotfateeo+fo=p+a}

such that the linear subspaces

.S

, f, are natural numbers satisfying

= (peg)x1
M‘=ZC Cfl.,?

ceaf g

1<jsp+g=(fi+te-r+fi)

(note that ¢ denotes the kth unit column) of the (p +¢)-
column space C**"* ogver C are characterized by the
property that

M, =N(S, LM, (0<i<s).
Hence

My=C*"" DM, D.«+DM =0,
Nor,(N(S,L)M,CM,,
Nor ,{N(S, L)) N N(R(Nor ,(N(S, L)), L).

Because of the nilpotency of N(f;, . .
maximal property of S it follows that

CN(S, L}= N(R(Nor;.(CS,CL)),CL)=N(fy, . . .

., f,;C) and the
, [ C),
xzij» X;,

where X, is a simple R-algebra for which
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csz{(xi,,)lx{,;of‘x,k if i#4 or k+j and
%, =element of DLC™™1 if i=k=j},
D=(D,), D,cC’ %,
Since
x'D +Dx=0

for x of X,, it follows that D, =0 if {# k and either f,>1
or f,>1.

Furthermore, because of the nonsingularity of D it
follows that the matrices D;; are nonsingular if f; >1.
Also, D, is Hermitian symmetric.

The matrix
Doz(Diklfizl& fk=1)

is also nonsingular, Hermitian symmetric and subject
to the condition

x3Dy + Dy %,=0
for x(,:(x,-klfi=fk=1& x=(x,5) € N(S,L)).

Since the complexification of the R-Lie-algebra
formed by all matrices x, is the full upper triangular
nilalgebra of the corresponding degree, it follows that
after a suitable transformation of S by an upper triangu-
lar matrix we shall have

[ 1]
1
Dy=
1
1
e =

In view of the fact that the complexification of N(S,L)
is N(f;, . . . , f,;C) and that x*D +Dx =0 for all x of
N(S, L), it follows that

(a) There are no two distinct indices j with £, >1,

(b) If f, >1, then the number of f;’s with i <j is equal
to the number of f;’s with ¢ >j.

Since it is our aim to establish a list of representa-
tives of certain classes of subalgebras of LSU(p,q)
conjugate under transformations by elements of SU(p,q)
it is permissible to transform the Lie algebra LSU(p,q)
itself by some nonsingular matrix.

Thus, in order to obtain all nonconjugate [under
SU(p,q)] maximal solvable subalgebras of the Lie alge-
bra LSU(p,q) with p = ¢ = 0 it is convenient to utilize the
q +1 distinct realizations of this algebra that are formed
by the matrices X of degree p +q over C satisfying

XD, +D,X=0, «=0,1, ...,q, (10)
where
‘ 0 0 0 1
I, 0 0 L, 0 0
Dy= 0 -1 , Dy = 0 0 =1, 0 ’
1 0 0 o
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0 0 0 H
0 L,0 O

De=lo o -1, 0 (11)
H O 0 0

and where I is the identity matrix of degree s and H, is
the v-dimensional matrix of the type

(note that the zeros in D, are in general square or rec-
tangular matrices with all elements equal to zero).

We then require that the matrices X satisfying (10)
leave the flag of the p +q subspaces }’,.; Cc,*"
(I<j<p+q), i.e.,

Crxt DZL?-I Cc’(lpw)xl DD Cci‘“q)xl >0, (12)

invariant.

In this manner we obtain the following ¢ +1 distinct
maximal solvable subalgebras S, of the Lie algebra
LSU(p,q) [and any other maximal solvable subalgebra
is conjugate to precisely one of these under SU(p,q)]:

1. §; is compact, has the R-dimension p +¢ -1 and
consists of the (p +¢)-dimensional diagonal matrices

298
So= . A;=real,
Z.A!Hq ’
>\1+7t2+"'+7\p~q:0: (13)
and D, is D,,.
We have
dimS,=p +g -1, Ny=p +g-1 (14)

(where N, is the number of compact elements in S,).

2. S, in the case when p=gq or p=g +1 is of special
interest since its complexification coincides with a
Borel subalgebra of LSL(p +¢,C). In this case we have
D, =H,.



1384 Patera, Winternitz, and Zassenhaus: The maximal solvable subgroups

For p =g we have

¥y +is;, 0 s O3 Uragay 0

. . *

0,7, tisy, 0y, Wy =0 241
S= 7, +is,, ia,

0 , -7 tis,

, * *

0 ~7g+iSg, — Uy y = Q)3

0 , -7, +is;, ~ah

o , 0 ,-7,+is;
with s, +8; ++++ +5,=0.
For p=g +1 we have
¥y FiSy, Oy 4 G Qqy lay
. . E 3
0 ,7ytis,, ay tay , =@ 13

.
°

7, T1S,, Uy g1y 14,
0

: *
b Zaq-d b _aq,q+l

4 0 , 0 ,-7,+tis,

. * x
-¥gtiSg, =@, 5 —Q 13
0 y —7p +iSg, ‘0‘*12

o , 0 , -7 t+is,

1384

(15a)

(15b)

with 2(s, +s, ++++ +s,) +a,,, =0 (here and below Latin i
letters correspond to real numbers and Greek ones to ia,. 0
complex numbers),

The dimensions of the maximal solvable algebra and Sz = ?
its compact (and Abelian) subalgebra in this case are 0 ia
Pprg -«
dimS, =3(p +q)(p +g +1) =1, Ny=p-1. (16)
3. S, for 0 <k<gq in the case when the complex exten-
sion of S, is not a Borel subalgebra of SL(p +¢,C) and Qg ka1 » ¢+ X1 pagex
S, not compact. The matrix D, has the general form, Sz=
given in (11). In this case we have Qy s+ + o 2 O pogee
Su 312 SIS
S.= 0 S, Sy 1m) QY prg-usls + » » s Xpigal » ihy
0 0 Sy Qg pagerels o« o5 102 s =@ e
Slsz ------------
with 'LbK 5 . y = a*z‘aw-x*l y = a*l prgxk+l
0y Q2 O
0 o, Q «
Su= .. .2? ..... ¢ . ’ I 0
Sps = _D;l Si.H,, D=
0 0- (e P9 0 - Iq-k
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Sye==H}ShH,, (SisH, +H,S;3=0)

with 2 Im(ay; + Qg+ + ) F@pq o0+, =0.
The dimensions of S, and their maximal compact sub-
algebras are
dimS, =2« +1)(p +¢ —k) -1, N,=p +g-k-1. (18)

In the following section we shall consider specific
examples in detail.

1. MAXIMAL SOLVABLE SUBGROUPS OF LOW
DIMENSIONAL PSEUDOUNITARY GROUPS

Let us now specify the results of the previous section
for the cases of greatest physical interest, when
p=zq=1, p +g<4. We shall make use of the results
summarized in Eqs. (10)—(18),

A. The group SU(1, 1)

We have two possible realizations, corresponding to

1 0 01
D°=(o —1) and Dlz(l 0>'

It is easy to see that Eq. (10) implies
ia o c b
Xo :(a* —ia) and X, _(id —c) ’

respectively, where Latin letters correspond to real
numbers and Greek letters to complex ones. The uni-
tary matrix Z transforming one realization into the
other

ZX, 2 =X, (19)

can be chosen to be

1 11
= (— 1 1)’
The flag determining the two different maximal
solvable subalgebras consists of the subspaces

(6) wna {c) - G}

Indeed the condition

X,(é):w(;); K=0, 1,

implies 8=0 or d =0, respectively (w is an arbitrary
complex number). Thus, we obtain two maximal solv-
able subalgebras

ia 0 c ib
S°=(o -ia) ’ Sl=(o - )

Clearly the subgroup generated by the one-parameter
subalgebra S, is the group of rotations 0(2). The two
parameter subalgebra S; generates the group of transla-
tions and dilatations of a straight line. The algebra S,
contains (consists of) one compact element, the algebra
S, contains none.

The usual physical notations correspond to the in-
variant form determined by D,. The generators are

denoted
01 0 ;0
K1=%(1 0>, K2=%<_Z. 0), L3=§<(; _i>. (20)
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The subalgebra S, then corresponds to L, S, to
{K,, L, +K,}

B. The group SU(2, 1)

Again we have only two possible realizations of the
invariant form, corresponding to

10 0 001
Dy={01 0)and D,=\01 0]},
00 -1 100

so that the general element of the algebra can be written
as

ia a B b-%ic & id
Xo=|=-a*ib ¥y or X,=| e ic -—6&* i
g* v* ~ila+b) ie —€* —b -3ig

(21)

respectively. The operator Z transforming X, into X,
as in (19) can be chosen in the form

1/Vv2 0 1/V2
Z= 0 1 0 . (22)
-1/V2 0 1/Vg
Introduce the three vectors
1 0 0
e,=l0], e={1], e;=0] (23)
0 0 1

We impose the condition X,e, = we, (the second flag con-
dition X, e,=w,e, +w,e, is satisfied automatically) and
find the maximal solvable subalgebras:

ia 0 0 _ [p-3ic & id
So={0 ib 0 and S;=| 0 ic -8* .24
0 0 —ila+b) 0 0 -p-3ic

The algebra S, contains two independent compact ele-
ments, S; has dimension five but contains only one com-
pact element obtained by putting 6=d=06=0. The five-
dimensional solvable algebra could of course also have
been obtained using the other realization of SU(2,1).

The invariance of the vector space determined by the
vector ¢, must then be replaced by the invariance of the
space Ze, =(1/vV2)(e, — e;). The maximal solvable sub-
algebra S, is then obtained in the form

¢ +ila +b/2)
$,=282= —a* ib -a* . (24)

ia o
c-ila+b/2) —a —ila+bd)
C. The group SU(3, 1)
The two possible realizations of the algebra of

SU(3,1) are given by the invariant forms corresponding
to

D,=

oo oW
OO O
O OO
OO O
o= OO0
o OO -
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The general element of the algebra can be written as

4
€

—B* ic 4

e* ¢* —ila+b+c)

d-ile+/2 u v ig
ie o ~-u*
—-o* if =¥
-p* =7*% ~d=~ile+f)/2

and the matrix, transforming one form into the other, is

1 0 01
Z—:-L 0v2 00
V2 0 0v3 O
-1 0 01
We introduce the vectors
1 0 0 0
0. — 0 o= 1 o 0 0
1 o’ %=\ o) %=\ 1) €4= 0
0 0 0 1

and impose the flag conditions
Xey=we, Xe,=we tuwe,
(X, 5 =w,e; +wse, +wse, follows automatically).

We obtain two maximal solvable algebras:

ia 0 0 0
5= 0 i 0 0 ,
0 0 ic 0
0 0 0 -ila+b+e),
(25)
d-ile+f)/2 u v ig
0 ie 0 —p*
Si={ o 0 if —v*
0 0 0 —-d-ile+)/2

The dimension and number of compact elements in these
cases is:

dimS,=3, N,=3,
and

dimS, =8, N, =2.

D. The group SU(2, 2)

For the group SU(2,2) we have three distinct possible
realizations, corresponding to

10 0 O 00 0 1
0100, 01 0 0
Do=\p 0 -1 o) P=lo0 -1 0
00 0 -1 10 0 0
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and

D,=

= O OO0
O = OO
OO O
OO

Using (10), we find that a general element of the SU(2, 2)
algebra is

ia By o
—-p* ib e t
Xo= y* e ¢ n ?

8% £* —q* —ila+b+c)

e~zilb+c) By ia
ib e - g*
X1= ¢ e* ic ‘)’* ’
id ~8* r* —e~%2i(b +c)
d .

p+ig B Y ia
) ¥ —iq b —-y*

1 e ic -¥~ig - p* ’ (26)
id  -€* —B3*  ~p+ig

respectively. The connection between these realizations
is

(o]

ZX,Z =X, and ZX,Z'=X,
with
1 001 1/y2 0 0 1/¥V3
_1 0 110 and 2 60 10 0
f‘ 0-110 - 0 01 0
-1 001 ~1/v2 0 0 1/4/2
Imposing the usual flag conditions
1 1 0 w;
0 0 1 w
X, ' ol X, 0 = wz >
0 0 0 0

we find that the three maximal solvable subalgebras are

a 0 0 0
ib 0 0
o 0 ic 0 ’
0 0 0 -ila+bd+c)
—3ib+c) B vy ia
0 zb 0 -~ B*
0 ic y* ’
0 0 —-e-3ilb+c)
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ptig B Y ia
s o
S,= 0 r—1iq tb v ) @7
0 0 -r—iq - p*
0 0 0 ~p +ig

The dimensions of interest are

dimS,=3, dimS;=8, dim$,=9,

N,=3, N, =2, N;=1.

Finally let us note that we could have obtained all three
maximal solvable subalgebras using one realization,
e.g., the one usually considered in physics, namely X,.
The flag conditions would, however, have to be applied
to three different flags, namely

Patera, Winternitz, and Zassenhaus: The maximal solvable subgroups
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COOR
O O R

o n e R

X X X
-X -X — X
and
x X x
- - -Xx

The general element of the corresponding maximal
| solvable algebra is respectively.

ia B d +ila +(b +¢)/2]

So=Ss Si= - F b 0 -F
P 0 ic yp*
d-ila+(®+c)/2] -B -y -ila+tb+c)

and
ia 8 v d+3i(2a +b +¢)
N - B* ib e+zilb-c) ~p*
TN e-%ilb—c) ic v

d-%i2a+b+c) -8 -y

IV. COMPLETE CLASSIFICATION OF ALL
CONTINUOUS SUBGROUPS OF SU(2, 1)

A. Discussion of the methods

The problem of classifying the general chains of sub-
groups (1) of a given Lie group G was discussed in
Sec. IIA, We have already found all maximal solvable
subgroups of SU(p,q) in Sec, IIC and made the results
more explicit for SU(1,1), SU(2,1), SU(3,1), and
SU2,2) in Sec. III.

It should be pointed out that it sometimes happens
that the continuous group generated by a linear Lie
algebra L over the real number field is not closed in
the standard topology. In that case its closure is a lin-
ear continuous group with a Lie algebra L containing L
as a proper ideal with an Abelian factors algebra. Such
cases will be pointed out below.

To continue further, we must examine the Lie algebra
L of G, and

(1) find all classes of solvable subalgebras (contained
in the already found maximal ones),

(2) find all classes of semisimple algebras,
(3) find all classes of subalgebras having a nontrivial

Levi decomposition (i.e., both a nontrivial semisimple
and solvable subalgebra).

For low-dimensional Lie groups we find it advanta-
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~ila+b+c)

I geous to approach the problem from two ends.

1, We first classify all one-dimensional subalgebras
/, and write down a representative A of each class
explicitly. [For the algebra LSU(p,q) this has been
performed, '] We then turn to two-dimensional subalge-
bras /,={A, B} and consider separately the case when
the derived algebra /; has dimension dim/};=0or 1.
We then let one of the generators, say A, run through
all classes of one-dimensional algebras, always writing
it in a specific simple form, leaving B as a general
element of L and requiring that A and B satisfy the
appropriate commutation relations. This allows us to
specify B and thus to obtain all classes of two-dimen-
sional subalgebras and specific representatives of each
class.

Three-dimensional subalgebras /,={A, B, C} can
then be studied, using our classification of one- and
two-dimensional subalgebras. Indeed, the derived alge-
bra / ; can have dimension 3, 2, 1, or 0. If dim/}=3,
then / ; is semisimple and easy to find; if dim/ =2,
then we can let /; run through all two-dimensional sub-
algebras that we have already classified and search
only for a third element, forming the subalgebra / ,.

If dim/;=1, we can similarly make use of our classifi-
cation of one-dimensional subalgebras. If dim/;=0,
then /[, is Abelian and easy to find. Thus we proceed
from k-dimensional subalgebras to (¢ +1)-dimensional
ones, always making use of the already existing classi-
fication of lower dimensional subalgebras.



1388

2. The second approach is opposite in spirit to the
first one, in that we start from the highest dimensional
subalgebras and proceed to the lower ones. We proceed
by searching for all elements of L that satisfy certain
additional conditions (making sure that these conditions
are group properties). Thus we may require that a cer-
tain flag is invariant, that a certain vector subspace is
invariant, that a certain vector space is annihilated,
that a real vector remains real or is given a specific
phase, etc. Imposing successively stronger and strong-
er conditions, we obtain lower dimensional subalgebras.

As an illustration we consider subalgebras of SU(1,1)
when both procedures are essentially trivial and then
proceed to SU(2,1) (this last algebra has been treated
previously, ' using less general techniques and some
subalgebras were unfortunately omitted, in particular
the maximal solvable subalgebra S,).

B. Subgroups of SU(1, 1)

Let us first start from the one-dimensional subalge-
bras. We denote the generators of Lorentz transforma-
tions (boosts), along space axis 1 and 2, K; and K, and
the generator of rotations L, [we use the local isomor-
phism between SU(1,1) and 0(2,1)]. The relations are

[Kn KzJ= -L [KZ;Ls]:Kn [L3;K1]=Kz
and the generators can be represented as in (20).

It has been shown earlier®® that there are three dis-
tinct classes of one-dimensional subalgebras, repre-
sented, e.g., by

L, K,, and L, -K,. (28)
The two-dimensional subalgebras {4, B}
[A,B]=0 or [A,B]=A. (29)

Putting A equal to L, or K,, we find that no operator
B can be found in the algebra to satisfy either of Eqgs.
(29). However, putting

i i ia «
A:LS'K‘Z%(-i —i>’ Bz(a*—ia)’

we find that for ¢ =0, a =% we have a two-dimensional
subalgebra

{Ly-K,,K,} satisfying [L,-K,,K,]=L,=-K;

of the type [A, B]=A. It has been shown® that an algebra
of this type has no invariants [no nonconstant polynomial
P(A, B) exists, commuting with both 4 and B].

The alternative procedure, starting from the highest
dimensional algebras and imposing successive restric-
tions, is equally simple in this case. Indeed, the one-
parameter subalgebra L, is obtained by requiring that
a general element X, of the algebra leaves the vector
space (}) invariant. The two-parameter maximal solv-
able subalgebra {L3 -K,,K,}is obtained by requiring
that, e.g., the vector (_}) is invariant. If we add the
condition that X, annihilates the vector () we obtain the
subalgebra L, - K, and if we require that X leaves (})
invariant, in addition to (_}), we obtain the subalgebra
K,.

The results are summarized in Table I.

J. Math. Phys., Vol. 15, No. 8, August 1974
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C. Subgroups of SU(2,1)

We shall obtain the subalgebras of dimension dim/ = 3
by imposing restrictions on general elements of SU(2,1).
Those with dim/ =2 will be obtained starting from the
one-dimensional ones, classified earlier.? We find it
convenient to use the three-dimensional defining repre-
sentation of SU(2,1) in the form X, of Eq. (21). With
apologies to mathematicians, who use different notations
and to physicists, who use still different ones, we intro-
duce a basis of the algebra in the form

i 00 0 1 0 0 0
A=[0 -2 0} B=|-1 O0-1) C=[¢: 0 ¢},
0 04 0-1 0 0 -2 0
10 ¢ 001 i 0 0
D=l 00 0| E={0 0 0], F=(0 0 O},
—i 0 -4 1 0 0 0 -i
0 1 0 0 ¢ O
G=|-1 0 0] H=i 0 0|, (30)
0 0 O O 0 0O
so that a general element is
a+d +f) b+g+ilc+h) e+id
=|-b-g+ilc +1) -2ia -b+ic .
e-id -b-ic la~d=f) (31)

We make use of the vectors e,, e,, and e; introduced in
Eq. (23) [note that e, and e, can be transformed into
each other by an SU{2,1) transformation, whereas e,
cannot be thus transformed].

Let us first obtain all maximal subalgebras. The
requirement that the space e, — e, be invariant, i.e.,
X(e, - e;) = ale, —e;) with @ complex, leads to the condi-
tions f=g=h =0 and we obtain the maximal solvable
subalgebra S, of Eq. (24’)

{A,B,C,D,E}:S]_, (32)

satisfying the commutation relations

[A,B]=3C, [4,C]=-3B, [A,D]=0, [A,E]=0,

[B,C|=2D, [B,D]=0, (B,El=B, (33)
[C,D]:O, [C,E]:c) [D:EJZZD-
TABLE 1. Subalgebras of LSU(1, 1).
Class No. of Generators Algebra Invari- Group
ele- ants of
ments algebra

1 1 Ly L, 0(2) (a rota-
tion)

2 1 K, K, 0(1,1) (a pure
Lorentz trans-
formation)

3 1 Ly—K,4 L;~K; E(Q1) (a trans~
lation)

4 2 A=Ls;~K,, [A,B]l=4A — Translations

B=K, and dilatations

of a straight
line
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The requirement Xe, = ae, similarly leads to the
algebra

{4,D,E, F}~LS[U(1) x U(1,1)], (34)
satisfying

[A,D]Z[A,E]=[A’F]=0’
(35)
[F-D,E|=-2F, [E,F|=2(F-D), [F,F-D|=2E.

The condition Xe;= ae; leads to the subalgebra
{A,F, G,H}~LS[U(2)x U(1)] (36)
with the commutation relations
[y, T]=[Y,Gl=[Y,H]=0,

[1,G]=2H, [G,H}=2T, [H,T]=26G, (37)

where T=3%(A + F) and Y=%(-A +3F),

If we require that the operator X leaves a real vector
real, i.e., Xf=f', where f=x,¢; and f'=x’e, with x,, x]
real, then we obtain the algebra

{B,E,G}~L0(2,1), (38)
satisfying
[x,E]=-¢, [E,G]=X, [G,X]|=E (39)

with X=-B +G.

This completes the list of all maximal subalgebras of
LSU(2,1)—a five-dimensional solvable algebra (32), two
four -dimensional ones (34) and (36), and one three-
dimensional simple algebra (38).

Let us now find all four- and three-dimensional sub-
algebras of the above maximal subalgebras. We start
from the maximal solvable subalgebra S,, so that the
element X already satisfies S(e, — e;) = a(e, ~e;). Let us
add additional requirements. If we require |o|?=1,
e.g., X(e, ~ey)=iet®(e, - e;), we obtain the restriction
a®+e*=1, i.e., we obtain a one-parameter class of
four-dimensional algebras

{B,C,D,R=cos¢pA +singE; 0< ¢ <}, (40)
satisfying
(B,Cl=2D, [B,D]=0, [C,D]=0, (41)

[B,R]=3cos¢C +sinpB, [C,R]=3cos¢B +sindC,
[D,R]=2sin¢D.

Demanding that X annihilates the space (e, —¢;), i.e.,
X(e, —e;) =0, we obtain the three-parameter nilpotent
algebra

{B,C, D}, (42)
satisfying
[B,c}=2p, [B,D]=0, [C,D]=0. (43)

Let us now require that, in addition to conserving the
e, — ez space, X should act in a definite manner on the
vector e,.

Thus, the requirement Xe,=@e,, a complex, implies
b=c¢=0, i.e., gives the algebra

{4,D,E}, (44)
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satisfying
[A,D]=0, [A,E]=0, [D,E]=2D. (45)

The condition that X projects the space e, onto e; —¢e,,
i.e., Xe,=oale, —e;), o complex, again leads to the al-
gebra (40) (with ¢ = 7/2); however, the condition |al?
=1, e.g., Xe,=e'*(e, —e,) yields a new algebra, gener-
ated by D, E, and Y=cos¢B +sin¢C, 0< ¢ <7. This
algebra can be simplified by an SU(2,1) transformation
so that UDU' =D, UEU'=E, UYU™ =B. Indeed, it is
sufficient to put

exp[-ip+m/3 0 0
expli2(¢ +m)/3 0
exp[— (¢ +7)/3

v=| ©
0 0

Thus we obtain the subalgebra

{B,D,E}, (46)
satisfying
(B,D]=0, [B,E]=B, [D,E]=2D. (47)

Further restrictions on elements of the maximal
solvable algebra S, lead to two- and one-dimensional
subalgebras, which we shall consider below. The semi-
simple subalgebras (34) and (36) do, however, contain
further three-dimensional subalgebras.

Indeed, an element X< LS[U(1)xU(1,1)] of (34) by
necessity satisfies Xe, = —2iae,. If we add the require-
ment Xe,=0, i.e., a=0, we obtain the subalgebra

{D,E, F} ~LSU(1,1). (48)

If we impose X(e, —e,) = ale, — e;), in addition to Xe,
=2iae,, we obtain the intersection of S, with LS[U(1)
xU(1,1)], which is again the algebra {A,D, E} of (44).
Further restrictions lead to lower dimensional
subalgebras.,

An element X e LS[U(2) x U(1)] of (36) satisfies Xe,
=ila —f)e,. The condition Xe, =0, i.e., a=f gives the
algebra

{A+F, G,H}~LSU(2). (49)

Thus, we have so far found that SU(2,1) has one five-
dimensional solvable subalgebra, one continuous family
of solvable four-dimensional ones, two further four-

dimensional subalgebras, and six three-dimensional
subalgebras.

Let us now simply list the classes of one-dimensional
subalgebras found previously. '®:22 Changing the notations
of Ref. 22 slightly, we can list the following classes of
one-dimensional subalgebras:

A continuous family of compact algebras
cos¢pA +sinp F, 0< ¢ <, (50)
all corresponding to U(1) groups.
A continuous family of noncompact algebras
cos¢A +sinpE, 0<¢ <7, (51)
corresponding to O(1, 1) groups.

Four individual mutually nonequivalent noncompact
algebras represented by
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B, D, A+D, and A -D, (52)—(55)

Finally, let us obtain all classes of two-dimensional
subalgebras of LSU(2,1). The basis elements of the al-
gebra {X, ¥} can be chosen to satisfy either [X, ¥]=0 or
[X, Y]=X. We can always choose X in one of the stan-
dard forms (50)—(55), leave Y general and find all ¥
satisfying one of the above commutation relations, In
this manner we obtain a number of two-dimensional
algebras, some of which can be further simplified by an
SU(2,1) transformation, leaving X invariant and sim-
plifying Y. We drop all details and simply list the four
Abelian and two solvable nonabelian algebras obtained.

Taking X in the form (50), we obtain one algebra for
any 0< ¢ <m, namely,

{4, F} with [A,F]=0 (56)
and two nonequivalent algebras for ¢ =0 only:

{A,E} with [A,E]=0 (57)
and

{4,D} with [A4,D]=0, (58)

The choice of X in the form (51) yields no new two-

TABLE H. Continuous subgroup structure of SU(2, 1).
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dimensional subalgebra, X=B yields two new subalge-
bras, namely

{B,D} with [B,D]=0 (59)
and
{B,E} with [B,E]=-B. (60)

The choice X =D yields one continuous class of alge-
bras, namely,

{D,%[cot(¢4 +E)]} with [D,%[cot(¢A +E)]]=D, 0<¢ <.

(61)

Finally, the choices X=A +D or X=A - D yield no new
subalgebras.

Thus, we have obtained a complete classification of
all subalgebras of the algebra of SU(2,1), each of them
corresponding to a Lie subgroup of SU(2,1) itself. The
results of this section are summarized in Table II,
showing all the subalgebras and all mutual inclusions
amongst them. All subgroup chains of the type (1) for
SU(2,1) can be directly read off from this diagram.

Let us remark here that the connected closed sub-

Dimension
of Algebra

8

S
5 A.B,C DE
solvable

SuU(21)

B,C.D.X = cos¢A+sindE

s [UO)xu,)]

s [U(2)xu(n)]

4 OL¢<t A.D,EF A FGH

solvable

I
é=0 ‘-?

éi0 l

3 B.C.D B,D.E A.DE su(i) Su(2) O(2,1)
nilpotent solvable solvable D.E.F A+F, GH B,E.G
L] " ) [ simple simple simple
r T2 T X - ‘(

3 3 ‘;7 l L

2 B.D A.D D.X's} (cot ¢ A+E) A.E uQxul) B.E sl
1 [B,D]:O [A,D] O<pen ‘=‘g' A El=0 AF £ 8l=B
b,x]=- D [a.€] [A.Fl=0 (e 8]
I L l L___J_A_l ‘;%
20| ¢=0 *=L b0 [———‘
¥ ¥ + ¥ 4
1 E0) A+D A-D O(2) ' o) E()
D cosdA+sing F X=%(co?¢ A+E) B
0L é<n 0 é<T
? +
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group structure of SU(2,1) is identical with the one
given on Table II, except that the subalgebra O(2) in the
last row generates a nonclosed group whenever tan¢ is
irrational. Its closure in this case is obviously the two-
parameter compact group U(1) xU(1) generated by A
and F,

D. Invariants of the subalgebras of SU(2,1)

We are mainly interested in subalgebras that have
invariants (Casimir operators), i.e., subalgebras, the
enveloping algebras of which have nontrivial centers.
Let us find the invariants of all the subalgebras of
LSU(2,1)

One-dimensional subalgebras

A one-dimensional algebra {X} always has an inva-
riant, namely X itself,

In order to find the invariants of the two- and higher-
dimensional algebras, we shall make use of the adjoint
representation of the corresponding algebra and consid-
er functions f(x;, %5, ..., %,), when # is the dimension of
the algebra. We construct the generators of the algebra
as differential operators and require that they all anni-
hilate the function f(x,, ..., x,) [so that f{x,,...,x,) is
invariant under the transformations of the adjoint rep-~
resentation of the group]. Each such invariant that can
be expressed as a homogeneous polynomial in x,,...,x,
corresponds to an invariant of the algebra.

Two-dimensional subalgebras

(a) If {X, ¥} is Abelian, then both X and Y are obvious-
ly invariants. Thus both generators of the following
algebras are invariants of the algebras:

{B,D}, {4,D}, {A,E}, {4,F}.
(b) If (X, Y]=X, then we write the generators as

ad d
X=x By’ Y=- x-a7
and let X and Y act on the space of functions f{(x,y). The
conditions

Xf(x,y)=0 and YAx,y)=0

clearly imply f(x,y) = const, so that the algebra {X, Y}
has no invariant (this agrees with a general theorem on
the absence of invariants for certain solvable Lie alge-
bras, proven earlier®).

Three-dimensional subalgebras

The invariants of the simple three-dimensional sub-~
algebras of LSU(2,1) are obvious, namely,

LSUQ2)~{A +F, G,H}, I,=A +FP +G?+H, (62)
LSU(1,1)~{D,E, F} I,=(D-Ff +E?~F?, (63)
Lo(2,1)~{B,E, G}, I,=(B-G)Y +E* -G, (64)
Now let us consider the solvable subalgebras.
Consider algebra (42), put
B=2a2, ¢c=-24-2, p=0
T2 FT T VT (65)
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and operate on the functions f(b, ¢,d). The condition
Bf=Cf=Df=0 implies
f(b’ Cy b) :f(d)'

Thus we find that only a function of 4 is an invariant,
hence the only operators that commute with B, C, and
D are polynomials in D and we find that the only inde-
pendent invariant is the obvious one:

{B,C,D}, Ivariant=D. (66)
The algebra (44) can be represented by

2 ?
A=0, D=2d5-, E=-2d55-

The requirement Af=DF=EF=0 implies fla,d, ¢)=f(a)
and hence we again have only one independent invariant

{A,D, E}, Invariant: A, (67)
Finally, the algebra (46) is represented by

8 0 0 4

e ge’ E=—byp =2y

This time BAb,d, e¢)=0 implies f(b,d, e) =fb,d), Df=0
is automatically satisfied, and

B=b—, D=2d

i a
B, d)= -0 ~2d =
implies
of s8f  dld) 24 _ 2
/3" -~ so that d =const 5%,

Hence the invariants are arbitrary functions of one

“variable fld/b%). Since no function of d/b® can be written

as a polynomial in b, d, and e the algebra {B, D, E} has
no invariant (D/B? is not an operator in the enveloping
algebra).

Four-dimensional subalgebras

The invariants of the algebras (34) and (36) are again
obvious, namely

LS[UQ)xU(1)]~{A, F,G,H}, I,=%A+FF+G*+H?,

I,=-A+3F, (68)

LSlu()xu(1,1)}~{A,D,E, F}, I,=(D-F)?+E?-F®,
I=A. (69)

Consider now the solvable subalgebra (40). The
generators can be represented as
B:Zdi +(-3cosdc +sin¢>b)i ’
ac or
C——Zd—a- +{(3cos¢p b +sing )i
T o’

. 0
D_251n¢>dar ’

R=(3cos¢c —sing b)é% —(3cos¢b +sing c)a—ac-

. 5}
—2s1n¢dad .
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The requirement DAb, ¢,d,7)=0 implies f=f(b, c,d) or
¢=0. For ¢#0 the condition Bf=0 then gives f=f(b,d)
and Cf=0 implies f=f(d). Finally Rf=0 implies that
{B,C,D,R} for ¢ #0 has no invariant.

Consider now the special case of (40) for ¢ =0 when
the algebra is represented as

0 5 ad d
B—Zda—c'—3caa ) C=—2dﬁ' +3b%‘, D=0,
0 0
A—3cab —3b‘a?

We have Df(a,b,c,d)=0, hence D is an invariant.

The condition
$ar=cd b=

implies
Aa,b,c,d)=Ra,b® +c?,d).
Further, Bf=0 and Cf=0 lead to the same condition

U g g e prec?
405 -3 =0, x=p+c.

This equation can be immediately solved and we find
that f is an arbitrary function of two variables

fld, 3(b® +c?) +4ad). An arbitrary polynomial in the
operators D and 3(B? +C?) +4AD will hence commute
with A, B, C, and D, and we find that the algebra for
¢ =0 has two independent invariants:

{A,B,0,D}, I,=D

I,=3(B% +C?) +4AD. (70)

Let us- note that the algebra {A,B,C,D} is of some
interest in physics since after complexification it can
be identified with the “harmonic oscillator algebra,”?
i.e., the algebra of a boson creation a* and annihilation
operator a, the number-of-particles operator a*a, and
the identity operator I. Indeed, we have

[a+)a]=_1’ [N’a*]:a*’ [N’a]:_a’
[a*: IJ=[a’1]=[N’IJ:0’
so that we can identify
I=4iD, a=B-iC, a*=B+iC, N=iA/3.

Five-dimensional subalgebra

Let us finally show that the maximal solvable algebra
S, itself has no invariant. Indeed, the commutation
relations (3.3) are satisfied by the operators

? 5 2
—3c _3pL —2q-2,
A=3ca=-3b3 D=242
2 2 2 I 2
B—Ca_+2da_ bigr E=-bgy-cz -5
c=3p2> 222 +¢ a
- aa ab

The condition DAa, b, c,d, e)=0 implies f=fla, b, c,d);
Af=0 gives

oy
€3 ac 7’
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i.e., f=fla,b* +c?d). Condition Ef=0 gives

Y G
x5y +d 3d =0,
implying that f=f(a, (b + c*)/d). Finally Bf=0 and Cf=0
give the equation

Y, B
38a+48y_’ T d

x=b*+c?,

Solving this equation, we find that in order to be invari-
ant under the regular representation f must depend on
one variable only, namely

3(b +c?) +4 ad)

r=f ( 4d .

Since [3(B? +C?) +4AD]/4D is not an operator in the
enveloping algebra, we find that S; has no invariant.

Some results of this section are summarized in Table
IIT, where we list all nonconjugate chains of subgroups
of SU(2,1), including only groups the algebras of which
satisfy the conditions:

TABLE III. Chains of SU(2,1) subgroups with invariants
providing state labels.

1. SU(2,1)  |S[U(2) xU(1)] [ stu(1) xv()]
{4,F,G H} ! {— (A+3F)/2,A+F}
L=3A+F) 2+ G2+ H? Li=A+F
I,=~(A+3F)/2
2a. SU(2,1) |S[U(1) xU(1,1)] S[u(y xu(1)}
{A,D,E F} . {4,F}
I,=(D-F)?+E?- F? L—-F
I,= A
slu(ny xo(1,1)]
b. {4,E}
I;=E
S[U(1) xE(1)]
c. 14,0}
L=D
3a. SU(2,1} {0(2,1) 0(2)
{B,E,G} {e}
I,=(B;—G)?+E?-G? I,=G
0(1,1)
b. {E}
L=E
E(2)
c. {8}
I,=B
4a. SU(2,1) |Harm. oscillator group E(1)
{A,B,C,D} {B}
I,=D I;=B
I,=3(B%+C} +4AD K
{4,D}
b. =4
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{(a) They have at least one invariant.

{(b) That invariant is not simultaneously an invariant
of a larger algebra in the same chains of subalgebras.
We also list the corresponding invariants.

Several comments are in order here.

(i) Besides the seven obvious chains of subgroups
1, 2a—c, 3a—c, leading through a maximal semisimple
subgroup, we obtain two less obvious ones 4a, b, lead-
ing through the solvable group generated by {A,B, C,D}.

(ii) Each of the subgroup chains, except those involv-
ing 0(2,1), provides a complete set of commuting
operators. Thus, the common eigenfunctions of each
of these sets will provide a nondegenerate system of
basis functions for the representations of SU(2,1). If
we wish to use the 0(2,1) chain, then one operator is
missing and states labeled by the same eigenvalues of
the invariants 7, and I, (in Table III) may occur more
than once in a given representation of SU(2,1). It follows
that we have a “missing label problem,” which can,
however, be resolved, e.g., by constructing a further
operator, commuting with the invariants I, and I,, but
not related to any subgroup. The analogous missing
label problem for the SU(3) D 0(3) D 0(2) reduction has
been resolved in this manner, %¢

V. CONCLUSIONS

The main content of this paper is a theorem, formu-
lated and proven in Sec. II B, which provides a method
for determining all maximal solvable subalgebras of any
semisimple Lie algebra over a zero characteristic
field F. The method was then applied in Sec. IIC to
explicitly construct all ¢ +1 maximal solvable subalge-
bras of LSU(p,q). In Sec. III we have presented very
explicitly the maximal solvable subalgebras of LSU(p,q)
for 4=2p +¢q=0, p=g=>0. Finally, in Sec. IV we have
classified all subalgebras of LSU(2,1), constructed the
invariants for all subalgebras that have invariants and
proved that the other subalgebras have no invariants.

A continuation of this study classifying all continuous
subgroups of the conformal group SU(2,2) will be
published separately.
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Generating functionals determining representations of a
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Representations will be given for the nonrelativistic local current algebra consisting of p(x), the
particle number density, and J(x), the flux density of particles. These representations correspond to
the N/V limit of (i) a free Bose gas, (ii) Bose gas in an external potential, (iii) free Fermi gas, and
(iv) Bose gas (in one dimension) with a two-body interaction potential V(x)=2/x2 In each case the
generating functional L (f), the ground state expectation value of exp[i p(f)], determining the
representation will be given. It will also be shown the generating functional satisfies a functional
equation of the form [\7—iZf(®))(1/1)[8/8fX)IL (f) =Ax, (1/i¥8/8f)L (f) and that the
Hamiltonian written in terms of p and J has the form H = (1/8)fdxR(x)t [1/p(x)1K(x) with

K®)=vp(x) +2i J(x)—A(x,p).

1. INTRODUCTION

Several physicists!™ have suggested formulating
field theory in terms of local currents instead of the
canonical field operators. As an aid in understanding
this approach we will study in this paper the nonrela-
tivistic local current algebra consisting of p(x), the
particle number density, and J(x), the flux density of
particles. [Only the smeared fields, p(f)= [o(x)f(x)dx
and J(g) = [ J(x) » g(x) dx, where f(x) and g(x) are test
functions, are to be considered as operators. ] Repre-
sentations of this algebra can be determined from the
generating functional L(f, g), the ground state expecta-
tion value of explip(f)]expliJ(g)].®" We will study rep-
resentations corresponding to the N/V limit. These
representations are obtained by considering the repre-
sentation corresponding to an interacting system of N
particles in a box of volume V, then taking the limit (of
the generating functional which defines the representa-
tion) as N~ and V- in such a way that N/V—~7, the
average particle density.

In the previous paper® it was shown that L(f, g) can
be expressed in terms of correlation functions and that
the Hamiltonian (considered as a Hermitian form) can
be expressed in terms of p(x) and J(x). In this paper we
will provide several illustrations of these results. All
of the examples considered are systems for which the
N-particle ground state wavefunction is known. Our
procedure will consist of calculating all the correlation
functions for the N-particle systems and then using
these to determine L(f, g) in the N/V limit. For many
purposes it is sufficient to know L(f)=L(f,0). For each
example, L(f) is shown to satisfy a functional equation
of the form
. 1 9
(V-ivfix)] 7 @
This leads to the following expression for the Hamil-
tonian in terms of p(x) and J(x): H=73 [dxK(x)'[1/
p(x)]K(x), where K(x) = Vp(x) + 2:J(x) - A(x, p).

L(f)=A (x, ;%) L(f).

Hopefully, after becoming familiar with this approach
we will be able to write the Hamiltonian in terms of p(x)
and J(x) for any interacting system of particles. This
leads directly to a functional equation for L(f). By solv-
ing this equation we could determine representations in
the N/V limit for cases when it is not possible to find
the N-particle ground state wavefunction.
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In Sec. 2 the p,J algebra will be defined. The N-par-
ticle representations will be reviewed along with the re-
sults on the N/V limit from the previous paper.

In the subsequent sections, L(f), the functional equa-
tion for L(f), and an expression for the Hamiltonian in
terms of p(x) and J(x) will be derived for each of the
following examples:

(i) free Bose gas (Sec. 3),
(ii) Bose gas in an external potential (Sec. 4),
(iii) free Fermi gas (Sec. 5),

(iv) Bose gas (in one dimension) with a two-body
interaction potential V(x)=2/x% (Sec. 6).

The last example is the most interesting since a rep-
resentation of the p,J algebra corresponding to an in-
teracting system is given.

2. SUMMARY OF RESULTS ON REPRESENTATIONS
OF THE p,J ALGEBRA

The p,dJ algebra is defined by the following commu-
tation relations among the smeared fields:

[P(f1), P(fz)]= 0,
lo(f), J(@)]=ip(g- V1),
[J(gy), J(g) ] =1id(gs* V&1 — 81 V).

In computing the N/V limit representation we will
use the correspondence between N-particle represen-
tations and quantum mechanics. An N-particle represen-
tation? is defined on the Hilbert space:

(2.1)

Y= { L3 R") = symmetric functions for bosons

L3R") = antisymmetric functions for (spinless)
fermions.

In either case

p(f) = il A%,

N
J(g) =—3i 25 [28(%,) * Vo H (V- @) (x,)].

m=

-

It will be useful to introduce the quantity, K(g)=~p(V-g)
+ 2iJ(g). In the N-particle representation.

Copyright © 1974 American Institute of Physics 1394



1395 Ralph Menikoff: Generating functionals

N
K(g)=2 i g(x,) v, or K(x)=2 El (X = Xp) Vi
m=1 ma

(2.3)

Once the N-particle ground state wavefunction,
Qy(x4 *+*Xy), is given, the generating functionals are
determined by

Ly(f)=(8y, explip(f)] Q)
=fdx1' f dxy (% * + * Xy)

X explif(x))] + - explif(xy) ] Qu (% * + « Xy) (2. 4a)
and

Ly(f, 8) = (S, explip(f)] explid(g)Sy)
= [dxy+e+ [ dxy Qf(x,o00 x,)
x 11 {explifix, )] explij(x,, &)} (x, -+ 50),
(2. 4b)

where j(x, g) = — 51[2g(x) » V+ (V- g)(x)].

Remark: In Ref. 7 it was shown that explitj(x, g) J¢(x)
= (g% Ndet[2,¢%(x),]}* /% where ¢¥x) is the flow cor-
responding to the vector field g defined by, (3/9¢)¢@%(x)
=g o ¢¥(x) and @§(x)=x.

In order to take the N/V limit, it will be convenient to
express the generating functional in terms of correlation
functions. The nth correlation function for an N-particle
representation is defined by

RV(yys e Yai% v e X,)
=[N1/(N=m)1] [ dZpey =+ [ dzy
X QUYL " Viy Zroy » =~ B3 Uy (Xy * * 2 Xy Zag ©° * Zy)
(2.5a)
Let
BRI %+ o) = RO Ky + X3 Xy 0 X,). (2. 5b)

In the preceding paper® it was shown that
LS|

Ly(f)=2— fdx1 f A%, F(%y) + +  FX )R (% -+ + X,),
n=0 7. v v

(2. 6a)
where F(x) = explif(x)]- 1, and

¥y
Ly(f, @) =2 — dxl/dY1"'fdxn /dYn
n=0 1. v v v v

X I 6(%,, ~ y,) {expliftx,) ] explij(x,, @)1 1}

xR:lN)(yl,,.y";xl...x"). (Z.Gb)

Furthermore, if R¥(x,++x,) ~ R, (X, --X,) in the N/V
limit and |R¥(x, ---x,) | <c™"/2, where c¢=const, then
in the N/V limit

Ly(f)=L(f)
=§)(1/n!) f_:dxl-..f_:dx,,F(xl) se s F(X)R (X, °°X,).
(2.7
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In addition to determining representations in the N/V

'limit we will be interested in expressing the Hamiltonian

in terms of p and J. We will use the following results
from the preceding paper®:

There is an operator of the form
K(®) =K(x) - A(x, p)

such thaf I~((x) annihilates the ground state §; i.e.,
K(x)Q2=0. The Hamiltonian (for time reversal invariant
systems of spinless particles) can be written as

1 ~ 1 5
H:g/de(x)TH;)‘K(X).

Furthermore, the generating functional satisfies the

(2.8)

(2.9

-functional equation

1 & 196

[v -0 6?'@“”“("’ 7-5;)L(f). 2.10)

After determining L(f) in the N/V limit, we will find
an A(x, p) such that Eq. (2.10) is satisfied. This im-
plies (£, explip(f)1K(x)2) =0, where K(x)=K(x) - A(x, p).
For physical reasons (explained in the previous paper),
Span{explip(f) ]9} is dense in a representation corre-
sponding to a system of spinless particles. It therefore
follows that K(x)$¢=0. Then the results of the previous
paper allow us to conclude H is given by Eq. (2.9).

Finally, we will show that the various N/V limit
representations we determine are unitarily inequivalent.
This is a consequence of translational invariance and
the cluster decomposition property. A representation
satisfies translational invariance and the cluster de-
composition property if

1imL(f+ hyed =L(f)L(R), where I, (X)=h(x~ 2a).
(2.11)

In the previous paper it was shown that two representa-
tions satisfying translational invariance and the cluster
decomposition property are unitarily equivalent iff their
generating functionals are equal.

3. FIRST EXAMPLE: THE INFINITE FREE BOSE GAS

The free Bose gas is the first example we will con-
sider since it is the simplest case in which to illustrate
the procedure we will be using. The representation cor-
responding to the free Bose gas was first given by
Goldin and Sharp® and treated in great detail in Ref. 9.
There it was shown that: (i) L(f)= explp [ (explif(x)]
= 1) dx], (i) (V-ivA(1/)[8/8 (X ]L(f) =0, and (iii)
H=73 [dxKx)T1/p(x) ]K(x). The Hamiltonian was origin-
ally motivated by formal manipulations when p and J are
written in terms of the canonical fields.! The 1/p(x)

term appearing in the Hamiltonian has been given a

rigorous meaning in Refs. 8 and 9. In addition to giving
an alternative derivation for L(f), we will show the
Hamiltonian follows from the N/V limit of the Hamilton-
ian for N free bosons in a box of volume V.

We begin by calculating the correlation functions for
N free bosons in a box of volume V. The Hamiltonian
for N particles is given by

N
HN=-%21vﬁ. (3.1
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The ground state wavefunction is Q,(x,+-- x,)=V-#/2,
The correlation functions can easily be computed from
Eq. (2.5b). The result is R¥)(x,*++ x,)=N!/(N =n)! V",
In the N/V limit, R¥’ ~R,=p". Equation (2.7) then
gives the generating functional in the N/V limit,

0

L(f)zni.jl %fdxlooo/ dan(xl) "'F(xn)b'",

where F(x) = exp[if(x)] -

= explp [ dx(explifix)]- 1)]. (3.2

Remark: P is the average density. It may also be
thought of as the ground state expectation value of p(x);
p=(82p(x)R). This expectation value is a constant for an
infinite volume by translational invariance.

Since for N particles we have the ground state ex-
pressed as a wavefunction, it is easy to find the opera-
tor K(%) needed to obtain the Hamiltonian in terms of p
and J. Using Eq. (2.3b), we find K(x)$2y =0. Thus the
Hamiltonian given by Eq. (2.9) becomes

1 1
Hy=< [ dxK'(x) —=K(x). 3.3
This suggests in the N/V limit the Hamiltonian is given
by

- 1
H== j:w de'(x)E(?)K(x).

To verify this, we must show K(x)Q2=0 (in the N/V
limit). As explained in Sec. 2, it is sufficient to prove
Eq. (2.10) is satisfied. In this case Eq. (2.10) reduces
to

(3.4

(V—lVf) L(f)= (3.5)

Gf(x

By using L(f) given in Eq. (3. 2) it is easy to check that
Eq. (3.5) is true. Thus we can conclude the Hamilton-
ian for a free Bose gas in the N/V limit is given by

Eq. (3.4).

By similar means L(f, g) can be calculated. The re-
sult is

L(f, 8) = exp(p [ dx{explif(x)][detd %(x),]' /2~ 1}),
(3.6)
where ¢* is the flow corresponding to the vector field g.

Furthermore, it can shown L(f) satisfies transla-
tional invariance and the cluster decomposition property
[Eq. (2.11)]. As a result, representations of the free
Bose gas corresponding to different densities are
unitarily inequivalent.

Finally, we mention some additional properties that
can be proved for the free Bose gas representations
(with given average density P):

(i) The exponentiated currents, explip(f)] and
expliJ(g)], are irreducible.?

(ii) The translation operators are in the closure of
the exponentiated current algebra.®

(iii) Span{explip(f)€} is dense.®
Other representations can be obtained by taking the

J. Math. Phys., Vol. 15, No. 8, August 1974
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direct sum of representations with different densities.

‘4. SECOND EXAMPLE: INFINITE BOSE GAS IN AN
EXTERNAL POTENTIAL

The generating functional for a Bose Gas in an ex-
ternal potential #(x) can be calculated in a similar man-
ner to that of a free Bose gas. The Hamiltonian for N
particles in a box of volume V is given by

N
Hy :Q [~ 3VE+uy(x,) - E,], (4.1

where E, = the ground state energy per particle. Let
wy(X) = the single-particle ground state wavefunction
defined by

[ 2V2 + uy(%) Jooy (%) = By (%) (4.2)
with normalization [, dxwy(X)%/V=1. The ground state
wavefunction for the N-particle system is then

QN_ H V1 %y(x,) (4.3)

Remark: (1) The Hamiltonian has been defined such

that HySy =0. (2) There are several subtle details in
connection with the N/V limit which we will not discuss
since we are mainly interested in the form of the
representation and the Hamiltonian. However, it is well
to be aware of these points. First, there is the bound-
ary conditions at the edge of the box. Normally the
wavefunction is required either to be periodic or to
vanish at the edges. The boundary conditions are needed
to fully specify the Hamiltonian for the system of in-
terest. Different choices of boundary conditions may
give different results in the N/V limit. Second, there is
the question of how to restrict the potential to the box.
The potential uy(X) may be chosen in any convenient
manner as long as in the N/V limit we describe a sys-
tem of particles in the potential «(x). For example, we
might truncate the potential, uy(X)=u(x) for x in the
box; or we could make the potential periodic, uy(x)
=Y.« #(XtnL), where L= the length of the box. Final-
ly, the N/V limit does not exist, for perfectly good
physical reasons, for every potential. For example, a
harmonic oscilator potential #(x) =kx? for large « is
sufficiently large and repulsive to cause particles to
clump together around the origin in the N/V limit.
(i.e., in the N/V limit an infinite number of particles
would be found in a finite region around the origin, )

The correlation functions can be computed from Eqgs.
(2.38b) and (4.3). The result is

N!

T (4.9

n

Rz +x,) = V11 ().
In order to obtain L(f) in the N/V limit, we will suppose
that wy(x) = w(X) in the N/V limit. Then

RI(%, - %) ~ R, =11 wix, . (4.5)

r=

If we further suppose that the wy(X) are bounded, then
the generating functional in the N/V limit is given by
Eq. (2.9) which becomes

Lf)nl fdxl"'[danxl -..F(x")
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XPruw(x,)? - « - w(x,)?

= expl [ dxPw(x)*(explifix)] - 1)} (4.6)

Let py(X) = the ground state expectation value of p(x).
Then,

Now L(f) can be written as
L(f) = exp{ | dx py(x)(explif(x)] - D}. (4.9

Thus L(f) for a noninteracting Bose gas in an external
potential has the same form as L(f) for a free Bose
gas. They are both determined by (£, p(x)$). Since a
free Bose gas is translational invariant, in the N/V
limit (£, p(X)$2) =P, a constant. An external potential
breaks this symmetry. It is the only nontranslational
invariant system we will consider in this paper. (How-
ever, it does satisfy the cluster decomposition
property).

By similar means L(f, g) can be calculated. The
result is

L(f, 8 = exp{p | dxw(x)(exp[if(x)]
Xexplg(x) - V+(V-@)(x)/2] - Dw(x)}.  (4.9)

To obtain the Hamiltonian, we must again determine
the appropriate form for the operator K(x). Using Egs.
(2. 3) and (4.3), we find

K(x)Q (E 25(x - x,)V, ) (:rvl1 V'”sz(x,.)>

(L‘ 26(x — X )V”’” (x,))<n V2, (x ))

r=1

VwN

= 2p(x) (x) (4.10)

Thus,

VWN (

Ky (%) = K(x) - 20(x) x)

and

Hy= ; f dxKy(0)" o )K,,(x)

In the N/V limit we would expect

K(») =K(x) - 2p(x) —Ywﬂ (x)

=K(x) — p(xX) V Inpy(x). (4.11)

This expression can be verified by checking that Eq.
(2.10), which in this case becomes

L(f) (4.12)

is satisfied. By using Eq. (4.8) for L(f), Eq. (4.12)
can easily be proved true. Therefore, the Hamiltonian
for a Bose gas in an external potential is given in the
N/V limit by

_1 7wt L g
H_B,/; dx K(x) p(x)K(x)’ (4.13)
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where K(x) is given by Eq. (4.11). We can gain further
understanding of this form of the Hamiltonian through
the following formal manipulations. From Eq. (4.11)
and (4.13),

H=1 / dx[K(x) - p(x)Vlnpo(x)]*ﬁ [K(x) = p(x) V Inpy(x)]

—fde( %" @

_% f dx V Inp,y(x) [K(x) T+ K(x) ]

[ * <)

[+

+ % f dx p(X) V Inpy(X) « VInpe(x) .
Since K(x)'+ K(x) = 2Vp(x),

_1 ()t
H= 8-/‘de(x) o K(x)
+ f dx p(x)[3 V2 Inpe(x) + 5V Inog « V 1npg ]

Using py(x)=pw?(x), we have
19%1Inpy(%) + 3V 1npy+ Vinpy=3(Viuw/w)(x).
If in the N/V limit Eq. (4.2) remains true,
2(V2w/w)(x) = u(x) -

Therefore,
H= ; f dxK(x)? ( K(x}+ f dx p(x)(u(x) - E,).

From Sec. 3 we may identify + [ dxK(x)[1/p(x) ]K(x)
with the kinetic energy for bosons. The term

J dxp(x)[u(x) - E,] corresponds to the potential energy.
Thus H has the expected form.,

The following (one-dimensional) example will
illustrate some of these results:

1= [(1/47) + (1/7% cos(nx)] for |x| <%,
=41-(1/2m[1+(1/27) sin(27x) = x] for 3 < |x| <1,
1 for1<|x|.

Then

cos(mx) for |x| <3,
w”(x) ={ sin(27x) for L < |x| <
0 for 1< |x].
Now, let u(x)=$w"(x)/w(x). Then [~ Hd?/dx?) + u(x) Jw(x)
=0. (See Fig. 1).

The ground state, for this potential, can be solved in
any box (with L > 2) if periodic boundary conditions are
imposed. For N particles in a box of length L, let uy(x)
=u(x) for — 2L <x <3zL. The single-particle ground
state is wy(x) = w(x) for — 3L <x<3L, Clearly in the
N/V limit wy(x) — w(x). Thus, for a Bose gas in the ex-
ternal potential #(x) in the N/V limit L(f)
= exp{ 5 [ dx w(x)*(exp[if(x)] - 1)}.
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U(x)

FIG. 1. The external po~
tential z(x) vs x, and the
single particle wavefunc-
tion w(x) vs x.

X

5. THIRD EXAMPLE: THE INFINITE FREE FERMI
GAS :

In this section we will compute the generating func-
tional for a free Fermi gas. The N-particle Hamilton-
ian is
N
;}1 Vi,

Hy=- (5.1)

ol

In a cubic box with edges of length L the ground state is
Q= (VY /N2 detyx sl explik, +xp) ], (5.2)

where k, = 27/L{n,, n,, n;) and ny, n,, 1y are integers such
that |k,| <k;, the Fermi momentum. The Fermi
momentum is determined from the average density in
the usual way. The number of particles is N=E|k|<kf 1.
In the limit this becomes

N=~ [ &k V/(21)*= V(4n/3)(ks/2m)°.

Therefore, the Fermi momentum is related to the
average density by

P=(4/3)1(k;/ 273,

Remark: By picking the number of particles N such
that the ground state contains all the single-particle
states with |k| <k, the ground state is unique. Also,
N is odd since for every occupied state k, the state
-k is also occupied except that k=0 and — 0 are the
same. As a result i¥1/2Q, is real and hence time re-
versal invariant.

(5.3)

The correlation functions can be calculated using the
following theorem!?:

Theorem 1: If Qy=(N1)"1/2detyyy f,(Xn) and
[ AR f(X)¥f (%) = O,y then

Rx, <= X)=NU1/(N=m)! [ d%py -~ [ dxy| Oy |?
=detnxn[KN(xr’xs)]

where
N
KN(y: x) = ”é\llfm(y)*fm(x)

For the free Fermi ground state, f,(x)= V/2
X exp(ik, *X). Therefore, the correlation functions are
given by

R(x, + « + X,) = det o[ Gy(x, = X)) ], (5.9
where
Gyx) =V 2 exp(ik,*x). (5.5)
Ik, 1<y
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In the N/V limit

Gy(x) ~G(x) =(2m)"3 flklﬂef a3k explik + )
=3E(sinz—zcosz)/za|,=u,|x| (5.6)
and RM(x, -+ + < X,) = Ry(X;  * * X,) = det,, G(X, — X,).

In order to obtain L{f) in the N/V limit from Eq.
(2.7), we must show R{¥? is bounded. To do this, we
need to introduce a few theorems on matrices.

Let L be a linear vector space with an inner product
*, ) and let wy, w; -+ w, € L. The quantity
V(wb Wy oo wn) = [detan(wr, w_g) ]1 /2

can be interpreted as the volume of a hyperparallel-
epiped formed from the vectors w,,w,*°° w,."
Let
hy = (wy, wy)* 7%,

h, = the magnitude of the component of vector w,
orthogonal to the subspace spanned by the vec-
tors wy, Way . . .y Wy

Then it can be shown that!!
V(wl, u)2 s w,,) =h1h2 L 'h"

By using this relation the following result can easily be
proved:

Theorem 2: V(wy e+« w,) € Viwy++w,) V(. * - w,)

Corollary 1: V(w, =+ w,)< V(w,)V(wy) -+ V(w,)

In Sec. 6 we will need the following corollary:

Covollary 2 (Hadamard’s Theovem): If A is an NXN
matrix, then

A
aeta 2 fi (£ 14al2).

Proof: Apply Corollary 1 to the matrix A'A,

Covollary 3: If A is an NXN matrix and |4l <c for
1<j,k <N, then |detA| <c"NV/2

We can now show the correlation functions are bound-
ed. Let the vector space L be {(a,, a,+ -+ ay); a, € €} with
inner produce (A4, B)= V!3Y, a¥b,, and let X, be the vec-
tor with components (X,);= exp(ik; +x,). Then

Gy(x, -xg)=(X,, X,;) and Rr(nN)(xl e X)= g&t(xn Xo).

By Theorem 2,
REO(x;y oo %) SRRy »+» %) RO puy oo o Xy).

Furthermore, by Corollary 1,

R‘:”(xl seeX,) S RiN)(xl) e R(IN)(x") =7

We can now obtain the generating functional for a free
Fermi gas in the N/V limit from Eq. (2.7). The result
is

L(f)=§%fdx,---fdx,r<xl)---F(xn>

det G(x, - X,), (5.7
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'where F(x)=explif(x) -~ 1] and G(x) is given by Eq. (5.6).

An alternative expression for L(f) can also be de-
rived. For this purpose we will use the identity

f dxy s+ f de(detNxN[hr(xs) ])*(detNxN[gr(xs)])
=N detyx[ [ dxh,(0)*g,(x)]. (5.8)

Now, using Eqs. (2.5) and (5. 2), we obtain, for the
N-particle generating functional,

Ly(N)=Q/N)f (dxy/V) -+ [ ldxy/ V)

X dety.y [exp(ik, - x,)] expliflx;)]* » explif(x,)]
X detyay [exp(ik, * X,,]

=dety,y{J (dx/V) explif(x)] expli(k, -k ) x]}  (5.9)
=dety{8,,, + [, (dx/V)(exp[iftx)] - 1)
X expli(k, - k,) - x|}
By using the expansion
det(8y, n + Ap,n) = exp{TrIn(5, , +An 0 I
=exp<§)1 £?—)1-:";1)’1*1»,4"), (5.10)
Eq. (5.9) becomes
Ly(f)= exp(Z) r? de1 . /; dx,
XF(X)) ++ F(x) T (%, -+ ¢ x,.)), (5.11)
where
TY(xy < X,)
=n-D11/V {31 (/W zk?(exp[i(kl -k °x,]
x expli(k, - Kg) + %5} - = expli(k, — k;) - X))
=(n—11 Gy - X)Gy(Xp = X3) -« Gy(X,—%;). (5.12)

In the N/V limit

Ly(f) = L(f)
nel
:exp(z)( ) /dxl-..fdx"Fxl F(xn)T( 'oax")>’
(5.13)
where

T (% ¢+ x)=(n—-1)! Gx,-%,) Glx, —%;)° G{x,~%,).

(5.14)

Furthermore, (1/2!) Jporm Ta(%y, =<+ X, ) are the cluster
functions of the correlation functions R,(X; *-- X,). The
expansion for L(f) given in Eq. (5.13) was discussed
in the previous paper.$
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With a little more work L(f, g) can be calculated
explicitly by similar means. The result is

L(f,g>=§;j—!fdx1fdyl---fdx,,fdyn

M1 (5(x, - y,){explif(x,)] explij(x,, )] - 1}]

r=1

XR (Y120 Vs Xy v Xy, (5. 15)

where

Ry(¥y*+* ¥u5 Xp *+ * X,) =det,e,[G(x, = ¥,)] (5.16)

and
§(x, 8) = - 2i[2g(%) - V+(V-g)(x)].

Alternatively,
had n=1
L(f,8) = exp HZI( 2! fdxlfdm“-fdxnfdyn

erzll [8(x, — y, {explif(x,)] explijx,,g)] - 1}]

XTp(Y1o0 Yos Ky o0 e Xy (5.17)

where

T"(ylu..yn; xl.“xn)

=(m= 1)!G(X ~¥)G(Xz = ¥3) * - - G(X, ~¥,). (5.18)

Remark: Clearly R, (X, X,; X, X ) =R (X X,).
Furthermore, it can be shown that |R,(y, > ¥,;
Xy oo X) 2SR (oo Y)RL(Xy oo« X,).

In three dimensions neither the functional equation for
L(f) nor an expression for the Hamiltonian in terms of
p and J are known at present. However, for a one-
dimensional free Fermi gas both of them will be given
in the next section.

Remarks: (1) For a Fermi gas in an external potential
the correlation functions have the same form as those
for a free Fermi gas. Only the function G(x) occurring
in Egs. (5.16) and (5. 18) need be changed.

(2) It can be shown that L(f) for a free Fermi gas
satisfies the cluster decomposition property [Eq.
(2.11)]. Asa result, representations with different
average densities are unitarily inequivalent. Also, the
free Bose and free Fermi representations are unitarily
inequivalent since their generating functionals are un-
equal and satisfy translational invariance and the
cluster decomposition property.

(3) For both the free Bose gas and the free Fermi gas
there is nothing in the Hamiltonian to set a scale of
distance. Consequently, a scale transformation can
only effect the average density. It can be shown for
both cases that R, ;(x)=(5/00)"R,,;,(( P/pp)t’%%). Asa
result,

Li(f)=L,(f5/,) where f5,, (X) =A(Dp/py)*/3x). (5.19)

(4) The cluster decomposition property expressed in
terms of the correlation functions is trivial for a free
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Bose gas since
R, =P""=p"p"=R,R,.

For the free Fermi Gas it can be shown that

an(xl'”xm yita, .., Ym+a-)

G(x, - x,) O(1/d®
= det(u*m)X(nom)

0(1/a® G(y,-y,)

—~det,x, G(x, —~ X,) det, ., G(y, ~¥,) as lal~«

= Rn(xl xn) Rm(yl eee YM) .
6. FOURTH EXAMPLE: INTERACTION OF THE
FORM A(A-1)/x? IN ONE DIMENSION

In this section we will calculate the generating func-
tional and find an expression for the Hamiltonian in
terms of p and J for a one-dimensional Bose gas inter-
acting via a two-body potential U(x) = 2/%%. We first
consider a system consisting of N particles on a ring of
length L. We can associate a periodic potential with
the potential g/« by writing

V=g 5 (x+nL)'z=gg;[s1n<TZ‘>]

N=c

(6.1)

Sutherland'? has found the exact N particle ground state
for this potential. We will first write his results in
terms of currents and then proceed to the N/V limit.

Consider the N-particle wave function

Ty= Tl lw(xj-xk)l .
§<k=
Suppose ¥(x) =% ¥(~x). Let @(x)=(d/dx) Inp=9'/P(x).
“Then ¢(x) = - ¢(~x) and ¢(0)=0 (if ¢ is well behaved).
By direct computation it can be shown that

- zz—ﬂr (- Do e’

J=1

(6.2

- %)+ Ap(x, - %,)?]
12 2 ol ol = ) .
(6.3

If there is a function a{x) such that

Plxy = %) 9 (x, — xg) + 92, — x5) (x5 — x,) + Py = x,) (% = x,)

=ax; —x,) + @, — x5) + 0 (x, - x,), (6.4)
then
N az
( %Qa—xf%@ U(x,-x,,) =0, (6.5)
where
Ux) =1¢" (x) + 32@(x)? = A2(N - 2)a (x). (6.8)

Remark: We have started with a special form for a
wavefunction ¥ and constructed a potential such that ¥
is an eigenvalue of Schrodinger’s equation. This pro-
cedure (due to Sutherland!?) only works when functions
¥ and @ can be found such that Eq. (6.4) is satisfied.

J. Math, Phys., Vol. 15, No. 8, August 1974

1400
It is easy to show that K(x)¥, = 2xp(x)[dy @(x
-9)o(¥)¥,. Let
Rx)=K(x) - 2xp) [ dy o(x - y)p(y). (6.7)

If ¥ is the ground state, then the Hamiltonian, given by
Eq. (2.9), can be written as

I? () ———K K (x).

HN=% 1)
-L/2

(6.8)
We will check that this Hamiltonian formally agrees
with what is expected for a system of particles inter-

acting via the two body potential U(x). Substituting Eq.
(6.7) into Eq. (6.8) we obtain

H=% f de(x)' e K(x)
a2 f i f o [ dz p()p)p(D) ol - D)l - 2)

4 far [ 45 00 9col0) + I
We can identify [ dx K(x)'[1/p(x)]K(x) with the kinetic

energy (for bosons). From the commutation relations
[Eq. (2.1)] we find

K)'() + 0K () =22 px)ply) + z{;[w -3)p)]

(6.9)

and from Eq. (2.2)
- [ax[ dy p(x - K@) o@) + (0K (x)]

= [dx[ dy p(x)(p(y) = 5 (x - )¢’ (x — y)

—_—Q ¢'(x; - x,).
Furthermore,
[ax[ ay [ dz p()p@)ol2)olx - y)@(x - 2)

=J.kz.>m ‘P(xj —xk)w(x, —xm)

I - - - 2
= j#@m <p(xk x;)‘P(xj xm) +j§k: (P(xj xk) o
Therefore, Eq. (6.9) becomes

__15n 9 1 oy = -y )2
H= Z}I:)ax?+2)\j§[<p (x, = x,) + @(x; = x,)?]

-2 ; olx; - x)olx, - x,,)

02

=—%l ax2+ EU(xj—x)

1 1
=gfde(x)' -p(T)K(x)

+%[dxfdy p( o) - 6(x -V -y). (6.10)

This is the expected form of the Hamiltonian,

It can also be verified that the generating functional,
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LA = [0 axyeen 572 |9, |2 explifte)] - -
L/g X1* 2 ONUEN exply/ix,
x explif(x,)]

satisfies the functional equation
(- (x)) Ty L)

L/
=2A/:L/2 dy ¢(x - y)l Gf(x)z 5f(y) N(f) (6.11)

We will now consider the case (Sutherland'?) in which

P(x) =sin(rx/L), @(x)=(n/L)cotmx/L), and g=ir(x-1).

Then the normalized wavefunction,

¥, ={ ¥/ [ LN]}‘/zjl;Ih |2sin[n(x, - x,)/L]* (6.12)
L/2 vos L/2 2
with fm f_L/zdelxle =1,
satisfies the Schrdinger equation
H¥, = (A7%N/6)e (N2 -1)/L?¥, (6.13)
with
——ZZJ gZ) [s1n<"(’"L’"‘)>] (6.14)

It also turns out ¥ is the Bose ground state for this
Hamiltonian. *2

A Fermi wavefunction for this Hamiltonian can also
be constructed. Let R = the region for which x, <x,
<eoo <x_. Let P be the permutation such that (x“,
Kpgrwnes Xy, )€ R. Define ¥, = (~)P¥. To see that ¥ is
the Fermi ground state notice: (i) ¥, is antisymmetric,
(ii) ¥, satisfies the Schrdinger equation in the region
R, (iii) for A>1, if x,=x, for any k#m, then ¥ =¥_
=0 and (d/dx)¥ = (d/dx)¥,=0. Therefore, ¥, and (d/
dx)¥, are continuous at the boundary of the region R.
Finally, if N is odd, then ¥, is periodic; i.e., ¥ (- 3L,
Kgy voey Xy) =¥pl0y, .00y xy,3L).

Since L,(f) depends only on | ¥|2, for this interaction
it is the same for both bosons and fermions. Also,

L/2 L/2
LN(f9g):f~L/2dx1'°° f de

=L/2

X¥y (xl °ee xN) exp[if(xx)] s exp[if(xN)]J(x1)1/2 oee

X TV 2, (), . . o, ECe))],

where £ is the flow corresponding to the vector field g,
and J(x) =[(d/dx)£}(x). Since ¥, (x,°°° x;)=(-)P¥ and
¥ (t(x), ..., tlxy))=(-)P'TL, and the flow £ is a one-to~-
one continuous map on a ring, (=) = (=)', As a result
L(f,g) is the same for both bosons and fermions.
Therefore, for this particular one-dimensional example
the boson and fermion representations of the p,J
algebra are unitarily equivalent. This result depends
crucially on the nature of flows in one dimension; i.e.,
there are no flows that can interchange two points. In
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three dimensions we expect the bose and fermi generat-
ing functionals L(f, g) to give rise to inequivalent
representations of the p,J algebra.

As the coupling constant is changed continuously the
ground state wavefunction changes continuously. When.
A —1, the coupling constant g=x(A ~1)—0, Since the
potential is infinite when two particles are at the same
point, the ground state wavefunction must vanish for
those points. Thus we might expect the Fermi ground
state (\IIF) to go to the free Fermi ground state as A —1,
while the Bose ground state (¥) changes abruptly in
character when x — 1. This result is in fact true. When
A=1, (d/dx,)¥!, . is no longer continuous. Therefore,
¥ no longer satisfies Schridinger’s equation (6.13).
However, it can be shown'? that

Yy = (N1 LY/ [2sin(n(x, = x,)/L)]

= (N1L¥)V/2det,, . [exp(ik, x,)]

%(N" 1)7

where k, =2mm/L and m = -

-3(N=8),...,2(N=1)
=the free Fermi ground state (in one dimension)

for N particles.,

Since for this interaction L(f) is the same for both
bosons and fermions as x —1, L(f)— the generating
function for a free Fermi gas (in one dimension).

A. The case A = 1: The free Fermi gas in one dimension

We will now examine the N/V limit for a free Fermi
gas in one dimension. From Egs. (6.7), (6.8), and
6.11 we have for N free Fermions on a ring of length

EN(x)=K(x)-zfmdchot< G y’) (o), (6.15)
=L/2

L/2

Hy=% de ()t K (0, (6.16)
oL /2 ()
( - i (x)>z a7 Lnlf)
=2f /zdy%cot(ﬂ(x y))
1 56 1 5
3 570 7 o7 o) 6.1

If we could interchange the N/V limit with the integrals
in Eq. (6.15), we would obtain

R =K(x) -2 f &y 72y P00, (6.18)

L f7 ., = 1 =
H:Bf de(x)'p(x)K(x), (6.19)

(-

7'0) 7 7 L
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1 6 1
= d L 6.20
[ o b gy EO- (6.20)
In Sec. 5 we calculated L(f) in the N/V limit for a
free Fermi gas in three dimensions. By a similar cal-
culation, L(f) in the N/V limit for a free Fermi gas in
one dimension is given by Eq. (5.7) with

R
G(x):ff de oo 1 ~
-, 27 exp(ikx) =— sink,x, where p=

Since we know L(f) in the N/V limit, we can verify that
Eq. (6.19) gives the correct Hamiltonian by checking
that Eq. (6.20) for L(f) is satisfied.

Remark: The singular nature of the term 1/(x —y)
appearing in Eqs. (6.18) and (6.20) makes it necessary
to consider the integrals as the principle value,
Play[1/(x—y)]e=lim_ o(fT + [2¢)dy[1/(x = y)]+, or as the
limit of a sequence lim__ /%, dy(x —y)/[e+ (x=y)?]. In
addition we will need to take advantage of the antisym-
metry. Therefore, we will use, [2, dy/(x— y)+
=lim, P [% dy/(x—y)> and as a result [Z, dy/(x
—y)e const =0, Alternatively the right-hand side of Eq.
(6.20) may be written as

_dy 1 6
- (x~y) 1 6f(x)

x<:_--5fi(y)—ﬁ)L(f).

[rhs Bq. (6.20)]=2P

Recall that

' L(fﬁ;% fdx1'° . fdx,. (explif(x,)] = 1)+ (explifix,)]

~1R,.

Therefore,

(e 7))

:’22(7'%1? eXp[if(Xl)][dxzoo .fdx"

1)e+« (expliflx,)] - 1)%12"

1

x (explif(x,)] -

2 (n—

___12_)!exp[if(xl)]exp[if(xz)][dxa.,. f dx,

X [(explif(x;)] = 1)« (explif(x,)]-1)R,]

+5(x1 ) ) (f)

i f(x

Due to the principle value the é(x1 —xz) term will vanish
when integrated. Therefore,

dxg 1 5 1
P/xl—xz i 6f(x,) 4 (Sf(x2 L(f)
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/dx exfl[i;f(z)] fdx f dx,

X (explif (x5)] 1)+ »+ (explif (x,)] - 1IR,

_i expj(xl)]

T =2 n 2)'

E explif(x,)]

5, Bl [ . [ i, fexplifte] - 1)+

(explif(x,)] - 1)

2 R, [ Rpa1
(2 +p [ax ——)
(1=2 % =X, = Xy

Remark: In the case we are considering R,/ (x, - x,,,
is a continuous function. Therefore the principle value
is not needed and interchanging the order of integration
is valid.

Equation (6.20) can now be written as

3 explif(x,)] dxye e ,f dx, (explif(,)] = 1)e <

& (n-1)!
(explifix,)] - 1)

1 4 ~ R
X[ = —— - —l
(2 dle J'Z;ﬂxl—x,

Ro N
_‘/.dx”,,lxl_.x"+1 =0,

Therefore, to show that L(f) satisfies Eq. (6.20), it is
sufficient to show that

(6.21

Recall that

R =det, [G(x, —x)]

= f ! % j # iy det"x,,{exp[z(k
-kf

Let the matrix
Jeoe rf" sse
Aﬂ"-(l.oo §'n.o n)zArs’

-kJ)x,]and »=1,2,..,n with »’ de-
leted and s=1,2,...,n with s’ deleted. By expanding
the determinant by minors twice, first by the (z+1)
column and then by the (n+1) row, we obtain

loeoe n-}-l
detA”H(l_” n+1)

=detd, G :: : Z) - 121 (=)*s expli(k, - k,,,)x,]

k)x, ]t

1...,:...,,)

Xexp[i(k,,,l—ks)x,.u]detA,,d(l... Seee )’

As a result we have

f& fdknz,
27 79821

Qeoe ’;'-oo n
(._)7"8 detAﬂ"- (1 ese go oo n)



1403 Ralph Menikoff: Generating functionals .

x [ %._1 expli(k, - k,,.)x,] P f By

S

x expli(k,,, — k)x,,.],

° d .
P[ Lnar expli(k,,, - k)%,
- X} = Xp

=expli(k,,, - k)x, (i) / éyl sin(k,,, - k,)y

=—insgn(k,,, - k,) expli(k,,, — & )x,]
and

2 Al ,
[ - expli(k,

kg

- kn01)xr](— iTr) Sgn(kn-i-l - ks)

X expli(k,,, - k,)x,]= ———‘*“exP[;(k:; )
1 r

- exp(ik,x,) exp(- ik x,) cos[zf(if x— )]
1 4

Therefore,

Pf_d’fﬁtl__R

— nel
xl xn+1

(B [l (e (elilh )]
27 27 pogsl x, =X,

- exp(ik,x,) exp(- ik x,) cos[}; (f x_ x,.)])
17X,

lece oo n>. (6,22)

XdetA"'1<leee §ooo n

When 7 #1, the first term equals 37_,[~1/(x, —x,)]det4,,
while the second term vanishes since

n . Joeoo ;ace n
Z;l(_)s exp(- ikx,) detA"_1(1°_° Sooe n)

is equal to a determinant with the 1st and 7th rows
proportional, For »=1 the two terms added together
give

n . . 2 o e o N
sE=1 (=) iks exP[l(kL—ks)xldetAn-l<1.oo Sooo n)'

Next consider

d d
Ba= E‘detG(x, ~-x,)
0  Glr-x) e Glx,—-x)
=det | Glx,-x,) Glx,~x,) °° Glx,~x,)
Glx,—x) Glx,~x,) *++ Glx,—x,)
0 Glx,~x,) *o° Glx,-x,)
—det | G'(x,~x) Glx,—x,) *** Glr,-x,)

G'(x, = x;) Glx,~%,) ++= Glx,-x,)
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Since G(x) =G(-x), G'(x})=~G'(~x), and detA =detAT,
we have

d G (%, ~x,)G(x, = xp) e+ Glx, - x,)
E—R"=—Zdet ° * °
%1 G (x, = x,)G(x, — %,) e+ » Glx, - x,)

= f%%l- cos f% s2}1(—)3"(— 2ik,) expli(k, ~ k)x,)

xdetA"_l(h:. g Z)

Substituting these results into Eq. (6.22), we obtain

Eq. (6.21), Therefore, we can conclude the Hamiltonian
in the N/V limit for a free Fermi gas in one dimension
is given by Eq. (6.19).

B, The case A= 2: Interacting potential 2/x 2
in one dimension

We will now derive the generating functional and
Hamiltonian for the interacting case when x= 2, [U(x)
=2/%%]. We begin by computing the N-particle correla-
tion functions. Substituting equation 6.12 into equation
2.5, we obtain

Nl 1 2v ([L/24y L/2 gy
My oo = e nel ., , iad
RV %) =151 I (2N)![L/2 L [L,z L

_ 4
- [zs(ﬁ__)] .
e L

The square of the ground state for the interaction we
are considering is the same as the joint probability
density function for the eigenvalues of a unitary self-
dual random matrix.!'® Consequently, we will find some
results from random matrices very useful in explicitly
calculating the correlation functions. In particular, it
can be shown!? that

(6.23)

mi2 sin{n(x; - x,)/ L]
e

v

=det,y.ylexpi2npx,/L), pexp(i2nx,/L)], (6.24)

where j=1,2,...,Nand p=-(N-3), ~(N-3),.
(N ~1). We are using the notation

detZNKZN[¢k (xj)a d)k (xj)]

0,06, (x ), ()0, () e o = @, ()0, ()
=det ¢2(x1)¢2(x1)¢2(x2)¢2(x2) cee qog(xN)wz(xN)
Pon X oy (£ 0o ()05 () =0 o @y ()5 ()

We will also use the result!? that

f dx,ses fdedetszzy[¢k(xj)7z/)k(xl)]

=N {det,y,,, [ dxl3, ()@, (x) = @, (), ()72, (6.25)

Finally, we will need to use Laplace’s theorem?® to the
effect that
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WA= (= )SdetA(’1 °°’,s>detA(’.S*1'°°’.n ., (6.26)
{4} Ji®°° Js Js41°°° In
where i, <i,<ooe <i i, <i, ,<eee<{ O=if +i,eee
+ig+ji T tooe jg and ¥y =sum over all permutations
such that j, <j,<e+ <j, and j, 3 <jp <* o0 <j,-

Substituting Eqs. (6.24) and (6. 26) into Eq. (6.23),
we obtain

R (x o0e x)

N1

“W-n)In (ZN)V Z; dethxzn

[eXp (2mpx,/ L), p expli2npx,/L)]

dxp, 1. dx
f 3 f dety yemyxz(y-n

[exp(i2ngx,./L), q exp(i2ngx,./L)],

,Nand{p,q}={(-N

(6.27)

where j=1,2,...
—%)) ooy (N—%)}.
Next, by Eq. (6.25) we have
dx, dxy
-[_Lr:ﬂ, oo _[L detyymxzyom | €XPE27gx 0 /L),

qexp(i2ngx,/L)]

M, f=nt+l, L.

Lizgy
=(N-n)! (detz(N-n)x2(N-n)/ L) (q q')
2

x expli2n{g’ + q)x/ L])

= (N -n)!{det[(g — ¢")o¢’,
0

-ql?
if for every ¢ there is a - g,

otherwise.

Therefore in Eq. (6.27) we can write

1N-1/z Ne1/2
¥ D L SN
O (b1b1ipn,epyerompyapn) PR pnel/2
and (=)°=+1, Equation (6.27) becomes

oN 1N-1/2 N-1/2
R(N) ses = L
(x x ) N (ZN)' n' p121/2 Py=1/2

g-1

Mg, 21()2") det, ., [exp(i2mpx,/L, pexp(i2npx,/L)],
B

j=l

where p=~p1,015 000, =Dy b, and j=1,2,...,n.

Since [N12¥/(2N)! ¥ }/2(2g) =1, by applying Eq.
(6.25) with the indices x and p interchanged and with
fdx replaced by (1/L)3%:1/%(1/2p), we obtain

RO (x, 000 x,) = (dety,q AN)/2, (6.28)

where the 2nX2r matrix A,, is defined as follows:
Ne1/2

1 1
(N P,
AZJ.Zk L p=Zl>/z 2P/L
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xdet ( (/L) exp(-i27px,/L) ~(p/L)exp(-i2mpx,/L) )
(/L) exp(i2npx,;/ L) (p/L) exp(i2npx,/L)
Ne1/2
'—prl)/zi(jI))sm £p (x; = ), (6.29a)
) ) 152 1

A== AR o= L 2/2 2p/L

X det (— (p/L) exp(-i2mpx,/L) exp(-i2mpx,/L) )
(p/L) expli27px,/L) exp(i2npx,/L)
1 VR 27p
=7 § cosT(x]. -%,), (6.29b)
N-1/2
1 1
Ag}'l'z”" =L peis2 2p/L
exp(-i2mp,/L) exp(- iprxk/L)
X det
exp(i2np,/L)  exp(i2mpx,/L)
1 N-1/2
=fp=21/2 (1) msm (x, (6.29¢)

In order to take the N/V limit of L(f), we need to
show that R¥=(det A"M)!/2 ig bounded. We can find a
bound for detA by using Corollary 3 (Hadamard’s
theorem).

A few preliminary steps are needed before we can
apply the corollary to find a bound on R‘™. Let
KoLz in(27Nx/L)

1 i _1,a8
G (x)_sz=_(§-)1/2 exp(i2mpx/L)=3L Sin(r2/L)

Then from Eq. (6.29) we have
A, = (-i/2m)Gy(x, - x,),

A(N)

—_ AW
2oone1 =~ ARl 0y = Gylx, —x,),

A, ey = — 12T fox" * dx G y(x),

We can bound each matrix element of A as follows:
N-1/2

|Gy < 21 | exp(i2px/L)| < S+ =0,

| GL(x)] < [ == exp(z21rpx/L)|

ﬁ p= -N+l/2

Gp(X)

FIG. 2. The function
Gy(x) vs x.

rlz
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Sinee (p/L)<p, |Gy(x)| < 27p%. Furthermore, since
Gy (x) is an osc1llat1ng function of decreasing amplitude
(for -3L<x<3L, see Fig. 2),

x
max,,i<rsz ,j; deN(x)’

L/2N L L
=f dx G (x) < = max| G, (x)| =3.
A 2N

Therefore, |A;,! < c=max(p,p?, ). Finally, by the
corollary to Hadamard’s theorem:

RV = (det A)'/2 < (V2c)nn/2.

Therefore, L(f) in the N/V limit is given by Eq. (2.7)
which becomes

Ly (f)—L(f)

n-on‘_[dxl'” fdx F(x )"' F(x )R (xl"'x)

6.
where (6.30)

F(x)=explifix)]-1 and R —~R =p"(det, ;. A)/?,
(6.31)

A2];2k =-G (5jk)’ Azj.gz-l =—Appr,ay =~ G(‘ka)’ Agjutyzper
=[3*dx G(x), 5,,=2mp(x, - x,), and G(x) = (sinx)/x.

For example: R\(x)=p and R,(x,,x,)=p?[1
+G’(6)f8 dx G(x) - G(6)?], where 6= 27P(x, — x,).

Remark: Under the scale transformation x— ax, H
—~(1/a?)H, Therefore, L(f) for representations with
different average densities are related as in Eq. (5.19),

The Hamiltonian may be determined by the same
method we used for the A=1 case. Formally taking the
N/V limit of the N-particle Hamiltonians suggests the
following:

Rl = K(x) - 4 f "), 6.32)

H:%L dx K(x)t ()K(x)

and (6.33)
d .., )1 &
(e 7) P

B dy 1 1 9
—4P,/ x—y i éf(x)z 6f(v)L(f)'

By checking that the functional equation (6.34) for
L(f) is satisfied, we can verify the form of the Hamil-
tonian. Proceeding as we did in going from Eq. (6.20)
to (6.21), we find that Eq. (6.34) is satisfied if the
correlation functions satisfy the equation

1d
4 dx

(6.34)

R, ,ER /(x, = x;) +P/” A%, R,/ (e — x,,)).
(6.35)

A sketch of the proof of this equation is given in the
Appendix. We may therefore conclude the Hamiltonian
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is given by Eqs. (6.32) and (6.33).

The generating functional L(f,g) can also be calcu-
lated for this interaction. To do this, we need to
compute

R'('N)(ylo.-yn;xla oo x")

N1 fL/zd fL/zd ¥ ( )
—_—— Zz. 000 z eno y Zy%°° 2,
(N—n)' L /2 1 -L/2 Fent Y In ! Nen

X\I[N(xlooo xn, Zoee ZN-")_

By the same method used to obtain Eq. (6.24) it can be

shown that

‘I‘(N)(yl"" Voo Z100° ZN_n)\I;(N)(xlo.. X, 21000 ZN-n)
2N

IR L”()

Hm{z sin[(n/ L)(ﬂ x)]* 2 sin[(n/L)(y; — yu I}
1,,, 2sinl(@/L)ly, - x,)]

2n =-n

X det, noylexp(ipn,), explipt,), exp(ip6,), pexp(ip6,)]

where
n,=2mx,/L, j=1,2,...,n,
¢, =2my,/L, k=1,2,...,n,
6,=2nz,/L, m=1,2,...,(N-n),
and
~-(N=-3), ~-N=3),...,N=3)

Then by calculations similar to those used to compute
R [Egs. (6.23)—(6.29)], we obtain

R’(’N)(yl. oo y"; xloo- xn)

[( ;5,12 sin[7(x; ~ x,,)/L]2 sin[7(y, - y,
Lrm, J2sinn(y, -y,)/L]

/LH)

dety,q fi”]”z (6.36)
where
N-1/2/,\ o
) . 7-1 ) o,
AP =1 ;)/z(L) sm21rL(zj z,),

and z,; , =x; and z,, =y;.
In the N/V limit
RWIG) =R (;)

_(Tpelr; = 2)(y; = 92)° o /2
_( (217)2"111'k(yj - %, )2 detznxan]-(zﬂp(Zj - Zh)))

(6.37)

where Si(x)= [%dx (sinx)/x, and

L(f,g)=§ ni!fdxl‘[dy1°'-fdx" fdy,l
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x 11 8(x,, ~ , N explir(x,)] explij(x,,, £)] - 1}
R (yyo 9,5 21000 %), (6.38)
where

jlx,8)=-%il2g(x)a, + g’ (x)].
Remarks: (1) It can be checked that

lim e 1imR"(ylooo y"; xleoo xﬂ):R"(xloe ° x").
y1¥x) In~xy

(2) The correlation functions R¥)(y;x) given by Eq.
(6.36) have been calculated for the Bose ground state.
The Fermi ground state would give different correlation
functions since R,‘IN ){y;x) is determined by the integral
[dz ¥, (y,z)¥,(x,2) and for bosons ¥, (y,2)¥(x,z2) is
positive while for fermions it has the same magnitude
but varies in sign. [The correlation functions R (x)
=R®(x;x) are the same for both systems.] However, we
have previously mentioned that the generating functional
L,(f,8) is the same for bosons and fermions. Therefore,
for this N-particle system the generating functional
L,(f, 2) is not determined by a unique set of correlation
functions R (y;x). Thus R (y;x) contains more
information than is needed to determine a representation
of the p,J current algebra. This result may be due to the
one-dimensional nature of the system and not be true in
three dimensions. The correlation functions R{¥ (y;x)
for the Fermi ground state have not been calculated.

Nor is it known if the correlation functions R,(y;x) in
the N/V limit for bosons and fermions are different.

(3) For the two body potential A(A» —1)/x2, we have
calculated L(f,g) in the N/V limit for the cases when
x=1 and 2. The N/V limit might be expected to exist
for other cases when A>1 [i.e., A(x =1)> 0] and that

<£E —if’(x));- ag(;)L(f)

@ 1 5 16

_ZxPL rey 15 6f(y)L(f), (6.39)

R(x) =K (x) - A

Rx)=K(x) zxp(x)fx_yp(y), (6.40)
1 > 1 =

H:g[de(x)*p—(x-)K(x), (6.41)

On physical grounds we can expect L(f) to satisfy the
cluster decomposition property. Since for different A
the operator R(x) is different, we may conclude by a
theorem in Ref. 6 that the representations correspond-
ing to different A are all unitarily inequivalent. By con-
sidering the ground state energy we can give a possible
physical reason for this. From Eq. (6.13) the ground
state energy per particle for a system of N particles is
E/N=X%7p%/6. As expected, the ground state energy in
the N/V limit is infinite. However, for different coupling
constants the difference in the ground state energies is
infinite since the energy per particle is different. As a
consequence of the unitary inequivalence of the repre-
sentations, if we tried to relate the ground states for -
different coupling constants by a perturbation series

in ), the series would diverge. However, it is possible
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that series in A for matrix elements would converge.
(For example, the ground state energy per particle
given above.)

(4) After calculating the correlation functions
R, (x,°*° x,) for the case x =2(u(x) =2/4?), the author
discovered that Dyson!® had previously calculated them
using a different method. In his case they were the cor-
relations for the eigenvalues of random matrices from
the symplectic ensemble.

7. CONCLUSION

It is hoped the examples presented here are helpful
in gaining further insight into expressing field theory
in terms of the local currents. They also may be useful
in testing new approximation schemes.

Other work has been done in connection with this
approach. Girard!” has studied the thermodynamics
of the free Bose gas and the free Fermi gas using cur-
rents. Goldin and Sharp!® have shown how to calculate
the time dependent n-point functions, (2,p0(x,,?,)e°° p(x,,
t )Q), where p(x,t) =exp(itH)p(x) exp(- itH), for the
free Bose gas. In Ref. 9 it was shown that for the free
Bose gas the functional equation (3.8) subject to the
appropriate boundary conditions uniquely determines

L(f).
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APPENDIX

We have used the result that the correlation functions
for a system of particles interacting via the two-body
potential U(x)=2/x2 satisfies Eq. (6.36), namely

1 d Rrul

R o0
=~ —R = I_-4+P dx. o )"
ddx, " g;‘ e _xjj .[w ™ () = X1
In this section we sketch the calculation needed to verify
the equation.

(a1)

To facilitate the computation we introduce the follow-
ing notation:
Let
X, X0 X, X,
det =det B,
ki kycor =Ry K,

where B is the 2nX2n matrix
bk, %) o= blky,x,)

B= . . s

b(k,,x,) =+ ble,,x,)

and b is the 2X2 matrix

exp(-i27kx) =k exp(-i2nkx)
bk, x)=
exp(i27kx) b exp(i27kx)

and
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&m xm %m xm ‘%m xm
[a,b]detl _  |=-adet{  |+bdet )
z, ~k, &, —k, P,

where ~ means that the row (column) is deleted.
The expansion of the determinant by minors is then

Xy Xyo oo XX,
det
—kykytoe =Rk,

1407
It is convenient to use R, in the form given by Eq.
(6.28),
Pk, (7 dk, Mt K
B=in ), 20,7 ), 3, °° . (A2)

—ky Ryees =Rk,

To compute Pf[dx,,,/(x, - x,,,)]R,,, expand the deter-
minant in Eq. (A2)by the last two columns using

Laplace’s theorem [Eq. (6.26)]. We get terms of the

n po form

=27 ~[exp(-i27k,x,), exp(i277kpxm)]det<x’"— x’") .
=1 Ry Xy Xy °eo° Kper Xpp1
. s (e, = k,) explix,,, (k, 7 k,) ] det .

=27 [~ &, exp(-i2nkx,), k, exp(iZﬂkpxm)]det< 'EE""'). | —k Ry Rk, —Fk k.,
b=1 b

Expand the determinants for those terms proportional to &,(k,) by minors about the %, (~ k,) row and interchange
the variables %,,; < km(kp). Taking into account the terms that vanish when integrated, we are left with

Pf dxna le
X1 ™ Xpa1
de .
Tt 1)'

x[:{exp[— i277xn+1 (kn+l + ki’)]’

[ dkpe1 fdxml Z;Z} 2(n + )k, exp(i2nk , x,.)

Xy = el m=1p=1

-~ ~

mel xn&l .
5 )= kndexpl-i2nx,, (k,,, +&,)], k,~ =R}

n+l Tnel

o

X,

( m
— ~k,} det %,

[

Xy Xy Hopgr Xy
Xdet( — . ] f_x.o.fdxn
By — o B
nn <5€m Xm®°® im-l }?’”1 J <xm &m ;Cm-l '%m-l):]
x - _ « - )+ (R), b (=k)detl = . o~ ),
7521’221 [[am(kp)?am( kp)]det kﬂ —knu km-l) [ M( p) M( D) € kP kn+1 km-l
where
3(=27k,) exp(~i2nk,x,) for m=1,
a,(k,)=
= 3(x, - x,)" exp(= 27k, x, )+ 5 (¥, — %, )"  cosp(y, - x,,) exp(~i27k,x,) for m+1,
and
1(=27ik,) (= k,exp(- i2mkyx1) - 3ip° exp(- i2nk,x;) for m=1,
1 1 . ipsin(x,, — x,) )
= - - - +H N 2 -
b, (k,) ( 2 &, _xm)[ k, exp(-i2nk,x, )] 20, - %) exp(—i27x,k,)
+ Tinlr, ~ 7 cos 27p(x, — x,,) [exp(~ i2mx,k,) ~ exp(~ zzﬂxmkp)]> for m#1.
Upon summing over p and reconstructing the deter- | fillment of the requirements for the degree of Doctor of

minants we obtain Eq. (Al). Philosophy.
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