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Topological group extensions with Abelian kernels are analyzed using factor sets and following the 
pattern of the work of Eilenberg and Mac Lane on extensions of groups without topology. In this 
analysis, the Eilenberg-MacLane cohomology is replaced by the Mackey-Moore one, whose cochains 
are Borel mappings and which is especially suitable in the case of Polish groups (Hausdorff second 
countable complete groups). The connection between cohomology groups of degree 2 and equivalence 
classes of topological group extensions with Abelian kernels is established. A fundamental sequence 
of cohomology groups and group homomorphisms is proven to be exact, and it is shown that, in 
some interesting cases, the low degree cohomology groups of topological semidirect products are 
determined by the corresponding cohomology groups of the factors. 

1. INTRODUCTION 

The occurrence of group extensions in the physical 
literature is quite a recent phenomenon that can be 
traced back to the lectures of Michel at the Istanbul 
Summer School in 1962.1 However, group extensions 
were implicitly considered in the early days of quan­
tum mechanics by WeyI2 and later by Wigner. 3 In the 
work of Wigner, topological considerations are of prim­
ary importance for the handling of multipliers (or fac­
tors, as they are called by Wigner). The emphasis on 
the topology is even more manifest in Bargmann's 
paper,4 where the study of continuous unitary projec­
tive representations is pursued in the case of an arbi­
trary topological group G, in particular of a Lie group. 
In this work the multipliers appear as factor sets of 
extensions of G by U(I) (the group of complex numbers 
of absolute value 1), and one is immediately faced with 
a difficulty: They can be chosen to be continuous in a 
neighborhood of (1,1), but, in general, they cannot be 
chosen to be continuous in G x G. This is a typical pit­
fall of the theory of topological group extensions, where 
the discontinuity of factor sets is an unpleasant but 
unavoidable fact. However, using a result of Dixmier, 5 

one can prove that it is always possible to choose Borel 
factor sets when G is a Polish group, i.e., a Hausdorff 
second countable and complete group. 

The class of Polish groups contains all the second 
countable locally compact groups (in particular the 
finite- dimensional second countable real or complex 
Lie groups) and some groups of mappings, for instance 
the Abelian group of m-times continuously differenti­
able mappings of Rn into R, where m and n are in N. 
Many of these groups occur as symmetry groups in 
physics, where the interest in topological extensions 
of Polish groups arises especially in connection with 
the problem of projective representations.4. 6,7 The 
aim of this paper is to study some basic questions of 
the theory of topological extensions (with Abelian ker­
nels) of Polish groups, following the track of Mackey8 

and Moore. 9 ,10,11 An application to a physical sym­
metry problem of the results obtained here is given in 
Ref.12. 

In Sec. 2 we introduce the Mackey-Moore cohomology, 
which is especially suitable for the study of topological 
extensions of Polish groups and which is obtained from 
the usual Eilenberg- MacLane cohomology by requiring 
that the cochains should be Borel mappings. We prove 
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(Theorem 1 and its corollary) the exactness of an 
important sequence of group homomorphisms and of 
Mackey- Moore cohomology groups of a topological 
group G with values in a Polish G- module A '/I. This 
generalizes the result of Moore 9 for G and A second 
countable and locally compact. 

Topological group extensions with Abelian kernels 
are studied in Sec. 3, and the difficulty associated with 
the nonexistence of continuous factor sets is pointed 
out. If G is a group and A .. is a G-module, a well-known 
theorem of Eilenberg and MacLane13 ,14 affirms the 
existence of an isomorphism of the group of equiva­
lence classes of extensions of G by A ... onto the group 
of cohomology of degree 2 of G with values in A,.. We 
show (Theorem 2) that this result is partially valid 
also in the case where G is a Polish group, A,. is a 
Polish G-module, and only topological extensions of G 
by A,. are considered, provided one replaces the Eilen­
berg- MacLane cohomology by the Mackey- Moore one. 
By "partially valid" we mean that we are able only to 
prove the existence of an injective group homomor­
phism. 

In Sec. 4 we use a generalization of a theorem of 
Mackey (Theorem 9.4 of Ref. 6) in order to derive 
some propositions on the low degree cohomology groups 
of topological semidirect products. 

For the reader's convenience, few definitions and 
results in the theory of Borel, Baire, and Polish spaces 
are collected in Appendix A. In Appendix B the same 
is done for the cohomology theory of cochain com­
plexes; the reader is referred to this appendix for the 
cohomological notation. In Appendix C we show that 
the notion of a Baer addition may also be introduced 
in the study of topological extensions of Polish groups. 

NOTATION AND SOME BASIC DEFINITIONS 

Let R be an equivalence relation in a given set E. 
We denote by [x] the equivalence class of x E. E, tacitly 
understanding "modulo R" if no misinterpretation is 
possible. Given a mapping f: A -> B, a subset A' of A, 
and a subset B' of B such that f(A '} 5; B', we denote by 
f I (A' -> B ') the mapping deduced from f by passing to 
the subsets A' and B'. As it is usual, we write f I A' 
for f I (A' -> B). If A and B are topological spaces, then 
the continuity of f I (A' -> B') has to be understood as 
the continuity in the induced topologies. The neutral 
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element of a group G is denoted by 1 (resp. by 0) if the 
law of composition is written multiplicatively (resp. 
additively), and e G stands for 1 or for O. When topo­
logical groups are considered, the meaning of a "pro­
duct group" (resp.of a "quotient group") is always 
that of a "topological product group" (resp. of a "topo­
logical quotient group"). We also write "locally com­
pact" for "Hausdorff locally compact" throughout. 

Let G be a group, let A be an Abelian group (resp. a 
vector space), and let >It be an operation (resp. a linear 
operation) of G on A. As is well known, this means that 

>It: G -7 Aut(A) 

is a group homomorphism. Then A, equipped with >It, 
is called a G-module (resp. a linear G-module) and we 
denote it by A "'. Furthermore, AS will stand for the 
subgroup (resp. the vector subspace) of A 

{a I a E: A and >It(s)a = a for all s E: S}, 

where S is any subgroup of G. Let A", and A ~, be two 
G- modules. A mapping G': A", ...... A ~, is called a G­
module homomorphism (or simply a G-homomorphism) 
if it is a group homomorphism and if 

a o>lt(g) = >It' (g) 0 a 

for all g E: G. 

Let G and A be topological groups, with A Abelian. 
An operation >It of G on A such that the mapping 

(g, a) f-7 >It(g)a = g. a 

of G x A into A is continuous (joint continuity) is said 
to be a topological operation. In this case the G- module 
A", is called a topological G-module. Suppose A ~, is 
also a topological G- module and let G':A • ...... A ~ , be a 
G- homomorphism. If a is continuous, then it is called 
a topological G-homomorphism. 

A section associated with a surjective group homo­
morphism p : G -7 G' is a mapping a: G' -7 G such that 
po a = Id G , (the identity mapping of G'). Obviously, it 
is an injective mapping; if a(e G ,) = e G' the section a is 
said to be normalized. If G and G' are topological 
groups, then a section a associated with p and which is 
a Borel (resp. a continuous) mapping (see Appendix A) 
is said to be a Borel (resp. a continuous) section. 

2. THE ElLENBERG ·MACLANE AND MACKEY­
MOORE COHOMOLOGIES 

Let G be a topological group and let A 'If be a topo­
logical G- module. Many different cohomologies of G 
with values in A 't have been proposed in the mathe­
matical literature. We will consider here two of them 
which are relevant for our purposes. 

(i) The Eilenberg-MacLane cohomology13.14 is the 
cohomology of the Eilenberg-MacLane cochain complex 
C*(G,A'If) with the cohomology groups HP(G,A",) of de­
gree P (p E Z) of G with values in A", (see Appendix B). 

(ii) If P > 0, let CC(G,A",) be the subgroup of CP(G,A'If) 
of all the (normalized) Borel mappings of the product 
space GP into A. Notice that this choice is meaningful 
because the Borel space associated with the product of 
P topological spaces is the product of the Borel spaces 
associated with the p factors,15 If p .,; O,put CPb(G,A.) = 
CP(G,A v)' In this way we get a subcomplex ct(G, Av) 
of C*(G,A v)' becausefE C:(G,A v) implies OfE: 

J. Math. Phys .• Vol. 15, No. B. August 1974 

1156 

Ct(G,A v) by well-known properties of Borel mappings 
(cf. Ref. 9, Proposition 1. 2). We shall call C t(G, A v) a 
Mackey- Moore co chain complex and its cohomology 
the Mackey-Moore cohomology.S-ll The relevant 
groups of ct(G, Av) will be denoted by the usual Eilen­
berg- MacLane symbols with an additional subscript 
"b ". 

Remark 1: A cochain complex C~(G,A",) may be 
defined as the subcomplex of C~ (G, A v) obtained by 
requiring that, for any p > 0, the elements of cg(G, A ",) 
be continuous mappings of GP into A "'. However, the 
cohomology of C~ (G, A ",) is, in general, not very useful 
for the group extension problem (cf. Sec. 3, Remark 3). 

Remark 2: If G is a discrete group, then 

because any mapping of a discrete space into an arbi­
trary topological space is continuous and hence Borel. 

Remark 3: The Mackey- Moore cohomology is 
especially suitable in the case where G is a Polish 
group and A '" a Polish G- module (see Appendix A and 
next section). 

Let again G be a topological group and let A (1h, 
A (:U), .•• ,A (n(~) be topological G- modules. A dIagram 

v '" 
0'(1) 0(2) a(n-1) 

A ~\h ~ A ~1~) ---? ••• ~ A ~n(~) 

is said to be an exact sequence of topological G­
modules if 

(1) all the a(i) are topological G- homomorphisms, 

(2) the diagram is exact, i.e., Kera(i+1) = ImG'(i) for 
1 .,; i .,; n - 2. 

If all the A (i?i) are Polish G-modules, we shall say 
't 

that we have an exact sequence of Polish G- modules. 

Now consider an exact sequence 

of Polish G- modules. As A" is Hausdorff and 1T is con­
tinuous,ImL = Ker1T is closed in A and thus L(A~,) is a 
Polish G-module. By a theorem of Banach (Ref. 16, 
Satz 9; cf. also Ref. 17, §35, V), the mapping L I (A' -7 L(A'» 
is a homeomorphism and thus L is a closed mapping. 
In addition 1T is an open mapping. In fact, let 

1T' 1T" 
A ---? AI L(A') ---? A" 

be the canonical factorization of 1T, where 11' and 11" are 
continuous group homomorphisms with 11' the canonical 
surjection and with 11" bijective. As the quotient group 
AI L (A') is POlish, we may apply the theorem of Banach 
quoted above and conclude that 11 is open because 11" is 
a homeomorphism. 

Let a:A. ~~~t be a topological G-homomorphism. 
We denote by G'the homomorphism of cochain com­
plexes 

C*(G,A v) -7 C*(G,A~,) 

~uch that 5(j) = a 0 f for all f E: C P(G ,A v) if p > 0 and 
a(f), = O'(j) for all f E: A..,. Since a is continuous, 
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and we denote by lib the homomorphism of cochain 
complexes 

Theorem 1: Let C be a topological group and let 

be an exact sequence of Polish C- modules. Then 

- -
&: 0 -----? C*(C,A't.) ~ C*(C,A'I<) ~ C*(C,A~ .. ) -----? 0 
~d _ _ 

- * Lb * 1T b * ~h: 0 -----?C b (C, A't.) -----7C b (C, A'I<) -------'--?>C b (C, A ~ .. ) ---7 0 

are exact sequences of cochain complexes. 

Proof: The exactness of & is well known,14 and 
_can easily be checked directly. In order to prove that 
&b is exact too, one has to show, for each P E Z, the 
exactness of the diagram 

_ q i~ 
~ p" : 0 ---7 Cp" (C,A 't.) ---7 C~ (C,A '1<)-----7 

CP"(C,A~")---7 O. 

This is obvious if P "" O. If P > 0, we first notice that 
the injectivity of L implies that of 7~; furthermore, 
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because 1Tot = O. LetfE Kern~. Asf(CP)~ L(A't.), 
there is one ~d only one mapping f' E CP(G, A ~.) such 
that f = L 0 f'. But, L being injective ~d continuous, the 
image under L of any Borel set of A' is a Borel set of A 
(Ref. 18, §6, Cor. to Theoreme 3) ~d therefore f' E 
C~(C,A't.). On the other hand ""i'i,U/) = f, so that Kernp"~ 
Im7~ and hence Kerip" = Im7~. Now take t" E CP,,(C,A; .. ) 
and choose a normalized section a associated with 1T as 
follows. Since L (A ') is a closed subgroup of A, there 
exists a Borel set Bo of A such that, for each a E A, 
-B 0 n (a + L (A'» is a set with one ~d only one element 
(Ref. 5, Lemma 3). Thus, if Bo n L(A/) = ao' B = Bo - ao 
is a Borel set of A with B n L(A/) = {O} and B n (a + L(A'» 
is a set with one ~d only one element for all a EA. 
There exists a unique mapping a: A" -7 A such that, for 
any a E A, 

(a o 1T)(B n (a + L(A/») = B n (a + L(A'» 

and, obviously, a is a normalized section aSSOCiated with 
1T. In addition a is a Borel mapping: If C is ~y Borel 
set of A, then B n C is a Borel set too ~d 

a-1 (C) = a-1 (B n C) = 1T(B n C) 

is a Borel set of A" because 1T I B is injective and con­
tinuous. Therefor! oot" E CP,,(C,A'I<)' ip" (a ot") -=f", and 
we conclude that rrp" is surjective. • 

By the theorem of Appendix B one gets 

Corollary: Let C ~d ~ be as in Theorem 1. Then 

70 i o liq 71 
0---7 HO(C,A't.) ~ HO(C,A'I<)~ HO(C,A~n) -~ H1(C,A~.) ~ ••• 

6P:1 ie ie 6P 7p+ 1 
... -4 HP(C,A't.) ---7 HP(C,A'I<) ---7 HP(C,A~ .. ) ~ HP+l(C,A't.) ~ '" 

and t:' - 0 
I \L b)2 0 (1T b)£ "O(H I (7 b)i o ---7 H~(C,A'I<') - Hb(C,A'I<) ---'--'" H~(C,A'I<") ----." Hl(C,A".) ---'--'" ••• 

15/-,-1 (7 )P (;J~ liP (7 )P+1 
••• ~ HP,,(C,A't.)~ HP,,(G,A'I<) - H1j,(C,A~ .. ) ~ H1j,+1(C,A~.) ~ ••• 

are exact sequences of Abelian groups. 

3. LOW DEGREE COHOMOLOGY AND TOPOLOGICAL 
GROUP EXTENSIONS WITH ABELIAN KERNELS 

Let C and A be topological groups, where A is Abelian, 
and let 'l! be a topological operation of G on A. For 
p -= 0,1,2, the groups HP(C,A '1<) and HI>" (C,A '1') have the 
following Simple interpretations. 

(i) The groups HO(C,A ... ) and ZO(C,A ... ) (resp.H~(C,A'I<) 
and Z~(C,A'I<» may be trivially identified ~d then 

HO(C,A,,) -=H~(C,A>I-) -=AG. 

(ii) The elements of Z1(C,A .. ) are called crossed homo­
morphisms of C into A and the elements of B 1 (C, A ~) 
are the principal crossed homomorphisms. Hence 
H1(C,A .. ) is the group of equivalence classes of crossed 
homomorphisms modulo the prinCipal ones. If C is a 
Polish group ~d if A>t is a Polish C-module, then 

Z~(C,A'i.) -= Z~(C,A'I<) 

and so 

This can be shown as follows, using an argument of 

J. Math. Phys., Vol. 15, No.8, August 1974 

Banach (Ref. 16, Satz 6 and Ref. 19, Chap. I, Theoreme 4). 
If f E Z~(C, A >1-)' then there exists a meager subset M of 
C such that fiG - M is continuous (Ref. 17, §28, I and 11). 
Let g E C and let (g n) be ~y sequence of elements of C 
converging to g. The set U g:1M -= M I is meager too ~d 

n n 

there exists g' E C - M I because C is a Baire space 
(Appendix A). It follows that gng' E C - M for all n EN 

and thus 

limf(gn) -= limf(gng' ) - lim '.£I(gn)f(g') -= f(g). 
n....-)O() n-1oOO n--JoOO 

This c~ be performed for any g E C, and so f is con­
tinuous. 

(iii) The cohomology groups H2(C,A'I<) ~d H~(C,At) are 
related to equivalence classes of extensions of C by A. 

We recall that ~ extension of C by A 20 is ~ exact 
sequence 

~:0~A~E4C-71 (3.1) 

of groups.21 This means that in diagram (3.1) E is a 
group and the arrows are group homomorphisms with 
L injective, p surjective, and 

Kerp = 1m L • 
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We say that E is the group obtained from the extension 
~ of G by A. By the axiom of choice there exists a nor­
malized section (J associated with p. Let '.II be the group 
homomorphism of G into Aut(A) such that 

L(w(g)a) == (J(g)L(a)(J(g)-l (3.2) 

for all g E G and all a EA. Then A .. is a G-module and, 
as w is independent of the section (J chosen, one says 
that ~ is an extension of G by A .. (or, alternatively, an 
extension of G by A relative to '.II). We shall identify A 
and dA) through L and describe an extension of G by A 
as an ordered pair (E, p), where p : E -7 G is a surjec­
tive grpup homomorphism such that Kerp == A. 

Two extensions ~ and ~' of G by A are said to be 
equivalent if there exists a group homomorphism y 
such that the diagram 

(3.3) 

is commutative. Note that actually y is a group iso­
morphism and that if ~ is an extension of G by A t' then 
any extension of G by A equivalent to ~ is an extension 
of G by A"j< too. 

For any operation '.II of G on A, the set Ext(G,A.) of 
equivalence classes of extensions of G by A to can be 
given the structure of an Abelian group with the so 
called Baer addition14 as the law of composition. 

A topological extension 

~t:O-?A ~ E"'£"'" G-? 1 

of G by A is a group extension with the following addi­
tional requirements: 

(a) E is a topological group; 

(b) L I (A -7 L (A» is a homeomorphism; 

(c) p is continuous and open. 

Notice that the mapping deduced from p by passing to 
the quotient by L(A) is a homeomorphism by virtue of 
(c). The operation '.II of G on A given by (3.2) is topo­
logical; thus we have a topological G- module A to and ~ t 
is said to be a topological extension of G by A t (or of 
G by A relative to '.II). Again we shall identify A and 
L(A) through L and describe a topological extension of 
G by A as an ordered pair (E, p), where E is a topo­
logical group and p : E --t G is a surjective, open, and 
continuous group homomorphism such that Kerp == A. 

Two topological extensions ~ t and ~~ of G by A are 
said to be equivalent if there is a topological group 
isomorphism y such that the diagram (3.3) is commu­
tative. 

Let G and A be Polish groups and let '.II be an arbi­
trary topological operation of G on A. With the Baer 
addition as the law of composition (for details see 
Appendix C and Ref. 22), the set Extt(G,A t ) of equiva­
lence classes of topological extensions of G by A t be­
comes an Abelian group. 

Note that if G and A are Polish groups, then E is a 
Polish group too: It is Hausdorff, second countable, and 
complete by Proposition 3.1 of Ref. 23 and thus metriz­
able (Ref.1B, §3, Prop. 1). Moreover, if G, E, and A are 
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Polish, then the continuity of Land p already implies 
that L I (A -? L(A» is a homeomorphism (hence L is 
closed) and that p is open. This can be shown by the 
same argument used in the case of an exact sequence of 
Polish G-modules (see Sec. 2). 

Now, we come back to the cohomology groups H2(G,A .. ) 
and H~ (G, A .. ). As is well known, 13,14 there exists a 
group isomorphism 

a: Ext(G,A"j<) -7 H2(G,A",) 

such that if [(E,p)] E Ext(G,A'j»' then 

O'([(E,p))) =[f] E H2(G,A"j<)' 

wherefE Z2(G,A'j» is the factor set of (E,p) defined 
by a normalized section (J associated with p, Le., it is 
the mapping of G x G into A such that 

f(g,g') = (J(g)(J(g')(J(gg')-l. 

The elements of the equivalence class 0'-1([0]) are said 
to be the inessential extensions of G by A"j<' If G is a 
Polish group and if A '" is a Polish G- module, a weaker 
form of this result may be proven for topological group 
extensions as follows. 

Lemma 1: Let E and G be Polish groups and let 
p : E --t G be a continuous surjective group homomor~ 
phism. Then there exists a normalized Borel section 
associated with p. 

Proof: Once we have noticed that Kerp is a closed 
subgroup of E, we apply Lemme 3 of Ref. 5 as in the 
proof of Theorem 1. • 

Theorem 2: Let G be a Polish group and let A It 

be a Polish G-module. Then there exists an injective 
group homomorphism 

(3.4) 

of Extt(G,A .. ) intoH~(G,A .. ),wherefis the (Borel) 
factor set of (E, p) defined by a normalized Borel sec­
tion associated with p. 

Proof: Let (E, p) be an arbitrary topological ex­
tension of G by A... By Lemma lone has a normalized 
Borel section (J associated with p, and therefore, if f is 
the (Borel) factor set defined by a, we may show the 
existence of the mapping a b of (3.4) as in the case of 
group extensions without topology (see Ref. 14, Chap. IV, 
Theorem 4.1). 

It suffices to notice that 

(i) f' is the factor set of (E, p) defined by a normalized 
Borel section (J' associated with p if and only if 

h :g ~ a'(g)a(g)-l 

is a Borel mapping of G into A such that f' = f + Oh; 

(ii) if (E', p') E [(E, p)] and if y is the topological group 
isomorphism of the commutative diagram (3.3), then 
yo a is a normalized Borel section associated with p' 
and f is the factor set of (E', p') defined by yo (J. 

Again, it is clear from the definition of the Baer 
addition that the mapping, Ci b is a group homomorphism 
(cf.AppendixC). In order to prove the injectivity of Ci b ' 

let us first make two preliminary remarks. 
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(1) All the elements of the equivalence class Q b ([ (E ,p)]) 
== [J] are Borel factor sets of (E, p) defined by norma­
lized Borel sections associated with p [cf. (i) above]. 

(2) Suppose (E, p) is such that 0' b ([ (E, p)]) == 0 (the 
equivalence class [0]), and let (J be any normalized 
Borel section associated with p and defining the factor 
set O. Then a is a Borel group homomorphism of a 
Polish group into a Polish group and thus continuous 
by a theorem of Banach already mentioned. It follows 
that the surjective mapping (3 : E --'> A given by 

(3(e) = e(J(p(e) )-1 

is continuous too. Furthermore, any element e of E 
may be written as (3(e)a(p(e» and thus the bijection 

e H ((3(e), a(p(e))) (3.5) 

of E onto A x a(G) is a homeomorphism. 

Now, let (E, p) and (E', p') be two extensions of G by 
A", such that 

By virtue of the remark (1) above, we can choose two 
normalized Borel sections a and a' associated, res­
pectively, with p and p' and defining the factor set O. 
A group isomorphism y: E --'> E' making commutative 
the diagram (3.3) is defined by 

y(e) = (3(e)a'(p(e». 

Using the homeomorphism (3.5), one sees easily that y 
is continuous. The same argument shows the continuity 
of y-l, because 

y-l(e') = (3'(e')a(p'(e'» 

for all e' E E'. • 
Remark 1: Mackey has proven that if G and A are 

locally compact second countable groups, then 0' b is a 
group isomorphism.s Moore claims that this is also 
true in the case of G locally compact second countable 
and A Polish. l1 

Remark 2: It follows from the proof of Theorem 2 
that if (E, p) is any element of the equivalence class 
o'b1(0), then E is topologically isomorphic to A x",G, 
the external topological semidirect product of G by A 
relative to >l1 .24 The elements of 0''b1 (0) are the inessen­
tial topological extensions of G by A y' 

Remark 3: If E, G, and p are as in Lemma 1, there 
is not, in general, a continuous section associated with 
p even if E and G are connected Lie groups.22 

Remark 4: A topological extension (E,p) of G by 
A is said to be quasifibered23 if there exists a norma­
lized section a associated with p and continuous at 1. 
For each topological operation >l1 of G on A, the set 
Ext~F (G,A",) of equivalence classes of quasifibered 
extensions of G by A", is a subgroup of Extt(G,A",). If 
G and A are first countable and Hausdorff, then 

Extt(G, A It) = Ext~F (G, A ,,) 

(Ref. 25, Theorem 2; cf. Ref. 23, Prop. 3. 6). 
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4. LOW DEGREE COHOMOLOGY OF TOPOLOGICAL 
SEMIDIRECT PRODUCTS 

Let G be a topological group, let K be a normal sub­
group of G, and let A '" be a topological G- module such 
that >l1(k) = IdA for all k E K. Suppose that the group G 
operates on K by 

(g,k) H g(k) =gkg-l, 

and consider the o[leration -$P of G on Cib(K,A"'IK) 
(P E Z) such that >li0 = >l1 and, if p > 0, 

for all f E Cib(K,A", IK) and all (k v ••• , k p) E KP. For 
any p E Z and any g E G, 

(4.1) 

thus Zib (K,A '" I K) is stable for WP and we can consider 
the operation 

-$~:g H -$P(g) I (Zib --'> Zib) 

of G on Zib(K,A>jo IK) induced by -$p. B~sides, (4.1) 
shows that we have also}I1 operation >l1§ of G on 
Bib (K, A >jo I K) induced EY >l1~. By passing to the quotient 
we get an operation >l1 P* of G on Hib(K,A", I K). From now 
on these operations will be tacitly understood. 

The following lemma is a generalization of a result 
of Mackey (Ref. 6, Theorem 9.4). 

Lemma 2: Let G be a topological semidirect 
product of S by K and let A" be a topological G- module. 
Suppose that >l1(K) = {Id A}. Then, if I' is any element 
of Z~(G,A,,),there existfE [f'].J1 E Z~(K,A"'IK),a 
Borel mapping f2 of K x S into A, and f3 E Z~(S,A"I s) 
such that 

f(ks,k's') ==f1 (k, s(k')) + f 2(k', s) + f 3(s, s') (4.2) 

for all k, k' in K and all s, s' in S. The mappings fl and 
f2 satisfy 

(i) f 1 (s(k),s(k'» = >l1(s)f1 (k,k') + f 2(kk',s) 

and 
- f2(k, s) - f 2 (k', s) 

for all k, k' in K and all s, s' in S. Conversely, given 
fl E Z~(K,A"'IK)' a Borel mapping f2 of K x S into A, 
and f3 E Z~ (S, A .. IS) satisfying (i) and (ii), the mapping 
fof G x G into A defined by (4.2) belongs to Z~(G,A>jo). 

Proof: Throughout this proof k, k', and k II (resp. 
s, s', and s") will denote arbitrary elements of K (resp. 
of S). Using repeatedly the fact that f' is a 2-cocycle 
and that >l1(K) == {Id A}' we obtain 

f'(ks, k's') = f'(k, s(k'» + f'(s, s') + f'(s, k') - f'(s(k'), s) 

- f'(k, s) - >l1(ks)f'(k', s') + f'(ks(k'), ss'). 

Let f2 be the Borel mapping of K x S into A given by 

f 2(k, s) =f'(s,k) - f'(s(k), s). (4.3) 

As G is a semidirect product, there exists h E C6(G,A>jo) 
such that 

h (k s) = I' (k , s). 
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Hence 

f'(ks,k's') =f1(k,s(k'» + f 2(k',s) + f 3(s,s') 
- M(ks,k's'), 

where f1 = f' I K x K and f3 = f' I S x S, and it follows 
that 

f= (f' + M) E [f'J 

satisfies (4.2). Now 

of(ks, k's', k "s ") = - fl (k, s(k'») + >I1(S)fl (k', s'(k "» 

- Nks(k'),(ss')(k"»+ fl(k, s(k's'(k"») 

- f 2(k', s) + >I1(s)f2(k", s') - f 2(k", ss') 

+ f 2(k's'(k"), s), (4.4) 

and, by virtue of (4.3), 

Since of= 0 we see, by putting k = s' = 1 (resp.k' = 1) 
in (4.4), thatf1 andf2 satisfy (0 [resp.f2 satisfies (ii)]. 

Conversely, let fIE Z~ (K, A "+ I K)' let f2 be a Borel 
mapping of K x S into A, and let f3 EO Z~(S,A .. is)' Sup­
pose that these mappings satisfy (i) and (ii). If f is 
defined by (4.2), then, using (i) and (ii) in (4.4) as well 
as the fact that fl is a 2-cocycle, we get of = o. • 

Remark: Condition (i) of Lemma 2 is equivalent to 

(i') ~~s)f1 =f1 + of(~) 

for all s E S, where the normalized Borel mapping 
f(~) : K ---7 A is given by 

f(~)(k) = - >I1(s)f2(k, s-I). (4.5) 

Condition (ii) is equivalent to 

(ii') f(sf) = j<~) + ~1(s )f(~) 

for all s, s' in S. 

Suppose that f 1 E Z~ (K, At) K) and a Borel mapping 
f2 : K x S ---7 A satisfy (i) and (ii). If fl E U 1], then there 
exists h E CHK,A tIK) such thatfl =f1 + oh and we 
have, for each s E S, a Borel mapping 

f'.}") = f(~) + ~1(s)h - h 

of K into A, where f(~) is given by (4.5). It is easy to 
check that fl and f~(S) (s EO S) satisfy (i') and (ii'). Hence 
[f1] E H~(K,At IK) and we conclude that 

( f 1 E Z~ (K, A t I K) and there exists ) 
H~(K,AtIK)' = 'Ul] a Borel mappingf2:K x S ---7 A f 

I such that f1 and f2 satisfy (i) and \ 
( (ii) of Lemma 2 , 

is a subgroup of H~(K,A tl K)S, 

Proposition 1: Let G be a topological semidirect 
product of S by K and let A t be a topological G-module 
such that >I1(K) = {Id A}' Then 

(i) H~(G,At) =H~(K,AtIK)S, 
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Proof: Throughout this proof again k, k' (resp. s, s') 
will denote arbitrary elements of K (resp. of S). Part 
(i) of the proposition is a consequence of >I1(K) = {Id A}' 

Proof of (ii): There is a mapping 

of Z&(K,A .. IK)S x Zt(S,A. IS) into Zt(G,A",) such that 

In fact, 

f(ksk's') =f1(ks(k') + f 2(ss') 

=fl(k) + >I1(s)f1(k') + f 2(s) + >I1(s)f2(s') 

=f(ks) + lJ!(ks)f(k's'). 

Obviously a is a group homomorphism, and moreover 
it is surjective because, if f EO Zt(G,A >/<), then 

(~~(s)j)(k) = >I1(S)f(s-l) + f(k) + f(s) =f(k), 

and so f = a(f I K,! I S). Let R be the equivalence rela­
tion in Zt(K,Atlf)S x ZHS,A>tjs) defined by the (nor­
mal) subgroup 10j x B& (S,A tl s), and let R' be the equi­
valence relation in Zt(G,A.) defined by Bt(G,A +). Note 
that 

(f1,!2) = (f'i.,!:;') (mod R) 

implies 

f1 =f'i. and f~ =f:;' + 002, 

where a2 EA. Therefore, 

a(f1,!2)(ks) =f1(k) + f 2(s) = a(f'l'!:;')(ks) + 00 2(ks), 

Le., a is compatible with Rand R'. By passing to the 
quotients, we get a surjective group homomorphism 

a.:H&(K,AtIK)S x H&(S,A. ls) ---7HHG,A.). 

We end the proof of (ii) by showing that a. is injective 
too. Let (fVf2) E Z6(K,AtIK)S x ZHS,A tls ) be such 
that 

Then a(fvf2) = Oa, where a E A, Le., 

f 1(k) + f 2(s) =- a + >I1(s)a, 

whence fl = 0, f2 E Bt(S,A "'I s), and [(fVf2)] = [(0,0)]. 

Proof of (iii): Consider the set E of all the ordered 
pairs (fVf2) such that 

(1) f1 EO Z~(K,A"IK) andf2:K x S ---7A is a Borel map­
ping, 

(2) fl and f2 satisfy (i) and (li) of Lemma 2. 

By Lemma 2 there is a mapping 

(ii) 

(iii) 
of E x Z~(S,A"+ I s) into Z~(G,A i) given by (4.2). Define 

H~(G,A .. ) "'" H~(K,A ~ I K)' x H~(S,A ~ IS)' provided that an equivalence relation R in E x Z~(S,A '" I s) as follows: 

Hl(S,Hl(K,A )-1 ) = {O}. (fl,!2,!3) = (fl,!2,!3) (modR) (4.6) 
b '" lK't. IS 

J. Math. Phys., Vol. 15, No.8, August 1974 
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if and only if 

f1 =fl (modB~(K,A"'IK» and Is =f3 (modB~(S,A"'IS))· 

If R' is the equivalence relation defined by B~(G, A '1<) in 
Z~ (G, A ,,), then we shall show that G' is compatible with 
Rand R', i.e., that (4.6) implies 

G'(fl'f2.!3) = G'(jl.!Z.!3) (mod R'). 

Put 

J = G'(fl.!Z.!3) - O'(f1'f2'/3); 
then 

J(ks, k's') = 6h 1 (k, s(k')) + ]2(k', s) + oh3(s, s '), 

(4.7) 

where h1 E q(K'~"'IK)' J2 =f2 - h,and h3 E q(S,A"'ls)· 
The mappings hl'f2' and h3 satisfy the conditions 

~~(S)Oh1 = Oh1 + o](~) 
and 

J('f) = J(~) + ~l(S )J(';) , 

where J(~): K --> A is given by 

(4.8) 

(4.9) 

We identify canonically H~(K,A", IK) with Zl(K,A", I K) 
and consider the mapping 

of 5 into H~(K, A '" I K). This is meaningful since 

o(h(s)) = ~i(s)oh1 - oh1 - oJ(~) = 0 

(4.10) 

by (4.8), Le., h E C1(S,H1(K,A \~l ). Furthermore, 
b ",IK",*IS 

h E Zl(S, H1(K, A \A 1 ), because 
b "'IK"'*ls 

6h(s, s') = h(s) + +~(s)h(s') - h(ss') 

= ]<'r) - J(~) - ~l(s)J(~) = 0 

on account of (4.9). By assumption, there is h 1. E 

H~(K,A"'IK) such that 

h(s) = - hI + -¥;(s)h1 
and thus, by virtue of (4.10), 

We may choose h' E Cl(G,A,,) such that h'l 5 = 0, 
h'l K = h1 - hl' and h'(ks) = h'(k); then 

oh'(ks,k's') =]2(k',s) + oh 1(k,s(k')). (4.11) 

On the other hand, we may pick out an element h" of 
q(G,A",) such that h"(ks) = h3(s), and then 

oh"(ks, k's') = oh3(s, s'). (4.12) 

Therefore, by (4.7), (4.11), and (4. 12) we see that the 
normalizec! Bo!:el mapping Ii = h' + h" of G into A", 
satisfies oh = f, and thus G' is compatible with R and 
R'. By passing to the quotients, we get a mapping 

G'* :H~(K,A '" I K)' x H~(S,A '" IS) --> H~(G,A ",) 

which is surjective by Lemma 2. One can easily see 
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that G' * is a group homomorphism; it remains to show 
its injectivity. For this, let [f1] E H~(K,A", IK)', [/3] E 
H~(S,A.IS),and suppose 

Then there exist h E C~(G,A",) and a Borel mapping 
f2:K x S -->A such that (jl'f2) E E and 

Oh(ks,k's') =f1(k,s(k')) + f 2(k',s) + f 3 (s,s'). (4.13) 

Putting s = s' = 1 in (4.13) we get f1 = o(h I K), and 
putting k = k' = 1 we get f3 = o(h I S); hence G' * is injec-
tive. • 

Remember the following definitions: 

(1) An Abelian group A is said to be divisible if, for 
any n E N* (the set of all integers> 0), nA = A. 

(2) One says that an Abelian group A is torsion free if, 
for any a E A different from 0, the relation na = 0 
with n in N implies n =0. 

Proposition 2: Let G,K,S,andA", be as in Proposi­
tion 1. Suppose in addition that A is divisible and torsion 
free and that S is a finite group. Then 

(i) H~(G,A",) =H~(K,A'I<IK)S; 

(ii) H~(G,A",) Rl HS(K,A"'IK)S; 

(iii) H~(G,A.) Rl H~(K,A"'IK)" 

Proof: As S is finite and as A is divisible and 
torsion free, then 

H~(S,A"'ls) =HP(S,A",:s) = {o} 

for all P > 0 (Ref. 14, Chap. IV, Corollary 5.4). The re­
sult follows from Proposition 1 once we have shown 
that 

Hl(S,H1(K,A \Al ) = {o}. 
b 'l<IK"'*IS 

We get this because the group H~(K,A", I K) = Zt(K,A'I< IK) 
is divisible and torsion free. For were not Z~(K,A '" I K) 
torsion free, then given f E Z~(K,A '" I K)'/ '" 0, we could 
find n E N* such that nf = 0 in contradiction with the 
assumption that A is torsion free. Now take any f E 

Z~(K,A", IK) and any n E ~. Since A is divisible and 
torsion free, then, for every k E K, there is a unique 
ak E A such that f(k) = nak • Besides, the mapping 
f': K --> A such that f'(k) = ak is an element of Zl(K, A '" I K). 
So,/ = nj' and Z~(K, A '" I K) is divisible. • 

Proposition 3: Let G be a topological semidirect 
product of S by K and suppose S finite. Let F be a field 
of characteristic 0 and let A '" be an F-linear topological 
G- module such that \}I(K) = {Id A}' Then 

H~(K,A"'IK)S =H~(K,A"'IK)'. 

The proof rests on the following. 

Lemma 3: Let G,K,S,F,andA", be as in PropOSi­
tion 3. Then 

H~ (K,A '" I K)S Rl Z~(K,A '" I K)S/ oq,-l(K,A '" I K)S 

for all P E z. 
Proof: Throughout the proof p will denote an arbi­

trary element of Z. The groups CJ;,(K,A", I K),ZJ;,(K,A", IK)' 
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and B~(K,A "IK) are vector spaces over F in an obvious 
way and, furthermore, the F-linearity of A .. implies the 
F-linearity of the G-modules CP (K,A )"'P' 

b "IK >l< 

ZP (K, A \~w and BP (K,A Lj>' Since 5 is finite, 
b "1K'>l<z b .. 1K'"tB 

there are 5- modules (T P ) A 1> and (UP) ~ h such that 
b .. TIS b ""u 1 S 

ZP(KA )Ap =BP(KA \Ap EB(TP) 
b ' .. 1 K " z 1 S b'" 1 K' >l< B 1 S b +PT IS 

(4.14) 
and 

(4.15) 

where EB denotes the direct sum of sub-S-modules (Ref. 
26, Chap. XVIII, Theorem 1). The mapping 

f3:[J] (modB~(K,A>l<IK)S) 1-.> [J] (modB~(K,A"IK)) 

of Z1(K,A"IK)S/B~(K,AYhK)S into H~(K,Ay IK)S is an 
injective group homomorp ism. It suffices to notice 
that if f,j' are in Z~(K,Ay IK)S, then [J] = 
[i'] (modBPb(K, A .. 1K)) implies [1] = [1'] (modBib(K ,AyIK)S). 
We will showthatf3 is surjective too. Letf E ZPb(K,A"IK)' 
and suppose [1] E H1 (K, A .. I K)S, This means that, for 
any s E 5, there is h(s) E C1- 1(K,A" 1 K) such that 

~Pz(s)f = f + oh(s). 

By virtue of (4.14) we have a (unique) decomposition 

wherefB E BPb(K,A"IK) andfT E TI),. Moreover, 

~lB(s)fB + ~PT(s)fT = fB + fT + oh(s) 

implies 

for all S E 5, i.e',!T E Z~(K,A"t IK)S, As 

we conclude that f3 is surjective. We end the proof by 
showing that 

B~(K,A"IK)S = oC~-1(K,A"tIK)S, 

For this purpose we consider h E C~-1(K,A >l< I K) such 
that oh E BP,;(K,AyIK)s. 

By (4.15) there is a (unique) decomposition 

h=hz+h[ft 

where h z E Z~-1(K,A"t IK) and huE U~-1. It follows that 
hu E C~-1(K,A>l<IK)S, 

In fact, 

o(~P-1(s)h - h) = 0 

for all s E 5, and this implies 

whence 
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for all s E S. As Oh u = oh, we conclude that 

The inclusion 

is obvious. • 

Proof of Proposition 3: Let f E Z~ (K, A"t 1 K) and 
suppose [J] E H~(K, A"t I K)S, By Lemma 3 there exists 
an element!' of [J] n Z~(K,AYIK)S;hence [1] E 

H~(K, A"t I K)' because f1 =!' and h = 0 satisfy (i) and 
(ii) of Lemma 2. • 

A vector space over a field of characteristic 0 is 
divisible and torsion free; therefore we have the follow­
ing. 

Corollary: Let G,K,S, F, andA"t be as in Pro­
position 3. Then 

H1 (G, A ,,)~HIb (K,Ay I K)S~ Zib (K,A"t 1 K)SI oCIb-1(K,A"t I K)S 

for p == 0,1,2. 

We emphasize the analogy of this result, based on the 
assumptions that 5 is finite and that A is a vector space 
over a field of characteristic 0, with a result in the 
cohomology theory of Lie algebras (Ref. 27, Theorem 1), 
where the role of 5 was played by a semisimple sub­
algebra. 

Remark 1: If A" is an F-linear topological G­
module, then the groups H~(G,A"t) and H~(K,A>l<IK) 
(P E Z) are (quotient) vector spaces over F and the 
isomorphisms in Lemma 3 and in the corollary to Pro­
position 3 are vector space isomorphisms. 

Remark 2: Lemmas 2 and 3, Propositions 1,2, and 
3, and the corollary to Proposition 3 are also valid if 
we replace the Mackey- Moore by the Eilenberg­
MacLane cohomology. Once the subscripts "b" have 
been taken away and "Borel mapping" has been re­
placed everywhere by "mapping," the statements and 
the proofs are verbatim the same. Obviously, in the 
Eilenberg- MacLane cohomology we obtain the same 
results also if we drop all the assumptions concerning 
the topology. 
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APPENDIX A: BOREL, BAIRE, AND POLISH SPACES 

Let E be a set. A Borel structure on E (or a a-field 
of subsets of E) is a collection IB of subsets of E such 
that 

(i) E E IB, 

(ii) if E' E IB, then E - E' E IB, 

(iii) if (En) is any sequence of elements of IB, then 
UE E lB. 
n n 

Let m be any collection of subsets of E. The smallest 
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Borel structure on E containing m is said to be the 
Borel structure generated by m. The set E endowed 
with a Borel structure \B is called a Borel space and 
the elements of \B are called the Borel sets of E. The 
concepts of induced Borel structure and Borel subspace 
(resp. product Borel structure and product Borel space, 
resp. quotient Borel structure and quotient Borel space) 
are defined in analogy with the corresponding topologi­
cal concepts.1 5 •28 Let E and E' be Borel spaces. A 
mapping f: E --) E' is said to be a Borel mapping if, for 
any Borel set B' of E', j-1(B') is a Borel set of E. 
Suppose now that E is a topological space and let u: be 
the collection of all closed sets of E. The set E en­
dowed with the Borel structure generated by u: is called 
the Borel space associated with the topological space 
E. Whenever we refer to a topological space as a Borel 
space, we taCitly understand the associated Borel space. 
So we can freely speak of Borel mappings of a topo­
logical space into a topological space. Notice, in parti­
cular, that any continuous mapping is a Borel one. For 
details and results concerning Borel spaces and Borel 
mappings see Refs. 15, 17,28. 

A subset S of a topological space E is said to be 
nowhere dense (or rare) if E - 5 (the complement of 
the closure of S) is dense in E, and a subset M of E is 
said to be meager (or oj Baire I. category) if it is the 
union of a countable family of nowhere dense sets. A 
topological space E such that E - M is everywhere 
dense for each meager subset !vi of E is called a Baire 
space. Any locally compact space, as well as any me­
trizable space with a distance compatible with the topo­
logy and for which the space is complete, is a Baire 
space (Ref. 18, §5, Theoreme 1). 

A topological space P is said to be a Polish space if 
it is second countable, metrizable, and if there is a 
distance compatible with the topology and making P 
into a complete space. The product of a countable 
family of Polish spaces is Polish, as well as any closed 
subspace of a Polish space (Ref. 18, §6, Prop. 1). We 
say that a topological group G (resp. a topological G­
module A '1<) is a Polish group (resp. a Polish G-module) 
if the topological space G (resp.A) is Polish. In parti­
cular, any second countable locally compact group is 
Polish (Ref. 29, TG III, §3, Cor.1 to Prop. 4 and Ref. 18, 
§3, Prop. 1). The quotient group of a Polish group by a 
closed normal subgroup is Polish. In fact it is metriz­
able and complete by Prop.4, §3 of Ref. 18, and it is 
second countable because the canonical surjection is 
continuous and open. 

APPENDIX B 

1. THE COHOMOLOGY OF A COCHAIN COMPLEX 

An Abelian group C* (written additively) is called an 
(internally) Z-graded group if it is the direct sum of a 
family (CP)PEZ of subgroups. We identify canonically C· 
and the external direct sum GJ C p. The elements of C P 

PEZ 
are said to be the homogeneous elements of C* of degree 
p. Let C'* be also a Z-graded group and let r E Z. A 
group homomorphism a: C* --7 C'* is said to be a Z­
graded group homomorphism of degree r if a(CP) ~ 
C'h y for all p E Z, and we denote al(CP -> C'P+r) by 
a p. If r = 0, we say simply that a is a Z- graded group 
homomorphism. A cochain complex (of Abelian groups) 
is an ordered pair (C*, 0), where C* is a Z-graded group 
such that C P = {O} for all p < 0 and 0 : C* -> C* (the 
coboundary operator of (C*, 0)) is a Z-graded group 
homomorphism of degree 1 such that 000 = O. 
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It is now clear what an exact sequence of cochain com­
plexes is: a diagram 

* 01(1) * ) ()«2) 0!(n-1) (C* 
(C(1)' 0(1») ~ (C(2)' 0(2) ~ '" ~ (nj> o(n»), 

where the O!(i) are homomorphisms of cochain complexes 
and 

KerO:(i+1) = Imo(i) for 1 .,; i .,; n - 2. 

A cochain complex (C'*, 0') is said to be a subcomplex 
of (C*, 0) if C'P ~ CP for all p E Z and if 0' = 0 I C'*. 

Given a cochain complex (C*, 0) we can define, for 
any p E Z, the (Abelian) group ZP = Kero P of the p­
co chains and the group BP = ImoP-1 of the p-coboun­
daries. The quotient group HP = ZP/BP is said to be 
the cohomology group oj degree p of (C*, 0) and the 
family (H P) P EZ (or equivalently H* (C* , 0) = ffi H P) is 

PEZ 

called the cohomology of (C*, 0). 

If a: (C*, 0) -. (C'*, 0') is a homomorphism of cochain 
complexes then, for any p E Z, O!Pz = 01 (Z P -> Z' P) and 
a~ = 01 (BP -> B'P) are group homomorphisms. We 
denote by o~ the group homomorphism of HP into H'P 
deduced from O!~ by passing to the quotients. Given an 
exact sequence 

~ : 0 ---?> (C'*, 0') ~ (C*, 0) ~ (C"*, 0") ~ 0 

of cochain complexes, one can define a Z- graded group 
homomorphism of degree 1 

0(1 :H*(C"*, 0") --7H*(C'*, 0') 

called the connecting homomorphism for ~ (for a defini­
tion see Ref. 30, Chap. 1,2.1). Then oP(1= 0(1 I (H"P --7 
H' P + 1) is the connecting homomorphism of degree p. 

Theorem: If 

~: 0 ---')0 (C'*, 0') ~ (C*, 0) ~ (C"*, 0") .....--) 0 

is an exact sequence of cochain complexes, then 
LO lTo 00 Ll 

0-?H'0~HO~H"O~H'1~ '" 

OP-1 LP lTP oP LP+1 
···-4H'P---"!"'HP~H"P-4H'P+1~ '" 

is an exact sequence of Abelian groups. 

This theorem can be proved like Theorem 4.1, Chap. 
II of Ref. 14 (exact homology sequence). In order to 
obtain a proof for our case, it suffices to replace there 
homology by cohomology. 

2. THE EILENBERG-MACLANE COHOMOLOGY 

Let G be a group and let A .. be a G- module. A map­
ping f: GP -> A is said to be normalized if, for any 
(gl' .•• ,gp) E GP,j(gl'" .,gp) = 0 whenever 1 E 
{g l' ... ,~~. For any p E N* , let C P (G, A .. ) be the set 
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of all normalized mappings of GP into A. This set 
becomes an Abelian group by defining the addition as 
addition of values. For p ::::: 0 let CO(G, A ",) ::::: A, and put 
CP(G,A",) = {o} for allp < O. Then 

C*(G,A"j.) == EB CP(G,A",) 
PEZ 

is a Z-graded group. Consider the Z-graded group 
homomorphism 6 of degree 1 of C*(G,A",) into itself 
such that, if p > OA 

5f(gv ·.·,gP+1)::::: (~1)Pdf(gv' •• ,gp) 

+ lJE(gl)f(g2'" ·,gP+1) 

P 

+ ~ (- 1)1(gl"" ,gi,gigi~I' 
i= 1 

••• ,g P+1) 

for aUfE CP(G,A",) and all (gl' ••• ,gp+1) E Gp+1 (here 
g. means the omission of g i)' If P = 0, put 

of (g) :::: lJE(g)f 

for all f E A and all g E G. One checks easily that 
606 = 0; so (C* (G, A",), 6) is a cochain complex called 
an Eilenberg-MacLane cochain complex. We use the 
same symbol 5, defined as above, for all Eilenberg-
Mac Lane cochain complexes and for their subcomplexes, 
and so we write simply C*(G,A~ instead of (C*(G,AI/I)' 0). 
The groups ZP, BP,RP, and H*(C (G,A'I'» of the cochain 
complex C*(G,A '1') are usually denoted, respectively, by 
ZP(G, A 1/1)' BP(G,A 1/1)' H P(G,A",), and H*(G,A ",). 

APPENDIX C: THE BAER ADDITION 

Let G be a Polish group, let A '" be a Polish G- module, 
and let (E l' PI) and (E2' P2) be topological extensions of 
G by A "'. Consider the (topological) subgroup 

S ::={(e-1,e2)1 (e 1,e2) E E1 x E2 and Pl(e 1 ) =P2(e 2)} 

of the product group E1 x E 2 • Since S is closed in 
E1 x E2 (Ref. 29, TG I, §8, Prop. 2), it is a POlish-group. 
Moreover, 

A' ::::: {(a,- a) I a E A} 

is a closed normal subgroup of S and so we can con­
struct the Polish quotient group E ::::: 51 At. 

The group homomorphism 

p':(e 1,e2) H P1(e 1) ::=P2(e 2) 

of 5 onto G is continuous and open because the mapping 
(e l' e 2) H e 1 of S onto E 1 is continuous and open. More­
over, p t is compatible with the equivalence relation de­
fined by A' in S; so, by passing to the quotient, we get 
a continuous and open group homomorphism P of E onto 
G. Now let L be the injective group homomorphism. 

a H {a,1)A' 

of A into E. If t' stands for the group isomorphism 
a f-. (a, 1) of A onto A x {I}, then L = (11 I A x tl}) 0 L', 

where 11 is the canonical mapping of 5 onto sl A'. On 
the other hand, L' and lTi(A x {1} -> L(A» are homeo­
morphisms and therefore L I (A -} L(A» is a homeo­
morphism too. We identify A and L(A) through Land 
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notice that Kerp = A. Furthermore, if a 1 (resp. if (12) 
is a normalized section associated with P1 (resp. with 
P2)' then we have that the mapping 

of G into E is a normalized section associated with p 
and that, for any g E G and any a E A, 

a(g)aa(g)-1 ::= (a1(g), a2(g»){a, 1)(al(g)-1, a2(g)-1)A' 

= (lJE(g)a, 1)A' = lJE(g)a. 

Thus (E, p) is a topological extension of G by A '" and the 
mapping 

is a law of composition on the set of all topological 
extensions of G by A "'. Note that if f1 (resp. if f 2) is 
the factor set of (E l' P 1) (resp. of (E2' P2» defined by 
a 1 (resp. by a 2)' then f = fl + f2 is the factor set of 
(E, p) defined by (1 because 

a(g)a(g')(J(gg')-1 = (f1 (g, g'), f 2(g, g'»)A' 

= (f1(g,g') + f 2(g,g'), 1)A' 

=f1(g,g') + f 2 (g,g') 

for all (g,g') E G x G. 

Exactly as in the case of extensions of groups with­
out topology, one verifies14 that the law T is commuta­
tive, associative, and compatible with the equivalence 
relation R defined by means of the commutative dia­
gram (3.3) in the set of all topological extensions of 
G by A "'. The Baer addition on Ext t( G, A ",) is then the 
quotient law of T by R, i.e., the law of composition 

([(EVPl»)' [(Ez ,P2)]) I-> [(E 1,P1)] + [(E2,P2)] 

== [(E 1 ,Pl) T (E2 ,P2)]' 

Given a topological extension (E, p) of G by A "" we can 
consider the ordered pair (EO, pO), where EO is the 
opposite topological group of E (Ref. 29, TG III, §1, 1) 
and pO is the continuous and open group homomorphism 
e H p(e- 1) of EO onto G (with kernel A). So, (EO, pO) is 
a topological extension of G by A and one verifies, 
again as in the case of groups without topology, that it 
is an extension relative to >¥. Furthermore, 

[(E,p)] + [(EO, pO)] ::::: [(A xI/IG,pr2)]' 

In fact, put (E, p) T (EO, pO) == fE, p) and consider the 
closed subgroup 

G ::::: {(e-l, e)A' leE E} 

of E. The mapping K = piG is a topological group iso­
morphism of G onto G because G is a Polish group. 
Therefore, the group isomorphism 

y: (a,g) I--.c, aK- 1(g) 

ofAX"j,G onto E is a topological one. Moreover,jt
v 

establishes the equivalence of (Ax~G,pr2) and (E,p) 
(cf.Sec.3) because y(a, 1) = a and (poy)(a,g) = pr2(a,g) 
for all a E A and all g E G. One easily verifies 
that 

[(E,p)] + [(A x",G,pr2>J = [(E,p)] 
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once we have noticed that, if (E, p) T (A x t C, pr 2) = 
(E',p'), the mapping 

(e, (0, p(e))A' f-7 e 

of E' into E is a topological group isomorphism. Sum­
marizing, we have proven that Ext t( C, A t), equipped with 
the Baer addition, is an Abelian group with neutral ele­
ment [(A x ",G, pr2 )] and with 

[(E,p)] =- [(EO,pO)]. 
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A kind of topological extensions of a space-time group Q by an electromagnetic gauge group J are 
investigated in order to determine covariance groups of electrodynamics. Here Q stands for the 
Poincare group, for the Galilei group, or for their neutral components, and J is the Abelian group 
of all real-valued functions of class em (m E N or m = 00) defined in space-time. The topological 
groups J,J"Q so obtained, already inportant in the study of charged particles in external 
electromagnetic fields, are analyzed and placed in the general context of combining different 
symmetry groups. They are characterized by a given operation ct> of Q on J and by factor sets f 
such thatf(q,q') is a constant gauge function for all (q,q') E QXQ. It is shown that all these 
groups J,J"Q are topologically isomorphic to the external topological semidirect product of Q by J 
relative to <1>. 

1. INTRODUCTION 

According to the standard principles of relativistic 
mechanics and electrodynamics, the observables in the 
interaction with matter of a classical, Le., nonquantized, 
electromagnetic field are covariants 1 of the operations 
of two groups, namely Po (the connected component of 
the neutral element of the Poincare group P) and the 
electromagnetic gauge group J. It is also usually as­
sumed that this still must be true if we are able to 
quantize the fields. So, we are interested in combining 
Po and J into a single covariance group, i.e., in coupling 
space-time and electromagnetic gauge transformations. 
As this is a special case of quite a wide class of prob­
lems, we will put the present investigation in a more 
general frame by illustrating the guiding ideas with 
some well-known examples. 

A natural way for coupling symmetries of different 
kinds is to construct a group in which they appear as 
ingredients. This can be done sometimes very easily 
in the case where these different symmetries can be 
made to operate on a given set. 

As a first example we may mention the Poincare 
group P, which can be seen as a combination of the 
Lorentz group L and the group T of space-time trans­
lations. The elements of Land T are symmetries of 
relativistic physics and are transformations of the 
Minkowski space M. The coupling arises by considering 
the set of all ordered pairs p == (t, L) (t E T, L E L) 
of transformations of M (first L, then t) and by defining 
the products pp' as the result of successive transforma­
tions (first p', then p). This way leads uniquely to the 
Poincar~ group P as the external topological semidirect 
product2 of L by T relative to the natural operation of 
Lon T. 

The coupling of Lorentz transformations and space­
time translations is a minimal one, in the sense that L 
and T are canonically identified with subgroups of P. 
However, in physics there are also nonminimal couplings 
of symmetries. This is the case in crystallography 
where, by coupling macroscopic point symmetries 
(which are orthogonal transformations forming the 
crystallographic point group K) and microscopic trans­
lations (forming the group U of lattice translations, also 
called primitive translations), one gets a space group 
G. Now, K may be canonically identified with a subgroup 
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of G only if G is a so-called symmorphic space group.3 
For a nonsymmorphic space group this identification 
cannot be made. 3,4 

A symmorphic space group (resp. the Poincare group) 
is obtained from an inessential extension5 of K by U 
(resp. of L by T), and so we can say that the coupling is 
inessential. In a nonsymmorphic space group the coupl­
ing is said to be essential, because such a space group 
is obtained from an essential extension of K by U. Note 
that, a priori, even with an inessential extension we could 
have the case where the crystallographic point group K 
is n~t canonically identified with a subgroup of the space 
group G and therefore get a nonminimal coupling. In 
fact, K is embedded in G by choosing a complete set of 
(right) coset representatives, and the answer to the 
relevant question if this arbitrariness gives rise to 
a nonminimal coupling depends on whether different 
sections5 are physically equivalent or not. In the case 
of symmorphic space groups there is a physical equiva­
lence of all sections and the coupling is minimal. 6 

Returning to our particular problem, we note that the 
electromagnetic gauge group can be seen as an internal 
symmetry group because gauge transformations do not 
act on space-time. Therefore, we have a particular 
case of the problem of combining space-time and inter­
nal symmetry groups.7,8,9 Furthermore, even if the 
coupling is a minimal one, the group obtained is not 
purely of academic interest and can give rise to a deep­
er physical insight. This is shown by a well-known 
example: The study of the continuous unitary projective 
representations of Po gives results which are unexpect­
ed if one considers Lo and T as two independent groups. 

The construction adopted in this paper for combining 
Po and J follows closely the one used for the combina­
tion of L and T into the Poincare group P. We take as 
electromagnetic gauge group J the Abelian group of 
three-times continuously differentiable mappings of the 
Minkowski space Minto R (cf. Sec. 2). As both Po and J 
operate in a well-known manner on the space of MaxWell 
potentials, we consider the set of all ordered pairs 
g == (A,P)(A E J,p E Po) with an action on this space 
obtained by letting p act first and then A. The new fact 
is that, by requiring that the set J x Po should form a 
group operating on the space of Maxwell potentials, we 
do not get a unique group as in the case of P. Instead, 
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we obtain a whole collection {J<pofPo} of groups charac­
terized by the operation if> 0 of Po onJ and by well­
defined maps f of Pox Po into J such that, for any 
(P,p') E Po x Po' f(P,p'j is a constant gauge function. 

All the groups J <p fPo are candidates as covariance 
o 

groups of relativistic electrodynamics (classical and 
quantum). They are obtained from extensions of Po 
by J<po with factor sets f (Ref. 5); therefore, one has to 
find all equivalence classes of such extensions, pick 
out the groups J 4> fP o having a physical meaning, and 

o 
partition these groups in classes of physically equivalent 
covariance groups. In the present paper this program 
is not completely realized. We hope to be able to do it 
in a subsequent publication. 

We will restrict ourselves to consider only topological 
extensions of Po by J 4> ,after having endowed J with an 

o 
appropriate topology. There are strong reasons justifying 
this restriction. First of all, a group J<pofP 0 obtained 
from a nontopological extension could have a very com­
plicated structure. Without the support of topology we 
are not able to discuss its mathematical properties, 
and therefore also unable to find the classes of physically 
equivalent covariance groups. Secondly, in all the ex­
amples we know of combination of different symmetry 
groups, only topological groups appear. At the present 
state of knowledge, the physical relevance of nontopologi­
cal group extensions seems to be very doubtful. 

The main result of this paper is that any topological 
extension of Po by J <p with a factor set f such that 

o 
f(P,P') is a constant mapping for all (P,p') E Po x -Po 
is inessential (and therefore one can say that the cor­
responding coupling of space-time and electromagnetic 
gauge transformations is inessential). This means that 
the groups obtained from such extensions are topologi­
cally isomorphic (Le., isomorphic and homeomorphic) 
to J x<PoPo, the external topological semidirect product 
of Po by J relative to q, o' Note that in the minimal 
coupling case one precisely gets a topological semi­
direct product. 

Even at the present stage, and without going into 
details, it is important to think of the physical implica­
tions of the (possible) existence of covariance groups 
obtained by a nonminimal coupling of space-time and 
electromagnetic gauge transformations. One can argue 
that in such a case a relativistically non-covariant 
formulation of electrodynamics would be required. 

In this paper, calculations are performed not only for 
Po but also for the Poincare group P and for the cor­
responding nonrelativistic space-time groups, namely 
for the Galilei group G and for Go' the connected com­
ponent of its neutral element. Moreover, we consider 
other possibilities in the choice of J. In particular, we 
take as electromagnetic gauge group the (Abelian) group 
of all the mappings of class em (m E Nor m = co) of M 
into R with suitable operations of the space-time groups 
on it. Beside the intrinsic interest they represent, some 
of these cases also playa role in problems of charged 
particles in external electromagnetic fields .10 However, 
the result that we get is always the same, namely groups 
which are topologically isomorphic to external topologi­
cal semidirect products of the space-time groups by the 
electromagnetic gauge groups. 

Our paper is organized as follows: In Sec. 2 we derive 
the rule for the combination of Po and J. The associated 
extension problem is formulated in precise mathematical 

J. Math. Phys., Vol. 15, No.8, August 1974 

1167 

terms in Sec. 3 and generalized by considering different 
space-time and electromagnetic gauge groups with 
appropriate operations. We prove that all the topological 
group extensions considered are inessential. Some com­
ments on recent publications on related topics are given 
in Sec. 4, where the analogies with our work are em­
phasized. In the Appendix we prove that the operation 
q, of Q on J is topological. 

For notations and definitions concerning the cohomology 
of groups and group extensions the reader is referred to 
Ref. 5. Whenever a finite-dimensional vector space is 
considered it has to be understOOd as a topological vec­
tor space with the canonical topology. 

2. THE GROUP EXTENSION ASSOCIATED WITH A 
COMBINATION OF Po AND J 

In order to state our problem in a proper mathemati­
cal form, we have to be precise on the electromagnetic 
gauge functions that we will consider. Let eif (R 4) 
(m E Nor m = co) stand for the vector space over R 
of all the mappings of class Cm of R4 into R. In other 
words, the elements of <3if (R4) are continuous functions 
if m == 0, m -times continuously differentiable functions 
if m > 0, and indefinitely differentiable functions if 
m = co. We equip eif (R4) with the cm-topology (cf.Sec. 
3), and so it becomes a topological vector space. Basing 
our choice on the example of a classical electromagnetic 
field, we take as electromagnetic gauge group J the 
Abelian topological group <3i (R4) [identified with <3i (M) 
in an obvious way]. This preference is rather arbitrary: 
There are a lot of more or less reasonable candidates 
for the electromagnetic gauge group and a definitive 
choice may be made only a posteriori. USing <3i(R4) we 
are able to put forward some ideas and draw some con­
clusions; however, our results apply to many other pos­
sible choices of the gauge group (cf. the end of this sec­
tion and Remark 2 of Sec. 3). 

Again from the example of a classical electromagnetic 
field, we get a scalar operation 

<1>0 :Po -7 Aut(J) 

of Po on J such that,,for all ;\ E J and all x E R4, 

(2.1) 

where the dot stands for the natural operation of Po on 
R4. 

Consider the vector space <3 2(R4;R4) of all the map­
pings of class C2 of R4 into R4; endowed with the C2-
topology it is a topological vector space. The group 
Po operates on e2(R4; R4) by the law (p, 0') H p. O! == 
(t, L)'O' such that 

for all x E R4, where A is the natural operation of Lo 
on R4. The Maxwell potentials, Le., the solutions of 
class C2 of Maxwell equations, belong to <3 2 (R4; R4). 
Let us denote by MP the subspace of e 2(R4;R4)(with 
the induced topology) of all Maxwell potentials. This 
topological space is stable for the operation of Po on 
e2(R4;R4) given by (2.2),and the electromagnetic gauge 
group J operates on it by 

(.\.,A) H A·A =A + a.\.. (2.3) 

Now we proceed as in the case of the combination of 
the Lorentz and space-time translation groups into P: 



                                                                                                                                    

1168 U. Cattaneo and A. Janner: Coupling 

(i) 

(ii) 

(iii) 

We form the ordered pairs (>..,p) with >.. E 
J andP E Po; 

We define an action of (>..,p) on MP by 

«>",p),A) H (A,p)'A =P'A + aA; (2.4) 

We require that the following conditions be 
satisfied: 

(1) The product set 

J x Po = {(>..,p)l>.. E J and p E po} 

is a topological group operating on MP 
by (2.4); 

(2) (>.., 1)(0, p) = (>.., p) 

and 

(O,p)(>", 1) = (<I>o(P)>",p) for all 

>.. E J and all p E Po; 

(3) {(>.., 1) I >.. E J} is a subgroup identified 
with J through the topological group iso­
morphism (A, 1) H A; 

(4) The group homomorphism (A,p) H P is 
continuous and open. 

The neutral element of the new group is (0,1) and its 
multiplication is such that, for any A E MP, 

«>",p)(>..',p'))·A = (A,p)' «A' ,p')·A). (2.5) 

From (2.5) we get the law of composition10 

(A,P)(A',P') = (A + <l>O(P)A' + c,pp'). 

Here, C E J is a constant mapping arising because, in 
(2.3),A·A = (A +c)·A. A priori,c depends on A,>..',P,P'; 
however, it is easy to see that it depends only on p and 
p' [using (iii),one gets c = (O,p)(O,p')(O,pp')-l]. So we 
can write 

(A,P)(A',P') = (A + <l>O(P)A' + j(p,p'),pp'), (2.6) 

where, for all p,p' in Po' 

j : Po x Po ---) J 

is such thatj(p,p') is a constant mapping and 

j(p, 1) =j(l,p) = 0. 

In addition,! satisfies a relation imposed by the associa­
tivity of the group multiplication [which implies that 
j E Z2(P O' J ~ )]; the class of admissible j is also re-

o 
stricted by the requirement that the group J <t jP 0 of 

o 
the ordered pairs. (A,P) with multiplication (2.6) should 
be a topological one. Note that, for any PEP 0 and any 
A E J, 

(<I>o(P)>",I) = (O,p)(>.., I)(O,p)-l. 

From the classical case just described we abstract 
the rule for the combination of Po and the electro­
magnetic gauge group J = e~(R4): We unite Po and J 
into a topological group J ~/P 0 whose elements are the 
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ordered pairs (>",p)(>.. E J, P E Po) and the law of com­
position is given by (2.6). The values of the mappingj 
of Po x Po into J are assumed to be constant mappings 
of R4 into R, and the mappings L : >.. H (A, 1) of J into 
J~ jPo and p: (A,P) H P of J

4I 
jPo onto Po are assumed 

o 0 
to be continuous group homomorphisms with L closed 
and p open. 

In the next section we will show that the ordered 
pairs (J 41 jP 0' p) are topological extensions of Po by J 

o 
relative to <1>0' and so we shall be led to solve the prob-
lem of finding such extensions. The result that we shall 
get is very simple: For any admissible j, J 41 jPo is 

o 
topologically isomorphic to J ~ OP 0 = J x ~o Po' Actually, 
this will come out as a particular case of a more general 
extension problem. The generalization is threefold: 

(a) We take an arbitrary group e.r(R4) (m E Nor 
m = (0) as a possible electromagnetic gauge 
group J; 

(b) In the nonrelativistic case we use Go and the 
appropriate operation on J instead of Po and 
<1>0; 

(c) Together with Po and Go we consider P (resp. 
G) and a class of operations of P (resp. G) 
on J which generalize <I> o. 

The detail of this problem will be given in the next sec­
tion. 

3. THE INESSENTIAL COUPLING OF SPACE-TIME 
AND ELECTROMAGNETIC GAUGE 
TRANSFORMATIONS 

In the previous section we said that e.r(R4) (m E N 
or m = (0), endowed with the C m -topology, is a topological 
vector space. Let us now give some details about the 
Cm_topology.11,12,13,14 Consider a 4-multi-index 
r = (rO,r 1 ,r2 , r 3 ) E N4 of total degree Irl = ro + r 1 + 
r2 + r 3 • Let Dr, Irl > 0, stand for the partial differen­
tiation operator 

a Irl 

and let DO be the identity mapping. There exists an in­
creasing sequence (K1 ) lEN of compact subsets of R4 
such that R4 = U K I and, for any 1 EN, K I C K

I
+1 (the 

lEN 
interior of K I+1 ).1"or each pair 1, s of integers with 
1 ~ 0, ° ~ s ~ m if mEN and s ~ ° if m = 00, the mapp­
ing 

p s ,I: A H sup I DTA(x) I 
Irl,;s,xEKI 

of e.r(R4) into R is a seminorm. The topology defined 
by the family of seminorms (P s, I) is the C m -topology. 
Let I be the index set of the family (P s I)' The coHec-
tion elm of all the sets . 

W m«O! i); E) = {>..I A E e.r(R4) and Pa.. (>..) < E • 
for 1 ~ i "" N}, (3.1) 

where (O! i h ~ i~ N is any finite family of elements of I and 
E is any real number greater than 0, is a fundamental 
system of neighborhoods of ° in e.r (R4). 

Equipped with the Cm-topology, e.r(R4) (m E Nor 
m = (0) is a Frechet space, i.e., a locally convex metriz­
able and complete topological vector space; moreover 
it is separable. In fact, e<?(R4) is separable by (12.14.6. 
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2) of Ref. 11 and by (17.1. 2) of Ref. 12, and the real topo­
logical vector space underlying e~(R4) is the topological 
direct sum 

Since a separable metrizable topological space is second 
countable, eH'(R4) is Polish (see Appendix A of Ref. 5). 

Now, consider a topological linear operation cp of a 
topological group Q on the vector space R such that 
cp(Qo) = {Ida}, where Qo is the connected component of 
the neutral element of Q. If Q/Qo is a finite group, the 
condition that cp is topological is redundant. If 1JI is any 
given linear topological operation of Q on R4, we can 
define a linear operation <P of Q on eH'(R4) (m E Nor 
m = (0) such that 

(3.2) 

for all X E eH'(R4) and all x E R4. In the Appendix we 
prove that if Q is second countable and locally compact, 
then <P is topological. Note that if Q = Po, if m = 3, and 
if 1JI is the natural operation of Po on R4, then <P coincides 
with the operation <Po defined by (2.1). If Q = P (resp. 
Q = G), if m = 3, and if 1JI is again the natural operation 
of P (resp. of G) on R4, then the operation <P with cp(q) = 
-1 for all antichronous q and cp (q) = 1 for all ortho­
chronous q is the one occuring in the invariance group 
problem considered by Janner and Janssen lO (see 
Sec.4). 

In the sequel, we will determine the topological exten­
sions (C, p) of the Polish group Q E {po, P, Go, G} by 
the Polish group eH'(R4) (m E Nor m = (0) relative to 
the topological operation <P of Q on eH'(R4) defined by 
(3.2) and satisfying the following condition: 

(RE) There is a normalized Borel section a associated 
with p such that, if f is the factor set defined by a, then 
f(q, q') E eR'(R4) is a constant mapping of R4 into R 
for all (q, q') E Q x Q. 

The restriction (RE) is suggested by the results of 
Sec. 2. As was mentioned at the end of that section, the 
ordered pairs (J 41 fPo' p) are topological extensions of 

o 
Po by J 4I • In fact, Po and J are Polish groups, <Po is 
topOlogiC~l, and the mappings p:(>",p) H p and L : X H (X, 1) 
are assumed to be continuous, with p open and L closed. 
Note that the mapping a:p H (O,p) of Po into J4IQfPo is 

a normalized section associated with p and that f is the 
factor set defined by a. Rememberi~g that f E Z2(P Q' J<I!o) , 
that f(P,P') E J is a constant mappIng for all (p,P') E 

Po x Po, and using Theorem 2 of Ref. 5, it is easy to 
prove the existence of an element f' of Z~ (P 0' J 41 ) which 

o 
is in the same equivalence class off modulo B2(PO,J4I ) 

o 
and is such thatf'(p,p') too is a constant mapping for all 
(P,p') E Po x Po. It suffices to notice that 

{(X,p) I (X,p) E J 4I fP o and X constant} 
o 

is a closed subgroup of J 41 fP o and hence Polish. 
o 

Summarizing, we are faced with the following problem: 

(PR) Find the topological extensions (C, p) of Q by 
eH'(R4) 41 (m E N or m = (0) satisfying (RE), where Q E 

{po,P,Go,G} and <P is defined by (3.2). 

In the sequel we will apply ourselves to solve this 
problem, and Q and <P will be always assumed as in (PR). 

First, notice that if a topological extension (C, p) of Q 
by eH'(R4)<I! satisfies condition (RE), then any topological 
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extension of Q by eH'(R4) 41 equivalent to (C, p) satisfies 
(RE) too. Thus, we have to find the subgroup of 
Extt (Q, eH'(R4)4I) 

= {[(C, p)] I [(C, p)] E Ext t(Q, eH'(R4) 41) and (C, fJ) 

satisfies (RE)}. 

For this purpose we need some preliminary results. 

A. An exact sequence of Polish O-modules 

Consider the following mappings: 

(1) The inj ection L: r H X r of R into eH' (R 4) such that 

x)x) = r for all x E R4; 

(2) The (continuous) canonical mapping 17 of eR'(R4) onto 
the (topological) quotient vector space eR'(R4)!t(R); 

(3) The unique linear operation <I>' of Q on R which 
makes the following diagram commutative for each 
q E Q: 

R -.....:....--:>~ ell' (R 4 ) 

<P ' (q ) t 1 <P (q) 

R > eIr(R4). 

Note that <P' = cp; 
(4) The quotient of <P, i.e., the linear operation <P" of Q 

on eIr(R4)/t{R) such that 

(q,17(X)) H <p"(q)n(>..) = 1T(<P(q)X). 

Thus (eli(R4)!t(R))<I!" is the quotient Q-module 
eH'(R4) 41 IdR4I ,). 

Lemma: Let Q and e m (R4)<p be as in (PR), and let 
t, n, <p', <P" be defined by (l)-(4). The diagram 

~:O-;R4I' ~ eH'(R4)4I ~ (eH'(R4)/dR))4I"-;O 

is an exact sequence of Polish Q-modules. 

Proof: The diagram ~ is exact by definition. The 
bijective linear mapping r H dr) of R onto L(R) is a 
homeomorphism because R is finite-dimensional. More­
over, L(R) is closed in eR'(R4) [Ref. 11, (12.13.2)]; so L 

is a closed continuous mapping and <P' is topological. 
As 1T is open, the operation <P" is topological too (Ref. 2, 
.TG III, Sec. 2, Prop. 11). Finally, Rand dR) are Polish 
spaces, as well as eR' (R4) and the quotient space 
eR'(R4/L(R) (see Appendix A of Ref. 5). 

B. The cohomology group Hj)O, R.p) 

Let cp be the same mapping as in (3.2), i.e., a contin­
uous (linear) representation of Q on R such that cp(Qo) = 
{Ida}. Consider the subgroup V = ie, e, e', e'} of Q '" Qo, 

Table I. Character x; of the representation 
~ ; of V on R (1 ,;; i ,;; 4) 

X; (1'i 

;( e e e· 

Xl 1 1 

X2 1 -1 
X3 -1 1 

X4 -1 -1 

e' 

1 
-1 
-1 

1 
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where e( = 1) is the neutral element, e is the space in­
version, e' is the time inversion, and e' is the space-time 
inversion. It is well known that Q is a Lie group and that 
Q "" Qo is the topological semidirect product of V by Qo' 
The characters of the representations of V on Rare 
given in Table I. Without going into details, we show how 
the cohomology group H~(Q, Rq) is determined using the 
following three results: 

(i) Let G be a locally compact second countable group, 
let K be a closed normal subgroup of G, and let A .. be 
a locally compact second countable topological G-module. 
Then, there exists an exact sequence of groupsl5 

Wi 1 

o -----+H~(G/K, (AK);) -H~(G,A'I') ~H~(K,A"'IK)G 

tg 1 inf2 
(K,A"'IK)G~Ht(G/K, (AK)t) -Ht(G,A'I')' (3.3) 

where 

+:G/K -; Aut(AK) 

is the topological operation with the law 

(Kg, a) H ~(Kg)a = w(g)a. 

Here inf, res, and tg denote, respectively, the inflation, 
restriction, and transgression group homomorphisms. 
For a definition of these mappings see, for instance, Ref. 
16, Chap. XI, Sec. 9. The exact sequence (3.3) is called 
the inflation-restriction sequence. 

(ii) J..et Qo be the universal covering group of Qo and 
let L (Qo) be its Lie algebra. Denote by 1 a trivial group 
operation and by 0 a trivial Lie algebra operation. 
Applying Theorem 4.1 and T!teorem 5.-1 of Ref.} 7 to the 
simply connected Lie group Qo, we see that H~(Qo' ~) 
and the Chevalley-Eilenberg cohomology spacel8 
H2 (L (Qo)' Ro) are isomorphic vector spaces. Then, using 
the result of Mackey mentioned in Remark 1, Sec. 3 of 
Ref. 5 and Theorem 3.2 of Ref. 19, one can easily show 
that 

(3.4) 

(vector space isomorphism). 

(iii) Take Q = G and consider the usual identification 
(choice of a coordinate system) of each element g of G 
with a 5-tuple (~g' t~,tJj,Vg,O~),where Eg E {1,-1}, 
to E R,t E R3,V E R ,Og EO(3,R) are,respectively, 

g • 'f . g t· t 1 t' tit· the hme InVerSlOn, lme rans a lOn, space rans a lOn, 
Galilean boost, and orthogonal transformation para­
meters. LetfE C~(G,R</l) [actually fE C~(G,R</l)] be 
given by 

f(g,g') = x(gg')tg·Ogvg.- t~(tv~, + X(g')vg-Ogvg ,), 

(3.5) 

where the dot denotes the inner product on R3 and X is 
the character of ¢. If ¢ = ¢2 (see Tables I and II), 
then lO,l7 fE Z~(G,Rq, ) and the vector space 

2 

is a subspace of H~(G, R.p). Analogously, the vector 
space 2 

Hj(G o) = {;\.[fo]l;\. E R and fo =f IGo x Go} "'" R 

is a subspace of H~(Go, R 1)· 
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Table n. Cohomology group H~(Q, R¢}(Q E {po, P, Go, G};</> E 
{</>1' </>2' </>3' </>4}, where",; (Qo) = {Ida} and </>; I V = ~i (1 '" i '" 4)) 

H~(Po,Rl) {o} 

H~(Go,Rl) "'{R} 

"'1 "'2 </>3 "'4 

H~(P,R~i) {o} to} {o} {o} 

H~(G,R¢i) {o} "'R {o} {o} 

Now we can determine H~(Q,R</>)(cf. Table II) as fol­
lows. Suppose first Q = Qo and consider the inflation­
restriction seq,uence (3.3) with G = Qo, K = Z (Qo) 
(the c~nter of Qo),A = R, and w the trivial operation. 
As Z (Qo) is finite of order 2, 

(Ref. 16, Chap. IV, Corollary 5.4) and inf2 is injective. 
On the ,other hand,l7,20,21 

and 

H2(L(00), Ro) "'" R; 

therefore, by (3.4), 

and there exists an injective vector space homomor­
phism of H~(Go, R l ) into R. From (iii) it follows that 

H~(Go, R l ) = H iGo) "'" R. 

If Q E {p, G}, the result of Table II is obtained by 
application of the corollary to Proposition 3 of Ref. 5. 
We get immediately 

H~(P,Rq,) = {o}. 

Let Q = G. It suffices to check that, iffo =f IGo x Go 
withf E C~(G, Rq,) given by (3.5) and if ¢ = ¢2' then 
fo E Zt(GO,Rl)V, while if ¢ = ¢l 

1>1(e')fo = 1>1(e')jo = - fo' 

if ¢ = ¢3 

H(e)fo = 1>2(e')jo = - fo' 

and if ¢ = ¢4 

1>1(e)jo = 1>2(e')fo = - f o' 

Thus, in the case where ¢ = ¢2' 

H~(G! R</l) = H j(G) "'" R, 

and in the case where ¢ E {¢l' ¢3' ¢4}, 

H~(G, R</l) = {o}. 

C. The group ExtfE(Q, e?,R' (R 4 )<1» 

Equipped with the results of the subsections A and B, 
we now can solve (PR). 

Theorem: If Q and eJl'(R4)q. are as in (PR), then 
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Proof: By the corollary to Theorem 1 of Ref. 5, and 
on account of the lemma proved above, the following 
diagram is an exact sequence of groups: 

6 1 

~ (Lb >! 
~ H~(Q, R",,) ~ H~(Q, eR'(R4)",) 

("b>! 62 
~ H~(Q, (eR'(R4)/dR))",,,) ~ 

Let (G, p) be any topological extension of Q by eR'(R4)", 
satisfying (RE), and let ex. b be the injective group homo­
morphism of Extt (Q, eR'(R4)",) into H~(Q, eR'(R4)",) of 
Theorem 2 of Ref. 5. Then 

i.e., 
a b([(G, p)]) E Ker(ir b)! = 1m (Lb)! • 

If Q E {po, p}, or if Q = G with cI>' E {cpl> CP3' CP4}' we 
conclude that 

using the results of Table II. If Q = Go, take fo = 
f I Go x Go with f E q(G, R",,) given by (3. 5). There 
exists a real number 'Y such that 

choosing ho E q(Go, eR'(R4)",)such that 

ho(g)(x) = y(h;xO - v g • x) 

for all x = (xO, x) E R4, one checks easily that oho = 
L 0 yfo' This implies 

(i b); (yUo)] = 0, 

hence ab([(G,p)]) = 0 and thus 

Ext~(Go, eR'(R4)",) = {o}. 

If Q = G and if cI> I = ¢ 2' the proof is the same as in the 
case where Q = Go but with ho replaced by h E 
q(G, eR'(R4)",) such that 

h(g)(x) = y(~v;xO - X (g)v g. x) 

for all x E R4. 

It follows from the theorem just proved that, if (G, p) 
• 

is any topological extension of Q E {po, P, Go, G} by 
eR'(R4)", (m E Nor m = 00) satisfying (RE),. with cI> 
given by (3.2), then G is topologically isomorphic to 
eR'(R4) x '" Q. This is the result already quoted in Secs.1 
and 2. 

Remark 1: The lemma and the theorem of this 
section are also valid if Q E {PO"' Go} and cI> is again 
defined by (3. 2) (with cP (Q) = {IdR}). 

Remark 2: It is easy to see that the choice, instead 
of eR'{R4) (m E Nor m = 00), of another topological vec­
tor space, say ilR(R4), of mappings of R4 into R does 
not change the result of the above theorem provided 

(a) il~ (R.4) is Polish; 
(b) ilR(R4) contains the constant mappings; 
(c) the operation cI> of Q on ilR(R4) given by (3.2) 

is topological. 
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Moreover, the result does not change either if, instead 
of cI>, we take another topological operation n such that 
n(q)A = cI>(q)A for all q E Q and all constant mappings 
A of R4 into R. 

4. CONCLUDING REMARKS 

The problem of the union of a relativistic space-time 
group and an electromagnetic gauge group into a co­
variance group of quantum electrodynamics was trans­
lated by Rideau22 too into a study of topological group 
extensions. Under different assumptions concerning 
the gauge group [taken as the Abelian group underlying 
a real (separable) Hilbert space carrying the continuous 
unitary representation of spin and mass zero of Po] and 
the extensions considered (all the topological ones having 
a continuous factor set), Rideau's result is exactly like 
ours. 

In a more recent work,23 Rideau adopts the view that 
electromagnetic gauge transformations of the first kind 
are not already included in those of the second kind, so 
that he faces the subsequent problem of combining dif­
ferent gauge groups together and with a space-time group. 
Here, however, we considered the first kind of electro­
magnetic gauge transformations as a special case of the 
second one. This point of view is supported by previous 
investigations where, instead of covariance groups of 
electrodynamics, invariance groups of Hamiltonians or 
Lagrangians yielding equations of motion of charged 
particles in external (classical) electromagnetic fields 
were considered.10 There also, one was naturally led to 
the coupling of electromagnetic gauge and space-time 
transformations. 

Another point of view is that of Schrader,24 who in­
vestigated a covariance group of Dirac and Klein-Gordon 
particles in constant uniform external electromagnetic 
fields. His covariance group (the Maxwell group) oper­
ates on the product of the Minkowski space and the set of 
all these fields. The Maxwell group is obtained from an 
essential extension of the Poincare group by the Abelian 
group of all skew-symmetric real 4 x 4-matrices. 

Continuous unitary projective representations of the 
space-time invariance groups of (nonzero) constant 
"uniform external ele~tromagnetic fields have been 
considered by Bacry et al. 25 in order to describe prop­
erties of charged particles. They were able to derive 
the additivity and the superselection rule of the electric 
charge. 

In the work of Janner and Janssen,10 the starting 
point is the remark that, generally, electromagnetic 
potentials and not fields occur in Hamiltonians or 
Lagrangians. Now, the space-time invariance group of a 
given electromagnetic potential A is a subgroup only 
(possibly an improper one) of the space-time invariance 
group of the field derived from A; therefore, space-time 
operators leaving the field invariant need not leave 
invariant the Hamiltonian or the Lagrangian considered. 
However, these are well invariant under the action of the 
ordered pairs (A,q) (A E J and q E Q,where Q E {p,G}) 
which leave invariant A. The problem of giving to the 
set of all the (A, q) a group structure is again complicated 
by the fact that the group multiplication determined by 
the action of the (A, q) is not unique. A way out is 
to consider these ordered pairs as elements of a co­
variance group J ",f Q, where cI> is given by (3.2) with 
¢ = ¢2 (see Tables I and II) and with the natural opera­
tion of Q on space-time, and where the factor setf under­
goes the usual restriction. Adopting this point of view, 
Janner and Janssen got an invariance group .iJ(A) as the 
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subgroup of J II>f Q which operates trivially on A.2 6 The 
groups Il (A) are very useful in studying the states of a 
charged particle in the external electromagnetic field· 
derived from A. As expected, different choices of the 
gauge of the electromagnetic potential simply lead to 
isomorphic invariance groups. 

The situation of I~(A) with respect to J x <II Q is much 
the same as that of a space group G (an invariance group 
of a given crystal) with respect to a three-dimensional 
Euclidean group E(3) (a covariance group of crystal phy­
sics). Indeed, 

E(3) = T(3) x" 0(3) 

[where T(3),0(3), and IJ; have a manifest meaning] is a 
transformation group of a three-dimensional EUClidean 
space E 3 • It is obtained from an inessential topological 
extension of 0(3) by T(3)lb' and 0(3)[ resp. T(3)] is canoni­
cally identified with a subgroup of E(3) through the con­
tinuous section 0 H (0,0) [resp. through t H (t, 1)]. The 
choice of another section with the property of being again 
a group homomorphism merely corresponds to a change 
of the origin of the affine space canonically attached to 
E 3 • Now comparing E(3) with J X <II Q and G with I~(A), 
one arrives at the conclusion that translations correspond 
to gauge transformations, primitive translations (lattice 
translations) to gauge transformations of the first kind, 
and the choice of the origin to the choice of the gauge. 
In the opinion of the authors this analogy is not a super­
ficial one and deserves further investigation. 
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APPENDIX 

The operation <I> is topological 

Lemma 1: Let G and A be Polish groups and sup­
pose A Abelian. If w is an operation of G on A such that 
the mapping g H w(g)a of G into A is continuous for all 
a E A and the mapping a H w(g)a of A into A is con­
tinuous for all g E G, then w is topological. 

Proof: Let us first notice that the law of operation 

f: (g, a) ~ w(g)a 

is a Borel mapping (Ref. 27, § 27, V) and that G x A is 
a Baire space. Since G x A and A are Polish, there is 
a meager subset M of G x A such that /1 G x A - M is 
continuous (Ref. 27, § 28, II). Let (g, a) be any element 
of G x A and consider an arbitrary sequence (gn' an) of 
elements of G x A converging to (g, a). The set 

is meager and thus G x A - M' "" C/! (because G x A is a 
Baire space). Let 0;', a') E G x A - M'. Then 

(g'gn' a' + an) E G x A - M 

for all n E N and it follows from the continuity of 
fiG x A - M that 

lim w(g'gn)(a' + an) = w(g'g)(a' + a). 
n -00 
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On account of the continuity of the partial mappings 
determined by f, we get 

lim w(gn)(a'+an) = w(g')-llim w(gg)(a' + an) = w(g)(a' + a) 
n-~ n-~ 

and 

lim w(g)an = lim w(gn)(a' + a
ll
)- lim w(gn)a' = w(g)a, 

n-~ n-~ n-~ 

whence the continuity of f . • 
Lemma 2: Let G be a topological group, let X be a 

metric space, and let w be a topological operation of G 
on X. Suppose K is a compact subset of X, let r be a 
real number> 0, and let g be any element of G. If, for 
each x EK,B(w(g)x;r) is the open ball of center w(g)x 
and radius r, then there exists a neighborhood V(g) of 
g such that 

w(V(g»x C B(w(g)x;r) for all x EK. 

Proof: As w is topological, there exist, for each x E 

K, an open x-nbd (neighborhood of x) W g(x) and a g-nbd 
V x (g) such that 

w(Vx(g»Wg(x) ~B(w(g>X; ~r). 

Note that the x-nbd W g(x) [resp. the g-nbd V x (g) ] is 
dependent on g (resp. on x). By the Borel-Lebesgue axiom, 
we may extract from the open covering (W g(x» xE~ of K 
a finite subcovering (Wg(Xj»x.EI (I~Kandfinite). If 

I 

V(g) = n V x . (g), 
x iE/ t 

then 

w(V(g»x C B(w(g)x; r) for all x E K. • 
Proposition: Let Q be a second countable locally 

compact group. The operation <T> of Q on BK'(R4) (m E N 
or m = ct:l) defined by (3.2) is topological. 

Proof: On account of Lemma 1 we have only to show 
that the partial mappings determined by (q, x) H <T>(q)X 
are continuous. Throughout this proof we shall keep m 
fixed but arbitrarily chosen. 

(1) Continuity of q H <T> (q)x = cp(q) 0 X 0 lJ;(q-l) 

Let P I be a seminorm of the family which defines 
the cm-topology on <2K'(R4) (cf. Sec. 3), let r be a 4-
multi-index with Irl ..:; s, and let qo E Q. If x E R4 and 
q E Q, then 

1 Dr(<T>(q)X - <T>(qo)X)(x) 1 

..:; 61 X (q) 1/y(j/q)D,,(i) X(IJ; (q-l)x) 
.,.(i) 

- X (qO)1/1'(i) (qo)D1'(i)X(IJ;(q(jl )x) 1 , 

where X is the character of the representation cp of Q on 
R, r(i) is a 4-multi -index of total degree 1 r 1 , 1/ r(i)(q) is 
a monomial of degree I r 1 in the matrix elements of the 
Jacobian matrix of lJ;(q-l) at x [independent of x because 
of the linearity of lJ;(q-l)], andJhe summation is extended 
to all 4 11'1 r-tuples formed with a/axo, a/ax1 , a/ax2 , and 
a /ax 3 • Hence, 

1 Dr(<T>(q)x - <T>(qo)X)(x) 1 

..:; 6 1 X (q)1/1'(i)(q)IID.(i) X(IJ; (q-l)x) -D1'(i)X(IJ;(q(jl)x)1 
1'(j) 

+ 6 1 X (q)1/1'(i)(q) - X (qO)1/1'(i)(qo)IIDr(i)X(IJ;(q(jl)x) I. 
r(j) (A1) 
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Let t be every real number > O. The operations cp and 1/1 
are topological, so there is a compact qo-nbd V'(qo) such 
that, for any q E V'(qo), 

sup 6 \ x(q)17 r (i)(q) 
Irl~ 5. x EKI rei) 

- X (qo)17 l' (i) (qo) !!Dr(i)>t(I/I(qol)x) \ < E/2. (A2) 

Now let 

sup I) \ X (q)17 r (i)(q) \ =k5 
11'1 .. 5. q E V'(qo) r(i) 

and put 

t5 = 6 41r1. 
Irl .. 5 

(A3) 

As Dr(i) >t is continuous and 1/1 is topological, for each 
r(i) and each x E KI there exists aqo-nbd V~(i)(qo) such 
that 

\y(i)>t(I/I(q-l)x) -y(i)>t(I/I(qol)X)\ < 2tE~ < 2/k (A4) 
s s S 5 

for all q E vr(i)(qo)' Moreover, by Lemma 2, we can find 
a qo-nbd vr(ij(qo) such that (A4) is satisfied for all x E 

KI and all q E vr(i) (qo)' Take 

V"(qo) = n vr(i)(qo); 
11'(;)1" 5 

then 

sup 6 \ Dr(i) >t(1/I (q-l)x) - Dr (i) >t (1/1 (qol)x) \ < ~ 
Irl"5,xEKl r(i) 2k5 

(A5) 
for all q E V" (q 0)' Finally, for any q in the q 0 -nbd 
V~~~l)(qo) = V'(qo) n V"(qo), 

p 5)of>(q)>t - of> (qo)>t) < t 

by (Al), (A2), (A3), and (A5). This can be done for any 
seminorm of the family (p 5 I) and for any real number 
E > O. Using the fundamenthl system of neighborhoods 
of of> (40)>t 

{of>(qo)>t + W m((a i); E)! W m((a i); E) E 15 m}, 

where 15m is as in Sec. 3 [cf. (3.1)], one easily concludes 
that q H of> (q)>t is continuous for all >t E e~(R4). 

(2) Continuity of >t H 4> (q)>t 

The mapping is linear; thus we have only to prove its 
continuity at the point O. Keeping the notation of (1) we 
obtain, for any A E e'R (R4) and any seminorm p 5 ,I , 

P5 1(4)(q)>t).:; h 5(q) sup 6 !Dr(I)>t(I/I(q-l)x) \ , 
, Irl';5,xEKI l' (i) 

where 

As l/I(q-l)K I is a compact set, it follows from the Borel­
Lebesgue axiom the existence of a compact set KI ' ~ 
l/I(q-l)KI in the sequence (K/) covering R4 of Sec. 3. 
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Therefore 

p 5)4>(q)>t) .:; h 5(q)t.P 5.l'(1I.), 

and this is valid for any seminorm of (p 5,/)' whence the 
continuity of >t H of> (q) >t for all q E Q. 
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The Bloch coherent states for a spin or a system of spins and the Glauber coherent states for bosons 
are examined from the viewpoint of Lie algebras. It is pointed out that the Bloch coherent states are 
vectors in the space spanned by the basis functions for an irreducible representation of the unitary 
unimodular group SU(2), and that the Glauber coherent states are vectors in the space spanned by 
the basis functions for the infinite-dimensional irreducible representation of a contracted group of 
SU(2). A deeper understanding of many of the useful properties of these coherent states is gained. 

1. INTRODUCTION 
It has been a common practice which has become 

almost routine, when one encounters the boson creation 
and annihilation operators at and a and the spin opera­
tors sz, S+, and S- for a spin, or a system of spins of total 
angular momentum [S(S + 1)] 11 2, to associate them with 
the basis functions In), n = 0,1,2, ••. (for the bosons) 
and IS,m),m = - S,S + 1, ... ,S (for the spin). As is 
well known, the analytical forms of the basis functions 
In) and Is, m) are expressible in terms of the Hermite 
polynomials and the spherical harmoniCS, respectively. 
More recently, however, the use of the so-called Glauber 
coherent states1.2 I a) for the bosons and the Bloch 
coherent states3,4 I IJ-) for the spin system has become 
more wide spread as these states have been shown to 
provide a useful alternative for the description of the 
respective systems. Of considerable interest were 
some recent results 5.6 which showed that the coherent 
states I a) and I IJ-) provide a natural basis for the cal­
culations of the thermodynamic and phase transition 
properties of the Dicke model of superradiance and the 
BCS model of superconductivity. More significantly, 
consideration of these coherent states led to a useful 
new approach to the study of equilibrium quantum sys­
tems. 7 

The Glauber coherent states1.2 I a) and the Bloch 
coherent states3 .4 I IJ-) are formally defined in terms of 
the traditionally used basis functions I n) and Is, m) by 

2 an 
1(1) = e- 1al /2 ~ -- In), 

. n (n !)112 
(1. 1) 

1 28 ( (2S)! )112 IIJ-) = ~ IJ-pfs,p). 
(1 + 1IJ-12)8 p o O P!(2S-P)! 

(1.2) 

The considerable usefulness of these coherent states 
naturally prompted one to pose questions regarding the 
origins of these coherent states and the deep connec­
tions which lie behind the algebraic identities formally 
relating these coherent states to the traditional basis 
functions I n) and Is, m). The problem is best looked 
upon from the viewpoint of Lie algebras, as we shall 
see in the following sections. 

2. BLOCH COHERENT STATES AND THE LIE 
ALGEBRA g 

Consider a Lie algebra g which has generators sz, S+, 
and S- such that 

[S2, S±] = ± S±, [S+, S-] = 2Sz , 
(2.1) 

[Si,9'] = 0 for i = z,+ or-, 

where 9' in the third relation is the identity. A realiza­
tion of the generators of this algebra is given by (we 
shall write Si for a realization of the generator Si) 
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and 

S± = sx ± iSY = - i(Y~ - Z~) ± i[- i(Z~ - x~)J oz oy ax OZ 

SZ=-i(X~-Y~). (2.2) oy ax 
The corresponding Lie group associated with g with the 
above realization of the generators of g is obviously the 
three-dimensional rotation group 0(3). The basis func­
tions for the (2S + 1)-dimensional irreducible repre­
sentation of 0(3) are, as is well known, the functions 
Is, m) or for integral values of S, the spherical har­
monicsy~(e,¢),m =-S,-S + 1, ••• ,S. 

Suppose we consider another realization of the genera-
tors of the same algebra g given by 

S+ a 
= Z a~' 

S- = ~i.., az 
and 

S2 = ~(z oOz - ~ oo~), (2.3) 

where ~ and Z are arbitrary complex variables. This 
realization was used by Bargmann8 and in the operator 
form by Schwinger,9 and it was also suggested in the 
author's previous work7 dealing with the problem of 
expreSSing a general Hamiltonian equation in terms of 
the coherent states. We now wish to show the following: 
(i) the corresponding Lie group directly associated with 
the above realization (2.3) of the generators of g is the 
unitary unimodular group SU(2) (which is, of course, iso­
morphic to the 0(3) group), (ii) the Bloch coherent states 
I IJ.) are some linear combinations of the basis functions 
for an irreducible representation of SU(2). It is more 
instructive to illustrate these pOints in reverse as 
follows: Given the group SU(2), we ask what are the 
"infinitesmal transformation operators" for the corres­
ponding Lie algebra? As is well known, the group SU(2) 
is characterized by the transformations10 

u'=au+bv (aa*+bb*=1), 

v' = - b*u + a*v, 
(2.4) 

where the parameters a's and b's and the variables u's 
and v's are generally complex. Let the three indepen­
dent parameters in (2.4) be a, b, and b* while let a* be 
expressed by a* = (1 - bb*)/a. In the neighborhood of 
the identity, we have 

and 

a ~ 1 + oa, 

b ~ ob, 

b* ~ ob*, 

a*~1-oa. 

Copyright © 1974 by the American Institute of Physics 

(2.5) 
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Thus we get 

u' = (1 + oa)u + Obv, 

v' = (1 - oa)v - Ob*u, 

so the infinitesmal operators of the group are 

x =u~-v~ 
1 au av' 

a 
X 2 = v-, 

au 
a 

andX3 =- u-
av 

or if we define S+ = - X 3 ' S- = X 2 ' and sz = ix 1 we 
obtain (2.3).1 1 

(2.6) 

(2.7) 

(2.8) 

The basis functions for the (25 + 1)-dimensional re­
presentation of the 5U(2) group are u 2S , u 2S-1V, U 2S-2v2, 
... , v 2 S . To see how the Bloch coherent states Ip,) are 
directly related to the basis functions of this form, let 
us observe the results of multiplying Ip,) by the spin 
operators. We have 

(S-) kip,) 

1 E( (25)! P(p -1) .•• (P -k + 1) 
(1 + 1p,12)S P P!(25-P)! 

x (25 - P + 1)(25 - P +2)··· (25 _ p +k~1/2/lPI 5,p - k) 

1 (25)! )112 
= (1 + 1p,12)S ~ P!(25 -p)! 

X(2S-p)(2S-p -1) .. ·(2S-P - k + 1) p,p+k Is,p) 

= 1 E ( (2S)! )1/2 (, ~)k v2S-P pi S p)i _ • 
(1+1p,12)S p P!(2S-P)! ~av p" (;.-~) 

Similarly, we have 

(S+)k Ip,) = 1 E( (2S)! ) 1/2 (, a)k 
(1+ 1p,12)S P P!(25-p)! (ap, 

(2.10) 
and 

(sZ)klp,) = 1 E( (25)! )112 
(1 + 1p,12)S P P!(2S-p)! 

Thus, re-writing the definition of Bloch coherent states 
1j,L) as 

1)_ 1 H( (25)! )1I2v2S-PPISp)1 
j,L - (1 '1- 1p,12)S poO P!(2S-P)! p" v~l' 

(2.12) 
clearly shows that Ip,) can be viewed as some linear 
combination of the basis functions for the (25 + 1)­
dimensional representation of the SU(2) group, namely, 
Ip,) is a vector in the space spanned by the basis func­
tions for the (25 + 1)-dimensional representation of the 
SU(2) group. From this viewpoint, we also have the con­
sistent results that the spin operators are given in the 
form (2.3). It is easy to see why v (or p,) can be set 
equal to 1 for practical purposes after being operated 
on. This is because the spin operators preserve the 
homogeneity of the basis functions v2S, v2S- 1p" 

v2 S-2p,2, ••• , p,2 S in such a way that the sum of the 
powers of v and p, in every term of (2.9)-(2. 11) re­
mains equal to 25 [this is why the set v2S- Pp,P,P = 0, 
1, ..• , 2S provides a basis for the (25 + I)-dimensional 
representation of the unitary group] and therefore the 

J. Math. Phys., Vol. 15, No.8, August 1974 

1175 

power of v is completely determined by the power of its 
"companion" variable p, or vice versa. 

It was shown in Ref. 7 that if, in the Hamiltonian equa­
tion 

(2.13) 

the spin operators are represented in terms of the dif­
ferential operators by the substitutions (2.3), the corres­
ponding eigenfunctionsf(~, z) in the transformed Hamil­
tonian equation 

H(.!.(Z~ - J<~) z~ j.~)f(~ z)1 = Ef(~,z)1 
2 az "a~' a~'''az 's~l s~l 

(2.14) 
are given by 

f( ~, z) = E C n ~ 2 $-n Z n • (2.15) 
n 

It is now clear to us that (2.15) simply states that the 
eigenfunctions in (2. 14) can be expanded as some linear 
combinations of the basis functions corresponding to an 
irreducible representations of the 5U(2) group, in the 
same way as that if the spin operators in (2.13) are re­
presented by the substitutions (2.2), the eigenfunctions in 
(2.13) can be expanded in terms of the spherical har­
monics which are, of course, the basis functions for the 
irreducible representations of the three-dimensional 
rotation group 0(3). 

The important points of this section can thus be sum­
marized as follows: 

The Bloch coherent states Ip,) are normally viewed 
as certain linear combinations of the spherical har­
monics. Not previously noted, however, is the fact that 
Ip,) can be viewed as certain linear combinations of the 
basis functions for the irreducible representations of 
the 5U(2) group, i.e., the states Ip,) are vectors in the 
space spanned by v2S-Y, K = 0,1, ... ,25. It is from 
this latter point of view that some of the useful and 
distinctive properties of the Bloch coherent states can 
be better understood. 

3. GLAUBER COHERENT STATES AND THE LIE 
ALGEBRA JC 

Consider the harmonic oscillator Lie algebra JC 
which has the generators XZ, X+ and X- such that 

and 
[Xi,9']=O wherei=z,+or-, 

(3. 1) 

9' in the third relation being the identity. A realization 
of the generators of this algebra is well known and is 
given by (we write Xi for a realization of the generator 
Xi) 

X+ = at = Ji(x - a~)' X- = a = Ji (x + a~)' 

1 ( a
2 

) Xz = at a = "2 x 2 - -- - 1 , 
ax 2 

(3.2) 

where at and a are the boson creation and annihilation 
operators. The corresponding Lie group associated 
with JC with the above realization of the generators of 
JC will be refered to as H. The basis functions for the 
irreducible representation (of infinite dimensions) of H 
are the states In), or e-x2/2 Hn(x), n = 0, 1,2, ... where 
Hn(x) is the Hermite polynomial of degree n. 
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Consider another realization of the generators of the 
same algebra X given by 

X--~ - , 
aa (3.3) 

and 
a 

XZ:::;<l-, 
aa 

where a is an arbitrary complex variable. This realiza­
tion was used by Fock12 and Bargmann13 and it was 
also suggested by the author's previous work7 dealing 
with the problem of expressing a general Hamiltonian 
equation in terms of the coherent states. The corres­
ponding Lie group associated with the above realiza­
tion (3.3) of the generators of X will be called H' which 
must, of course, be isomorphic to H. 

It is well known that the algebra Xis a contraction4,14 
of the algebra g. However, in all previous work,4 the 
contraction is discussed in terms of the contraction of 
the group 0(3) into the group H. Here let us consider 
the contraction in terms of the contraction from the 
group SU(2) into the group H'. Let us assume that the 
limits, as S ~ 00, of the following operators 

8+/(2S) 1/ 2 , 8-/(2S) 1/ 2, 

exist. Consider the function 

f :::; 6 CKI)2S-K/-LK. 
K 

Let 

a :::;/-L/L 

where 

; :::; 1)/(2S)1/2. 

and 8 z/(2S) (3.4) 

(3.5) 

(3.6) 

(3.7) 

Then we obtain, using the substitutions given by (2.3) for 
the spin operators (replacing z by I) and ~ by /-L), as 
S~oo, 

1 a a a 
(2S)1/2 I) a/-Lf = a (p./;/ = oaf, 

_1_ /-L ~ f = (2S) 1/2v-1p.f :::; af 
(2S) 1/2 a I) , 

(3.8) 

(3.9) 

(3. 10) 

The functionf given by (3.5) can be seen to reduce to 
the Bloch coherent states I p.) if we let I) :::; 1 and 

C - 1 {(28) ! } 1/2 Is K) 
K- (1 + 1/-L12)S K!(2S-K)! ' 

for any given S. In the limit S ~ oo,f becomes the 
Glauber coherent states I a) given by 

la):::; e- 1o: I2/ 2 6 ~ In) 
n (n I) 1/2 

if we let cK be given by (3.11), I) = 1 and 

loo,n) ~ In), 
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We see from Eqs. (3. 8)-(3.10) that, in contracting the 
SU(2) group into the group H', we have the following 
transformations: 

(3.15) 

8- 1 a + 

-(2-S)-1/-2 - (2S)1/2 /-L a I) ~ x = a, (3.16) 

and 

~; = 2
1
S i(v 'O'ov -/-La:) ~ i. (3.17) 

We also see that the Bloch coherent states I/-L) ~ the 
Glauber coherent states I a), and that the Galuber coher­
ent states I a) can be viewed as certain linear combina­
tions of the basis functions corresponding to the infinite­
dimensional irreducible representation of the group H' 
which are given by a k , k = 0, 1,2, •••. 

It was shown in Ref. 7 that if the Hamiltonian equation 

H(a t, a) I E) :::; EI E) 

is represented by 

H(Z' :z)f(Z) = Ef(z), 

the corresponding eigenfunctionsf(z) are given by 

f(z) =6cnzn. 
n 

(3.18) 

(3.19) 

(3.20) 

It is now clear to us that (3.20) simply states that the 
eigenfunctions in (3.19) can be expanded as some linear 
combinations of the basis functions corresponding to the 
infinite-dimensional irreducible representation of the 
group H', in the same way as that if the boson operators 
in (3.18) are represented by the Schrodinger represen­
tation at:::; (p + ix)!-./2 and a = (p - ix)j.,j2, the corres­
ponding eigenfunctions can be expanded in terms of the 
Hermite polynomials (with the Gaussian factors) which 
are the basis functions for the infinite-dimensional 
irreducible representation for the group H. 

4. SPECIAL FUNCTIONS AND COHERENT STATES 

It is well known that the Hermite polynomials and the 
associated Legendre polynomials turned up in physics 
in the study of the problems of harmonic oscillators and 
the angular momentum (spin), respectively. It is also 
known that the theory of Lie algebras provides a unified 
view of the theory of not only the Hermite and the 
Legendre polynomials but also of various other special 
functions in mathematical physics. 15 It is clear from 
the preceding sections, however, that the above men­
tioned special functions would arise only if certain par­
ticular realizations of the generators of the algebras 
were used. The realizations which give rise to the Her­
mite and the Legendre polynomials are "physical" in 
the sense that the variables x,y, and z are physical 
quantities. On the other hand, the realizations given by 
(2.3) and (3.3) corresponding to the groups SU(2) and 
H' involve complex variables which do not have any 
direct physical interpretation. However, the resulting 
"special functions" ~ 2S-KZ K, K:::; 0,1, ••• , 2S, and a K, 

K = 0,1, •.. , have the distinct advantage of being simple, 
so simple that one would not call them special functions. 
If we call the space spanned by the basis functions (spe­
cial functions) of the d-dimensional representation of a 
group G, say, by S(d)(G), then a Bloch coherent state may 
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be viewed as a vector in S(2s+1)(0(3» or as a vector in 
S(2s+1)(SU(2». Similarly, a Glauber coherent state may 
be viewed as a vector in S (00) (H) or as a vector in 
S<oo)(H'). However, many of the useful properties of the 
coherent states can be better understood from the 
second point of view, as was made clear in the preced­
ing sections. The use of coherent states in place of the 
traditionally used basis functions might be compared 
with the situation in which it is more convenient to do 
the angular momentum problems by considering the 
group SU(2) rather than the group 0(3) because, among 
other things, the basis functions for SU(2) are easier to 
manipulate than the basis functions for 0(3). 

5. SUMMARY 

The main results of this paper can be briefly summar­
ized by the following chart: 

Algebra g contraction algebra :Ie 

/ \ 
realization realization 
(2. 2) / (2. 3) 

~ isomorphic\ 
group 0(3) ¢=> group SU(2) 

~ ~ 
spherical ~ 2 S- K Z K 

harmonics 
y.;(e, cp), m = 
-S, ... ,S 

~ 

K=O, ... ,25 

/ 
Bloch 

coherent states 

) / \ 
realization realization 
(3.2Y (3.3) 

I isomorPhic\ 
group H ~ group H' 

~ i 
Hermite aK,K = 0,1, .•. 

polynomials I HK(x).\ 0, " ••• 

Glauber 
coherent states 

The direct connection of the Bloch coherent states 
with the basis functions for the irreducible representa­
tions of the SU(2) group and the relation of the SU(2) 
group with the algebra S through realization (2. 3) were 
explicitly made in the text, and also for the correspond­
ing case of the Glauber coherent states. We have also 
pointed out that the distinction between using the groups 
SU(2) and 0(3) concerns the comparative advantages and 
disadvantages of handling the basis functions for the 
irredUCible representations of the respective groups. 
All this had not been noted or clearly stated by the pre­
vious authors.4 ,16 In fact, some authors4 retain the 
angular parameters Band cp in the application of the 
Bloch coherent states which somewhat confuses if not 
actually defeats the purpose of using these states, for 
any advantage of using the coherent states rather than 
the traditionally used basiS functions is gained through 
expressing every function and every relation of interest 

J. Math. Phys., Vol. 15, No.8, August 1974 

1177 

in terms of the two complex variables constituting the 
basiS functions for the irreducible representations of 
SU(2). The reader is refered to Ref. 7 for some interest· 
ing applications of this concept. 
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In an attempt to use Born reciprocity theory as a possible scheme for explaining elementary particles 
we calculate all the invariants of this theory. It turned out that all the invariants are functions of the 
operator (x 2 + P 2). Thus there is only one independent invariant which characterizes this theory. 

1. INTRODUCTION 

In an attempt to explain elementary particles, Born 
and his collaborators 1,2 ,3 ,4 used the principle of re­
ciprocity as a postulate. This principle states that the 
laws of nature are symmetrical with regard to space­
time and momentum-energy. Mathematically, the prin­
ciple asserts that the laws of nature are invariant under 
the following transformations 

(1) 

Indeed the canonical equations of classical mechanics 

CJH 
X·=-, , ap

i 

(i = 1,2,3) 

are invariant under transformation (1). These equations 
also hold in operator form of quantum mechanics. The 
commutations relations(l = c = 1) 

X}lPU - PVx ll = igllv (IJ. = 0,1,2,3) 

as well as the component of angular momentum 

exhibit the same invariance. 

These examples suggested strongly to Born the prin­
ciple of reCiprocity. In his paper, (1949) Born l assumed 
that the masses of elementary particles are the roots of 
a self reCiprocal function f(P) where self reciprocity is 
expressed by saying that f(x) is its own Fourier trans­
form, i.e., 

f(x) = (21Tt1/2 f f(p)e-;pxdp. 

Furthermore, he showed that every self reciprocal func­
tion is an eigenfunction of a reciprocally invariant 
operator and vice versa; i.e., 

S(x,P)f(P) = sf(P) 

where 

S(X, p) = S(± p, 'f x). 

To find f(P) Born chose the simplest reciprocally and 
relativistically invariant operator, namely 

G = x2 + p2. (2) 

Shin5 in a different approach to elementary particles in­
terpreted the eigenvalues of G as the masses of ele­
mentary particles and got a linear mass formula which 
closely predicted some of the masses of elementary par­
ticles'. 

As can be seen from the work of Shin,6 the operator 
G commutes with all reciprocally invariant operators 
and hence is an invariant of reciprocity theory. Thus 
it would be interesting to see if there exist any other in-
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dependent invariants of this theory, i.e., operators com­
muting with all reCiprocally invariant operators. 

In Sec. 2 we review the reciprocally invariant opera­
tors and their algebriac structure and in Sec. 3 we cal­
culate the invariants of reciprocity theory. 

2. RECIPROCALLY INVARIANT OPERATOR 

The principle of reciprocity restricts the number of 
reciprocally invariant operators considerably. Shin' 
considered all bilinear operators in x}l and P" and found 
that only 16 of these in addition to the metric tensor g"" 
of Minkowski space are reCiprocally invariant. Further­
more, all higher order reCiprocally invariant operators 
can be constructed from these. The 16 reciprocally in­
variant operators are 

and 

G"u = G VIl ::: x" Xu + PIlP V' 

mil V ::: - mUll = xllP U - XVP Il , 

gil u = - i[XIl,p v ]' 

(3) 

(4) 

(5) 

Since Eq. (5) is trivial it will not be considered any 
further. G/l V and mil v have the following commutations 
relations: 

[mllv , m po] ::= - i[gvpmllo + gJ1.pm OV - gllom pv - gvomJ1.p], 
(6) 

[mllv, Gpo] == - i(gvpGllo + gvoGIlP - gllpGvo - glloGvp ], (7) 

We take the following linear combination 

and demand the closure of r; i.e., 

[r, r] ~ r. 

Using the commutations relations (6), (7), and (8), we 
find 

(r/l'" rpo] = - ig"p(a 2 + f32)m ou + ig"o(a 2 + f32)mIlP 

+ gvp(i(a 2 - (32)mIlO - 2ia{3G"o] 

- g"o[i(a 2 - (32)mpv - 2ia/3G pv ]' 

Thus the closure will be satisfied provided 

(a 2 + (32) = 0, i(a 2 - /32 ) = {3, and - 2iafj = a. 

These have the solutions: 

a == ± ~, f3 = i/2. 

Taking + ~ for a we find 
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[rl1v , r po] = gvprl1o-gl1orpv, 

where 

r l1v = t(GI1U + im l1v )' 

(9) 

(10) 

The commutations relations (9) are those of U(I, 3) 
algebra. Since r 11 v are given by linear combinations of 
reciprocally invariant operators, all 16 independent 
components of r 11 v are also reciprocally invariant. 
Gil u and mil v are given in terms of r 11 v simply as 

G I1U = r l1u + r vl1 ' 

m l1u = i(rvl1 - r l1v)' 

Thus all other reciprocally invariant operators can be 
constructed from rl'V and hence belong to the envelop­
ing algebra of U(I, a). 

3. THE INVARIANTS OF RECIPROCITY 
Since all higher order reciprocally invariant opera­

tors belong to the enveloping algebra of U(I, 3), it 
follows that the Casimir operators of U{I, 3) form a 
basic set of invariants for reciprOCity theory. All other 
invariants are functions of the Casimir operators. 
Hence the problem of invariants is reduced to finding the 
Casimir operators of U(I, 3) in the special representa­
tion (10) of the generators r l1v ' 

There are four Casimir operators, since U(I, 3) is a 
group of rank 4. From expressions like 

1179 

r~, r~rg, 

we can construct the four Casimir operators c l ' c2 ' 
c3 ' and c4 which commute with all reciprocally invariant 
operators. 

The first Casimir operator c 1 is: 

(11) 

Thus as we asserted in the introduction the operator G 
commutes with all reciprocally invariant operators. 

The second Casimir operator c 2 is: 

c =rVrl1=-41(G GVI1-ml1vm ) 2 11 v 11 v VI1 • 

Using Eqs.(3) and (4) we find the following relation: 

Gil vGup - mil v mup = G2 - 12. (12) 

Therefore 

c2 = i(G2 - 12). (13) 

Hence c2 depend entirely on G. 

The third Casimir operator c 3 is: 

(

GaPG IlG + i(Gapm Gil + maPG Gila + GaPG mil) ) c = r rv P r p = t P II a P II a P II p II" • 
3 pu P _ (Gapm mil + maPG mil + mapm GB) - imapm mil 

pB" pll a pB a pll a 

Using the symmetry properties of GPll and mpu' we find 
that the second term in the above expression reduces to 

i(GapmpllGIJ a + maPGplJGIJ a + GaPGplJm lJ ,,) 

= i(GaPGplJm lJ a + [Gap, mpll]GB a)' 

By elementary algebra we find the following generali­
zation of Eq. (12) 

GaPG pB = m"u mv II + GGaB + 4im a
IJ - 3ga

B· (14) 

USing the commutations relations, Eqs. (12) and (14), we 
find that the above term reduces to 

i(GapmplJGIl a + maPGpllGIJ a + GaPGplJmB a) 

= 3G2 + imavm v 8 mB a - 48. 

Similarly, the third term reduces to 

- (GapmplJmB a + maPGplJmlJ a + mapmpBGIJ a) 

= - ~ GmalJm Ba; 

also the first term becomes 

GaPGpBGlJa+ ~GmalJmBa + G3 - 15G. 

Adding all the terms in c3 ' we finally find 

c3 = i[G3 + 3G2 - 15G - 48]. 

Thus the third Casimir operator is given entirely in 
terms of G. 

(15) 

The fourth Casimir operator: The fourth casimir 
operator is more complicated and the calculations are 
lengthy. Here we find a need to generalize Eqs. (12j and 
(14) further. By elementary algebra we find the follow­
ing generalization: 

GI1VG ap - GauGP P - m l1V m ap + maum p P 

= i(gP u m P a + gV amP P + g P amp u + g l m v a) 

+ gpagPu + gp l1gav • (16) 

Equations (12) and (14) are produced by repeated con­
tractions over one and two of the indices, respectively, 
in Eq. (16). c4 is given by 

c 4 = rpuruprparal1' 

Using Eqs. (12) and (14) and the commutations relations, 
c4 becomes 

1 (G2ml1 vmup + G4 - 18G2 - 16ml1 pm PI1 + 6G3 - 96G + 36 ) 

c 4 = 16 _ (G m U mPoG P + G mV GP mOil + m GVPm G O I1 + m GVPG mOil) pv P 0 I1V P ° I1V po I1V po 

With the aid of Eqs. (12), (14), (16) and the commutations 
relations the last term in c4 reduces to 

- (Gpvm v pmPoGop + Gpvm u pGP omo p 

+ ml1vGuPmpaGOI1 + mp uGuPGpomOp) 

= 12G2 + 16mpam ap -192-4mvampvmaomop 

+ 4ml1o mol1 + 2mvamauml1omol1 - G2maBmBa' 

J. Math. Phys., Vol. 15, No.8, August 1974 

Now by straightforward calculations which involve 
several hundred terms we find that the m's satisfy the 
following equation: 

4mv ~mpvmaomol1 

= 2muamauml1omol1 + 4ml1omol1. (17) 
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Adding all the terms and using Eq. (17), c4 finally re­
duces to 

c4 = MG4 + 6G3 - 6G2 + 96G - 156]. (18) 

Thus we see that c4 is again given entirely in term of G. 

4. CONCLUSIONS 

The invariants of reciprocity theory are functions of 
the Casimir operators of the group U(l, 3) in the special 
representation (10) of its generators. It turned out that 
all the Casimir operators are polynomials in the opera­
tor G of Born! and Shin.s Thus the reciprocity theory is 
characterized by one invariant and hence insufficient at 
the present for the explanations of the invariants occur­
ring in physics, namely: the mass, charge, spin, hyper­
charge, baryon numbers, lepton numbers, etc. 

One may extend the principle of reciprocity by adopt­
ing the group U(l, 3) as the symmetry group of ele­
mentary particles. In that case a mote general repre-
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sentation whose invariants are independent of each other 
might prove useful for the classifications of elementary 
particles. 
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Ruelle has proven that the solutions of the Kirkwood-Salsburg equation for a finite volume A 
become, in the limit as A .... 00 , the solutions to the Kirkwood-Salsburg equation for an infinite 
volume, i.e., 
limA .... ~PA .... p +limA .... ~E(A), limA .... ~E(A) .... O. 

The form of f is not obtained. We show that for the first order contribution to the solution of the 
Kirkwood-Salsburg equations obtained via a perturbation scheme developed in an earlier paper that 
E(A) .;;; limR .... ~ E- k ' ak 

where k'a is a positive real constant which can be specified and R is the minimum distance from 
the container walls to the particles of the system. 

I. INTRODUCTION 

Equilibrium thermodynamics can be rigorously 
obtained from statistical mechanics, but only in the 
thermodynamic limit. Experiments, of course, are 
always done in finite volumes. An obvious question is: 
What do the formulae of statistical mechaniCS, in the 
limit of infinite volume, say about finite volume experi­
ments? The answer is that if the volume is large enough 
and the measurements to be performed are taken far 
enough from the walls of the container that the differ­
ence between experiment (finite volume) and theory 
(infinite volume) is negligible. 

There are several objections to the above which can 
be characterized by the following questions. What is 
"large enough" and "far enough"? Is there a "large 
enough" or "far enough" in the coexistence region? Is 
there long-range order in the crystalline phase which 
transmits the effect of the walls over infinite distances? 
Is this long-range effect of the walls also felt at the 
critical pOint? 

These questions are quite difficult to answer rigor­
ously. This paper is a first step in employing a method 
of solution developed by the author 1 to try to answer, 
rigorously, some of the above questions. In this first 
paper we will treat the effect of the walls in the region 
of very low activity. 

In a previous paper1 referred to as (I) the author has 
proven that the Kirkwood-Salsburg2 equation (K-S) 

p = z + zPKp, 

where 

p= 

and zPK is defined by 
p' = zPKp 

I 00 1 n+ 1 
P1(X1) = z 2:; - J Pn(X2 " 'Xn+1) n '!;'jdJS, 

n~l n! J~2 

N 

P~({XN}) = PNZ F!2 (1 + .!;,)[PN-1(x2•• ·XN) + (1.1) 

1181 Journal of Mathematical Physics, Vol. 15, No.8, August 1974 

can be solved for potentials with a hard core and a 
finite range. The solution is obtained by decomposing 
the operator zPK into an unperturbed part PKo 

zpKo = p', 

00 1 n+1 
p.{(x1) = z 2:; I J Pn(x2 •• • xn+1) .~ .!;,j dxj , 

n=l n. J-2 

I N 00 1 
PN({XN}) = zPN !l (1 + lij) 2:; - J PN+n-1(X2 " .xN+.) 

J=2 n=l n! 
N+n 

181 n J, .. dx., 
j+N+1 JJ J 

and a perturbation 

PK'p=p', 

p{( {Xl}) = 0, 
.N 

P~({xN})= PN n (1 + .!;,j)PN-1(~' .. xN), 
j= 2 

expanding p in a power series in the perturbation para­
meter € 

p = 2:; €n¢n 
n 

(1. 2) 

and inserting the series into 

p = z + zpKoP + z€PK'p. 

Equating powers of € gives the recursion relations 

¢o = z + zPKo¢o, 

¢N= ZPK' ¢N-1 + zPKo¢N' 
(1. 3) 

The operator P is. a modification to the K-S equation 
defined as 

1 0 0 0 0 ... 

0 1 0 0 0 ... 
P= 

0 0 P2(X23) 0 0 ... 

0 0 0 P3(x23 , x24' X34) 0 ... 

where PN(~' • • xN ) is a projection operator which is 0 if 
any of the particles 2 • •• N overlap their hard cores and 
one otherwise. 

It was proven in (I) that Eqs. (I. 3) have unique solu­
tions and that (I. 2) converges uniformly for € = 1 and 

I z I < [eBB' eC(J3)]-l, 

Copyright © 1974 by the American Institute of Physics 1181 



                                                                                                                                    

1182 William Klein: Behavior of distribution functions 

where B' is a positive constant such that 
N 

PN n (1 + f,.}·) :s eBB' 'IN, 
}=2 

C({3) = J l!ij I dxij , 

and 

Ruelle3 has shown that the solution of the K-S equation, 
derived from an iterative approach, has the property that 

Lim PI'. ~ P + Lim E(A): Lim E(A) ~ 0, 
A-'OO A-OO A-+OO 

where A is the volume of a finite box, PI'. is the distribu­
tion function vector for the box and E(A) is a function 
which depends on the size of A through A which LimA .... "" 
implies A ~ aJ. The form of the function E(A) is not 
specified. In this paper we will begin to employ the new 
method of solution developed in (I) to specify the form 
of the function E(A). 

It was shown in (1) that the first nonzero contribution, 
generated by the recursion relations (1. 3), to each of 
the distribution functions could be obtained by solving 
the set of equations. 

PlS(xl ) = z + z J Pl(x2)!l2dx2' 
N 

PNS({XN}) = z 112 (1 + !;)PN[PN- l (X 2•• .xN) 

+ J PNS(xN +l ,x2•· .XN)!l,N+ldxN+l]' 

which was called the strip operator (S-O) hierarchy. 
As the solution to the S-O hierarchy is a good approxi­
mation to the exact hierarchy solution for low z it is of 
some interest to examine the S-O solutions for infor­
mation which might be mirrored in the solution of the 
exact hierarchy. It is also necessary to obtain this 
result as it is an integral part of the more general 
considerations. 

We will prove that for 

Izl < [eBB 'C({3)ep 

the solutions PNA({XN}) of the S-O hierarchy for finite 
volumes 

PlS (xl) = X(A)[z + z J PlS (X2)!l2dx2]' 
A A 

N 

PNs ({XN}) = zX(A) n (1 + !;j)PN[PN- lS (x2 ••• XN) 
A }=2 A 

+ J PNSA(XN+l'X2· • • XN)!l,N+ldxN+l] 

tend in the limit as A -7 aJ as 

Lim PNs ({XN}) ~ PNS({XN}) + O(e;k::'o~ x (C({3))-N, 
A-+OO A 

where R is the minimum distance between the container 
walls and the cluster of particles {XN} (assumed to be 
large) and k&.o is the imaginary part of kao' the root with 
the smallest positive imaginary part of 

1 - zj(k) = 0, 

and X (A) is the characteristic function of the volume A. 

II. LARGE R BEHAVIOR FOR Pls A (xI) 

The thermodynamic 3 limit of the system is to be taken 
in the following way. 
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Rl,~,1S,R4 ~ aJ and R ~ aJ, where R is the minimum 
distance between the two volumes. The set of particles 
{xN} which is the set whose correlation function PN({XN}) 
is being considered is restricted to volume I. By defi­
nition the average particle density remains constant in 
the limiting process. 

The proof of the postulated limiting property will 
proceed by induction. 

First we will prove that 

Limp1s (x1)Pls(xl ) + O(exp(ik~ R» 
~oo A 0 

Proof: (We will drop the 1S subscripts in the proof) 

PA(Xl ) = X(A)[z + z J PA(x 2)!l2dx2]. 

Dividing both sides of the above equation by X (A) yields 

P~(xl) :::: z[l + JPl\.(x2)!12dx2]' 

P~(xl) = PA(Xl)/x(A) 

P~(Xl) can be written as 

P~(Xl) = P~(xl)O + P~(xl)I' 

where p~(x}.)O is nonzero only if particle 1 is outside the 
volume A \the volume A is the larger box marked n in 
Fig. 1) and p~(,) I is nonzero only if particle 1 is inside 
A. By definition 

(n.1)-

Therefore 

Taking the Fourier transform of both sides with respect 
to Xl gives 

PA(kM1 - zRk» = z6(k) - p~(k)o. 

Dividing by (1 - zRk» and taking the inverse transform 
yields 

PA(xlh = [z/(l - zj(O»] - J p~(x 2)oF( IXl - x 2 1) dx2, 

(n.2) 

where 

F( IXl - x 2 i) = J eik.x12 [1 - zj(k)]-l dk. 

Since 

Iz I < (eBB '+lC({3»-l 

and 

"Vk, real,j(k) = J!(x)e-ik-xdx < J lJ(x) Idx = C(f3) 

clearly 

1 - zj(k) > 0 "Vk real. 
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From (I) it is clear that 

z/(1 - z/(O» 

is the solution to the infinite volume S-O hierarchy 
equation for Pl(xl ). The properties of 

Lim J PA(X 2) 0 F(xl - x 2) dX 2 A-+OO 

must be examined. 

First we will rewrite F(xl - x 2) as 

F(xl - x 2) = li(X12) + F'(x12), 

where 

J eik'Xl2 [1 + z/(kl Jdk 
1 - zf(k) 

= li(x ) + J zj(kl 
12 1 - z!(k) 

= li(x12) + F'(x12)· 

Inserting (II. 3) into (II. 2) gives 

(II. 3) 

PA(Xl)I = [z/(1 - zJ(O»] - P~(xl)O - J p~(x2)oF'(xl - x 2)dx2 

since Xl can be chosen at will and we are interested in 
the configurations in which Xl is in A 

P~(xl)O = 0, 

PA(Xl ) is a bounded function (by assumption). In the space 
of bounded functions 

z J PA(x2)f12dx2 

is a bounded operator. Consequently PA(Xl )0 is also 
bounded. 

In (I) two theorems were proven that will be useful 
here. The first is that 

F'(x) = J zJ(~) eik-x dk 
1 - zf(k) 

is a bounded function of X for all x real. The second is 
that for I x I greater than the range of the potential 

eikalxl 
F'(lxl) =f(lxl) +~ --Aa' 

a Ixl 
(11.4) 

where the fact that F'(x) depends only on Ix I has been 
made explicit and 

" eikalxl 
LJ--A 
a Ixl a 

converges uniformly in the required range of Ix I. We 
will now prove that 

f I f z](k2 eik-x dk I dx = f I F'(x) I dx 
1 - z!(k) 

is also bounded. 

For the values of I z I considered, 

F'(lx i) = J zJ(k2 e ik ' X12dk 
12 1 + z!(k) 

= zf(x12) + Z2 J !(xl - x 3)!(x 2 - x 3)dx 3 

+ Z3 J !(X1 - X3)!(x3 - x4 )!(x4 - x2)dx3dx4 + ... 
00 

= ~ zn(f*)n, 
n "1 
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where (f*)n is the nth convolution of the!'s and (f*) =!. 
The term by term integration is justified by the uniform 
bounded convergence of the series. 4 

Clearly, 

In~ zn(f*)nl ~ n~ I Z In (I!I *)n 

so that 

J !F'(X12 ) I dX12 ~ ~ f dx12 Iz In (Ifl*)n (11.6) 

00 

~~ Izln (C(.B))n. 
n"l 

Since 

Izl < [e13B '+lC(J3)P 

and 

~ Izln(C(.B)n = IzIC({3) 
n ~l 1 - I z I C(f3) 

it follows that 

JIF'(x)ldx~ IzIC({3) 
1 - Iz I C({3) 

(11.7) 

and the boundedness of the integral is proven. We are 
now in a pOSition to examine 

Since PA(Xl )0 is 0 if x 2 is not outside A (i.e., AlI in 
Fig. 1) and we demand that Xl is in AI then 

Ixl -x2 1?:R 

over the entire range of integration. Using the uniform 
convergence of the integral in (II. 8) to interchange 
limit and integral we increase A in the prescribed 
manner until 

R >A, 

where 

A = range of potential. 

At this point we have 
e ika IXl21 

F'(xl - x 2) =f(xl - x 2) + ~ Aa 
a IX121 

If k~ is the imaginary part of the root with the smallest 
o 

imaginary (positive) part then 

where/,,( IXI - x 2 1) is a bounded function. Therefore if 

sup IpA(X1)O I < A 
'I "I 

and 
sup IF"(lx1 -x2 1)1 <B, 

'IxI '''2 
then 

J PA(x1)oF(xl - x 2)dx2 :s 41TAB J
R

oo 
x2exp(ik"ox)dx 
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which goes to 0 as 

exp(ik~ R) 
o 

in the limit as 

R ~ 00. 

III. LARGE R BEHAVIOR FOR PNS( xN ) 

In this section we will prove that the solution to an 
arbitrary 8-0 equation has the postulated property. 
Proceeding with the proof by induction we assume that 

PN-lAS ({XN- 1}') = P(N-l)S(?:N-1}') + GA({xN- l }'), 

where 

{xN - l }' = ?:2·· .xN } 

and 
Lim GA({xN-J') --7 O{exp(ik~ R)(C(t3))-N 
A~OO 0 

if {xN-l}' are restricted to AI' We have 

00 

PA({XN}) = Zx (A) n (1 + !ij)PN[PA(?:N-l}') 
j=2 

+ f PA(xN+l , {xN- 1}')!1.N+ldxN+!1· 

The subscripts have been dropped for the sake of 
simplicity and the order N of the function can be inferred 
from the variable dependence. 

Therefore, 
N 

PA({XN}) = E)p,,!{p({xN- I}) Z }}2 (1 + !ij)X (A)) 
N 

+ E)f/(GA({xN-I})Z R2 (1 + .t;j)x(A)) (III. 1) 

where 
N 

E)NP({XN}) = P{xN} - PNX(A) J~2 (1 +.t;) f!1.N+l 

@ PN(xN+l , {xN- 1}')dxN+I • 

From (I) it is clear that E)-1 exists and is bounded for 
the range of Z considered. Therefore, the second term 
on the right-hand side of (III. 1) will clearly approach 
o in the same manner as GA ({XN-1}') , or faster, when 
{xN} is restricted to Al and AI and A ~ 00. We turn our 
attention therefore to the term 

N 

¢A({XN}) = E)NI(zP({xN_I }) R2 (1 + !;j)x(A). 

That is we want to investigate the behavior of the solu­
tion of 

N 

¢A({xN}) = zX(A)PN jf12 (1. + !ij)[P({xN-l}) 

+ f ¢A(xN+l , {XN-I})!(xi - XN+1)dxN+d. (III. 2) 

If we divide both sides of Eq. (III. 2) by 
N 

X(A) R2 (1 + !ij)PN 

we have 

¢~({XN}) = ZP({xN-l}') 

+ Z f ¢A(xN+1, {xN-l}')!(xl - xN+I )dxN+l> (III. 3) 

where 
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Multiplying both sides of (III. 3) by (C({3))-N and defining 

¢A({xN}) = ¢A({XN})/(C({3»-N, 

we have 

¢~({XN}) = zP({xN_1}')(C({3))-N 

+ Z J~(XN+l' {XN-l}')!(xl - xN+l )dxN+1• (III. 4) 

From (I) it is clear that ¢A' ¢;, and P({xN_l}')(C(/3))-N are 
bounded by numbers independent of N. ([>; can be decom­
posed into a number of functions with disjoint support. 

¢~({xN}) = ¢~ ({xN}O) + ¢~({XN}O) 
o 

+ CiJ'\,({xN hl + ¢~I({XN}{) 

+ ¢A (Xl ({XN-l}~ + ¢A (Xl ({xN-l}'). (III. 5) 
o 0 I 0 

The subscripts within the parentheses (with one ex­
ception) refer to whether the subscripted variables are 
inside or outside of A. The underlined subscripts in 
(III. 5) refer to whether particle 1 is within the potential 
range of at least one of the particles in {xN- l }'. For ex­
ample, if particle one was not within the potential range 
of one of the particles {XN - 1 }' then 

¢A ({XN}) = 0 
I 

independent of the pOSitions of the {xN} particles rela­
tive to A. The one exception mentioned above is 
¢~({xN}O) WEich is 0 if any of the particles in {xN}o is 
outside A. ¢A({XN}) has a similar decomposition, 

¢A({xN}) = ¢Ao({xNh) + ¢AI({xNh)· 

Clearly 

¢~o({xN}J = ¢'\,({xN}J. 

(III. 6) 

(III. 7) 

Taking the Fourier transform of both Sides of (III. 4) 
with respect to Xl and employing Eqs. (III. 5), (III. 6), and 
(III. 7) one obtains after some algebraic manipulation and 
taking the inverse Fourier transform, 

¢A ({xN}J = - fF(xl -XN+l)[¢:(xN+lo,{XN-l}~) 
o + ¢~ (xN+11 ' {xN-l}~) + ¢~I(XN+lo' {xN-l}i) 

I 

+ ¢A (XN+1 ,{XN-l}~) + ¢; (XN +1 '{xN-l}O)] o 0 . -1) 0 

X dXN+l + f F'(x1 - XN+l ) ¢A (XN+l , {xN- 1g)dxN+l I I 

+ Z(C(t3))-N p({XN-.:-}') • (III. 8) 
1 - z!(O) 

As discussed in sec. II, 

F(xl - X 3) = /) (Xl - X 3) + F' (Xl - X 3)· (III. 9) 

Employing (III. 9) and restricting particles {x N} to Al 
gives 

CPA ({xN}J + ¢A ({xN}J = - f F'(xl - XN+1) 
o I 

X [¢~ (XN+1 '(xN-lg) + ¢~I(XN+l '{xN-l}l) 
I I 0 

+ ¢~o (xN- V (xN-l}{J - ¢A1(XN+1r , {xN-1}{)HdxN+1) 

+ z(C(/3»-N p({xN-l) • (III. 10) 
1 - z!(O) 

If we multiply both sides of (III. 10) by a function ~ 
which equals 1 if particle 1 is within the potential range 
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of at least one of the particles {x N-l}' and is 0 other­
wise then 

N 

¢~r({XN h) - !:> j F '(Xl - xN+l ) (1 - if}2 (1 + iii» 

o ¢~I(XN+lr' {XN-l}~)dxN+l 

= - !:> j F'(xl - XN+l)[¢~ (XN+l ,{XN-l}r) 
I 0 

_ , Z(C(J3))-Np({XN_l }') 
¢~ (XN+l ,{XN-lh)]dxN+l + ~. 

o 0 1 - zi(O) 
(m.ll) 

We define an operator W such that 
N 

WPN({XN}) = PN({XN}) - jF'(xl -xN + l )(1-XI (1 + iN+l i» 
J-2 , 

x PN(x N+l> {xN- l }') dxN+l • 

From equation (11.7) it is clear that for the range of z 
considered, Whas a bounded inverse. 

Employing the uniform convergence of all the inte­
grals in (m. 11) we have 

. -, -1[' z(C(J3»-Np({xN_l }') 
T.Im¢A = W LIm!:> ~ 
X-+oo I A-+OO 1 - zi(O) 

+ !:> j dxN+l Lim F'(xl - XN+l){¢~ (xN+l ,{XN-l}r) 
A -+00 r 0 

+ ¢;.. (XN+ l ,{xN - l };)}]. (m.12) 
o 0 

From (I) it can be seen that the first term on the r.h.s. 
of (m. 12) is the solution of the infinite volume 8-0 
equation for (C(f3»-N¢:i({xN})' The remaining terms can, 
by considerations identical to those of 8ec. II, be shown 
to damp in the proposed manner. Each time a 8-0 equa­
tion is solved the residue of the infinite volume limiting 
procedure contains an additional term. The question re­
mains whether the residue remains finite for R small 
and still damps in the proposed manner for R large in 
the limit as N, the order of the 8-0 solution, becomes 
infinite. That this is in fact the case can be seen by 
noting that each term that is added is of the form 

where y is a bounded operator and TN is a function of 
such a form that (C(J3})-NTN is bounded for all N. From 
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equation III. 1 it can be seen that the Nth 8-0 distribu­
tion function has a damped term which is bounded by 

n~l (1 _ :~B:"c(J3)) nT, 
(m.13) 

where 

lI
i
5

l
(1+J;)II<e BB

' '\TN 

and 
II ¢li II < (1 - zeBB ' C(J3»-l. 

For the range of z considered 

ze fJB ' 
-----<1 
1 - zeBB ' C(J3) 

and (m. 13) converges in the limit as n ---700. This con­
cludes the proof'of the form of the residue of the infi­
nite volume limiting procedure of the 8-0 distributions. 

RESULTS AND CONCLUSIONS 

Although the form of the residue of the infinite volume 
limiting procedure was derived for an approximate 
hierachy it is clear that this form should be a good 
approximation for very small z. 

As was argued in (I) and mentioned in the introduction 
of this paper, the solution of the entire hierarchy, via 
the perturbation expansion, involves solving equations 
identical to those of the 8-0 hierarchy except for the 
inhomogeneous term. The methods, therefore, employed 
in this paper, and their results, are those tools which are 
needed to generalize this result to perturbation solutions 
of the exact hierarchy. 
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Proof of Zwanzig's rule of "planar" graphs 
A. Wulf 

Centro de Fisica, IVIG, Apartado 1827, Caracas, Venezuela 
(Received 15 October 1973) 

A rigorous proof is given of Zwanzig's conjecture that only planar graphs contribute to the virial 
coe~cients of discreet-orientation models for a fluid of long thin rods. The proof makes use of 
relatIOns between connected grap)J.s and "trees"-the simplest type of connected graphs. 

1. INTRODUCTION 

Zwanzig l has introduced a Simple model-a system of 
long rectangular parallelepipeds allowed to point in only 
three mutually perpendicular directions-for the study 
of the liquid crystal phase transition in a gas of long 
thin rods. (This first order transition was first predic­
ted by Onsager2). Within this model, it is feasible to 
calculate, well beyond the second vi rial approximation 
Onsager's series for the Helmholtz free energy of a g~s 
of long rods. 2 The vi rial coefficients in this series are 
given by the formula l ,3 

11 3 

B(nl ,n2 ,n3) = VO(ni!) ~f1f)d3rl"' .d3r N (N = ~ n i), 
(1) 

where I; Of is a sum of products of Mayer f functions 
taken over all irreducible graphs with n i molecules 
pointing in direction i, i = 1,2,3. The number of vi rial 
coefficients that need to be computed was greatly re­
duced by Zwanzig by means of the conjecture that only 
"planar" graphs make nonvanishing contributions to the 
integral (l/V) II; Of in the limit 

{2d = const (2) 

(l = length, d x d = square cross section of parallel­
epipeds). The planar graphs are those in which all the 
molecular long axes are parallel to the same plane. 
[Therefore, the only nonvanishing virial coefficients 
are of the form B(nl' n2 , 0)]. 

In this article we give a rigorous proof of Zwanzig's 
conjecture; i.e., it is shown that any nonplanar, irreduc­
ible graph G of N points N "" 3, has a vanishing integral 
in the limit (2): 

J'nGf= 0 [in limit (2)], 
(3) 

G = nonplanar, irreducible graph. 

(The prime means integration over only N - 1 mole­
cules.) The proof, although presented for Zwanzig's case, 
will be seen to apply to any model with a finite number 
of allowed directions for the molecular long axes. 4 To 
our knowledge, (3) has not been proven before (see also 
Sec.4). 

Further work along the lines of Zwanzig has been 
done by Runnels and Colvin.5 

2. PRELIMINARIES AND DEFINITIONS 

For the sake of clarity, we adopt, to some extent, the 
mathematical style of presentation. Thus, we have defi­
nitions, theorems, etc. 

The concepts of graph, connected graph and irreduc­
ible graph are assumed known. 6 

Our proof in the next section, although quite simple, 
makes use of the existence of a certain type of graphs­
which we call "trees"-and some elementary theorems 

1186 Journal of Mathematical Physics, Vol. 15, No.8, August 1974 

about these graphs. The following definitions introduce 
the idea of a tree and several related concepts needed 
to understand Theorems Al and A2 of the Appendix. We 
use capitals to denote graphs and sets in general and 
lower case letters, or numerals, to denote points of a 
graph. Recall that a graph is a set {aJ U {a.a } of 
points ai and lines (or "bonds") a.a k jOiningJs~me pairs 
of points. J 

Definition 1: We say there is a path P = P(a v am) = 
{a l a2 , a2 a3 , ••• am-lam}, connecting points al and a of 
a graph G, if aia i+ l is a bond of G, for i = 1,2, "', '::t - 1, 
and all the points a j are different. 

Definition 2: A tree, T, is a connected graph such 
th<l:t any point of T is connected to a point 0, of T, by a 
unzque path. The point 0 is called the origin of T (see 
Fig. 1). 

Definition 3: We say a graph G can be reduced to 
the graph G' if: (i) G' and G have the same set of points· 
(ii) set of bonds of G' .r;. set of bonds of G. ' 

Definition 4: A mixed graph is a graph whose bonds 
are divided into several types or "colors". 

Definition 5: Let G be a mixed graph and M be a 
maximal set of pOints of G connected by bonds of color 
x (regardless of bonds of other colors). Then the con­
nected subgraph conSisting of M and the bonds of color 
x is called an island of type x. 

Definition 6: A terminal point of a graph is a point 
with one and only one attached bond. 

It may be useful to point out that when we form a new 
graph by removing a point P from a graph, it is, of 
course, implied that all bonds attached to P are also 
removed. On the other hand, when a bond is removed 
from a graph its end points need not; unless otherwise 
stated, it is understood that the end points are not 
removed. 

We give now a few simple theorems which are helpful 
in clarifying the concept of a tree. In particular, Theorem 
5 shows why trees are useful to us. 

Theorem 1: Any point of a tree serves equally 
well as origin of the tree. 

FIG. 1. Example of a tree. The point "0" is the chosen origin. 

Copyright © 1974 by the American Institute of Physics 1186 
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Proof: Let 0 1 be the given origin of a nontrivial 
tree T (Le., T contains more than one point). Pick some 
other point 02 of T as candidate for origin of T. We 
show that there exists a Wlique path from 02 to any 
point a ('" ° 2) of T. 

By assumption, there exist Wlique paths P(o v O2 ) and 
P(ol' a). Let P(ol' b) == P(ol' a) n P(ov 02) [b == 02' or 
b == 0t' are allowed; if b == 01 then P(ov b) is the empty 
set cf> • Then P(o" 02) == P(ov b) U P(b, 02) and P(ol' a) == 
P(ov b) U P(b, a), where P(b, a) is a path from b to a 
(see Fig.2). Therefore, P(02' a) == P(02' b) U P(b, a) is 
a path from 02 to a. This path is Wlique. For, suppose 
there exists a P'(02' a) '" P(02' a). Then, by an argument 
similar to the above, it follows there exists a P'(ov a) '" 
P(ol' a), contradicting the fact that T is a tree with 
origin 01' 

Theorem 2: (Composition of trees): (a) Let T l' T 2 
be two trees. Then the connected composite graph T 3 

obtained by identifying any given pair of points of T 1 
and T 2 is a tree; (b) Let T 3 be a nontrivial tree and pick 
an arbitrary point a of T 3' Suppose a (the "linkage" 
point) is bonded to points b i' i == 1,2, ... ,p (and no 
others). Let 1 :s r :s p. Then the subgraph T 1 con­
taining a, and all the points of T 3 'connected to a through 
the bonds ab i , i == 1,2, ... , r, is a tree. Similarly, the 
subgraph T 2 containing a and the points connected to a 
through ab i' i == r + 1, ... ,p, is a tree (if r == p, define 
T 2 == {a}). Note: T 3 = T 1 U T 2 in both (a) and (b). 

Proof: (a) Let 01 and 02 be the points of T 1 and T 2 
that are to be identified. Choose ° i as origin of T i' Then 
01 == 02 == 0, is, by Definition 2, and origin for T 3 • 

(b) Choose a as origin of T 3' Then, obviously, a is an 
origin for both T 1 and T 2' 

Theorem 3: Let T be a tree with N points, 1 < N < 
<Xl, with chosen origin 0. Then T has at least one termin­
al point, t, t '" 0. 

Proof: Consider a sequence of lengthening paths 
P(o, an) == {oal' a1a2, "', an - 1a,,}, n == 1,2, .... Because 
N> 1, P(o, a 1 ) exists. Now suppose P(o, an) exists. If 
an is connected to some point b other than an-I' then 
b '" a i for i == 0, 1, ... ,n - 1 (for otherwise there would 
exist two different paths from ° to an)' Therefore, we 
can form P(o, an + 1 ) == {oal' .•• , an-lan' anan+ 1 } (an+ 1 == b). 
But T is finite (N < <Xl); therefore, there must exist a path 
P(o, am)' with m < N - 1, such that am is only connected 
to am-I' Thus, we can take t == a m( '" 0). 

Theorem 4: The number of bonds in a tree of N 
points is N - 1. 

Proof: If N == 1 the proposition is obviously true. 
Suppose the proposition is true for a tree with N pOints. 
Consider a tree T with N + 1 pOints, and let ° denote 
its origin. By Theorem 3, T has a terminal point b with 
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Wlique bond abo Then, by Theorem 2(b), the subgraph T' 
containing all points of T other than b is a tree. T' has 
N points and, by the induction hypothesis, N - 1 bonds. 
Therefore, T == T' U {b} U {ab} has (N - 1) + 1 == (N + 1) 
- 1 bonds. The proof is completed by mathematical 
induction. 

Theorem 5: Let T be a finite tree (number of points 
N < 00) with origin 0. Then T can be collapsed down to 
the origin 0 by successive removal of terminal points 
(and their single bonds). 

Proof: If N == 1, there is nothing to prove. If N > 1, 
T has a terminal point t1('" 0), by Theorem 3. Thus, we 
can remove tl (and its single bond) from T to get the 
graph T l' By Theorem 2(b), T 1 is a tree. T 1 has N - 1 
pOints. If N - 1> 1, the argument can be repeated to 
form T 2 which has N - 2 points; and so on. The process 
ends with T N-l which has only one point, namely the 
origin O. 

In the integral of a graph, the integration over a ter­
minal point can be carried out immediately as a single 
particle integral J fd3R. Therefore, by Theorem 5 and 4, 
the integral of a tree is computed very simply as the 
product of N - 1 single particle integrals. Letting a 
bond correspond to - f, which is nonnegative and domina­
ted by 1 in the case of repulsive interactions, we can 
obtain an upper bOWld to the integral of a graph by re­
ducing the graph to a tree (see the Appendix). This pro­
cedure is used heavily in the next section. 

3. PROOF 

Step 1: First we show that any connected graph G 
with at least one pair of parallel molecules joined by a 
bond has a vanishing integral in the limit (2). 

Let molecules 1 and 2 be parallel and joined by bond 
12. Let us say that the bond 12 is "red" while all the 
other bonds of G are "white". By the corollary of 
Theorem 2 of the Appendix, we can reduce the mixed 
graph G to a tree T with the red bond 12 appearing in T. 
Since the number of bonds in T is no greater than the 
number of bonds in G, and since - f ij == 0 or 1 for hard 
core interactions, we have 

o :s ITG(- fij) :s ITT (- fij)' (4) 

The single particle integral is given by1 

J {
2(1 + d)2d for i and j perpendicular, 

(- f. .)d3r. == 
'J • 8Id2 for i and j parallel. (5) 

Therefore, taking molecule 1 as the origin of T, one gets, 
in the limit (2) (with N == number of points in G), 

J d3r 2'" d3r N ITT (- fij) :s (212d)N-2 J d3r 2( - f 12 ) 

:s 4(212d)N- 1dj I 

--~)O. 

lim (2) (6) 

Combining (6) and (4), we have the desired result. It is 
sufficient, therefore, to consider graphs G where only 
perpendicular molecules are joined by a bond. 

Step 2: Let G be a nonplanar, irreducible graph of 
N points, N ?: 3. Pick a triplet of mutually perpendicular 
molecules, labeled 0, 1, and 2, say, and connected by 
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bonds 01, 12 (see Fig. 3). (It is easy to see that G must 
contain such a triplet. For, consider molecules a and b, 
joined to each other by bond ab and, to a third molecule, 
3, perpendicular to both, by path P :::: {ab, •.. , x3}. Such 
molecules, a, b, 3 and path P exist because Gis non­
planar and connected. Further, we can suppose 3 is the 
first molecule perpendicular to both a and b that is 
encountered along P-otherwi~e take a shorter P. Then 
molecule 3 and the two molecules preceeding it in P 
form a connected triplet of mutually perpendicular 
molecules-remember only perpendicular molecules are 
joined by a bond). Because G is irreducible, there exists 
a path P' == {23, 34, ... , (M - I)M, MOj, from 2 to 0, 
different from the path P == {21, 10}. Let us take the 
bonds 01, 12,23, ... , (M - I)M as "red" and all the 
remaining bonds of G as "white" (see Fig. 3). By the 
corollary of Theorem 2 of the Appendix, G can be re­
duced to a tree T which includes all of the "red" bonds. 

The integral of T, however, is not a useful upper 
bound for the integral of G. A better bound is obtained 
by inserting back the bond MO into T to give the graph 
T'. We can integrate off the points of T', except those 
in the closed path {01,12, ... , (M - I)M,MO}, in the 
same fashion as for T: 

I' Od3r 0G (- fij) :s I I Od3r 0T' (- fij) 

=[2(l + d)2d]N-M-1IM, 

where 

1M == j.t1 d3r i(- f o1 )(- f 12 )' •• (- f MO)' ,= 1 

The Mayer f function for Zwanzig's model can be 
written 

-fij = O,.(x; - xj)1) p(y; - Yj)1) q(Zi - Zj)' 

where 

{
I, I~I <s, 

I)s(~):= 0, I~I > s, 

(7) 

(8) 

(9) 

and r, p, q depend on the orientations of molecules i and 
j; e.g., if i and j are both parallel to the X axis then 
r ::= 1, p == q == d. With this notation, 1M becomes a pro­
duct of integrals in the x, y, and z variables: 

1M. == It1dx;1) L(xO - x 1)l)a(x1-x2)l)r (x2-X3)·· .8r + (XM-Xo) 1 ________ 3 M r 
M 

x j 0 dYiOL(YO-YI)1IL(Yl-Y2) 
1 ----------

X e P3(Y2 - Y3)'" I) PM+l(YM - Yo) 
M 

X J 0 dzj8d(zO-Zl)1IL(ZI-Z2) 
1 ---------

X 8
h

(Z2 -Z3)' •• 8 qM+
1
(ZM- Z O)' (10) 

Here L == (l + d)/2 and, for each i, two of r .,Pi , q i are 
equal to L and one is equal to d (since only perpendicu­
lar molecules are joined by a bond). 

An upper bound for IJI. may be obtained by replacing 
the integrand of each factor in (10) by a tree; we do this 
by dropping in each factor the least restrictive of the 
two (one-dimensional) bonds attached to molecule 1 
[these are the underlined bonds in (10)]. Because 
molecule 1 is "doubly-restricted," Le., restricted to 
an interval of 2d in two directions by the combined action 
of its neighbors, the integration over r 1 gives a factor 
(2d)22L: 

INS(2d)22Lj I1d3r i(-fa3)' •• (- fMo)= (8Ld2)(8L2d)M-l. 
2 (11) 

J. Math. Phys., Vol. 15, No.8, August 1974 

1188 

FIG. 3. The subset of red bonds in the nonplanar graph G (see Sec. 3, 
Step 2). 

Combining (11) and (7), and recalling L = (l + d)/2, 
gives 

o :s l' 0 d3r 0G (- fij) :s (8L2d)N-28Ld2 

= (8L 2d)N-l d/ L 

-----I) O. 
lim (2) 

which is the desired final result. 

4. COMMENTS 

(12) 

The above proof can be adapted to the case where the 
molecules have more than three (but finitely many) 
allowed directions. 4 The single particle integral, Eq. (5), 
is given-in the limit (2)-by (212d) sinO i·' where 0 iJ is 
the angle between the long axes of mole buies i and j. 
This is again zero for molecules i and j parallel. Mole­
cules 0, 1, and 2 of the proof (see Fig. 3) are now, in 
general, a nonplanar, oblique triplet. The Mayer f func­
tions for a given triplet can be written in the form (9) 
with the coordinates Xi' Y i' Z i referred to oblique axes 
parallel to the three molecular directions. The volume 
elements dV i contain, when expressed in terms of dx i' 
dy i' dz i' a constant factor depending on the angles 
between the oblique axes. The main thing is, that after 
removal of the three least restrictive one-dimensional 
bonds attached to molecule 1 in 

1M = const x I' 0 dx,dY,dz,1I L(XO - x 1)8 a(X I - X2) 

I) L(YO - Yl)e L(YI - Y2) 

x 11 d(ZO - Z 1)0 L(Z 1 - Za)(- f 23 )' •• (- f MO)' 

The integral over r 1 is proportional to Ld2 • Therefore, 
we again get 1M. 0:: {L2d)M.d/ L and the result (12) for non­
planar graphs G. 

After completing the above work we found the article 
by Runn.els and Colvin, reference 5, which contains an 
argument to show that the integral of a non-planar 
graph vanishes in the limit (2). We wish to note that 
their argument contains much of the baSic geometry of 
the problem, but does not quite constitute a rigorous 
proof. They did not have a method for estimating upper 
bounds of integrals of graphs and their argument makes 
no use of the fact that one is dealing with irreducible 
graphs. It is easy to see, however, that the result (3) can 
only be asserted in general for graphs G that are ir­
reducible [e.g., if T is a tree of N points, then J I 0 
d3r 0T (- f) :::: (8L 2d)N-l, regardless of whether the 
graph is planar or not, provided that bonds join only 
perpendicular molecules]. 
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APPENDIX 

Theorem Ai: Any finite connected graph can be 
reduced to a tree. 

Proof: Let GN denote an arbitrary connected graph 
of N points. The theorem is obviously true for N == 1,2. 
Suppose that the proposition is true for N. Now con­
sider a GN+1> and pick a €GN +1 ; by removing a and all 
its bonds obi' i = 1,2 .. . p, from GN +1 we obtain a graph 
G N' (Since G N + 1 is connected, p ;::: 1). By assumption, 
GN can be reduced to a tree TN" Let T N+1 == TN U 
{a, b 1} U {ob l }. T N+1 contains all the pOints of GN+1 
(obvious) and is a tree (by Theorem 2(a) in the text). 
Also, bonds of TN + 1 ~ bonds of G N + 1 (since bonds of 
TNS. bonds of GN ). Therefore, GN+ 1 can be reduced to 
the tree T N+1' The theorem follows by induction. 

Notation: given a connected graph G, the symbol GT 
denotes any tree to which G can be reduced (by Theorem 
A1, G T exists). 

Theorem A2: Let G be a finite, mixed graph with 
white and red bonds. Suppose G contains red islands 
Ii' i == 1,2 ... , L. Then G can be reduced to a tree T 
which contains subtrees If, i == 1,2, ... , L. 

Proof: We prove the theorem by mathematical 
induction on L. 

Case L = 1 

Let G1 C G be the graph obtained from G by removing 
all pOints of 11 ; Gl contains the points of G which have 
only white bonds attached. If G l = rp, then 11 contains 
all the pOints of G and T = Ii satisfies the theorem. 

Suppose Gl "'" cp. Then 

1 :::sM<"", 

where the K~ are finite, connected graphs with white 
bonds. Let Laj} be the set of pOints of 11 which have, 
in G, white bonds attached. Because G is connected, we 
can select from {aj} a subset {aih~l such that a i is 
joined to a point k i E Ki by the bond aik i . Some of the 
points a i may be the same. Using Theorem A1, we know 
I l ,K i can be reduced to trees Ii,Kf. By repeated appli­
cation of Theorem 2(a) in the text, noting k i E K[, 
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a i E [f and that {ai' kJ U {aik j } is a tree, it follOWS 

T == Ii u [.tf K[ U {ai' kJ U {aik i}] 
F1 

1189 

is a tree. (Also, the fact 11 n K; = rp, has been used.) 

Obviously, T contains all the pOints of G (since pEG 
means p Ell or p E G l ) and, bonds of T S. bonds of G; 
i.e., we have shown that G can be reduced to the tree T 
containing Ii. 
Case of general L 

Suppose the proposition is true for L. Let G be a 
mixed graph with L + 1 red islands Ii' Because G-is 
connected, we can find a pair of islands, say I L and I L+ l' 
such that they are connected by a path (of white bonds) 
P = P(a, b) = {ac 1, C1C2 ' ••• cmb} where only the end­
points a ElL and bEl L+ 1 belong to an island. Now let 
us, momentarily, include the bonds of P among the red 
bonds. Then 

J L == IL U IL+1 U {Ci}i:; U P 

is a single red island. Therefore, by hypothesis, G can 
be reduced to a tree T containing subtrees Ii, I~, ... , 
[£-1> JI· Obviously, JI contains all the points c i and all 
the bonds of P (otherwise JI would not be connected). 
By application of Theorem 2(b) in the text, to linkage 
points a and b, it follows that JI contains subtrees If, 
11+1 and {cJ U P: 

JI == II U If+1 U [{Ci}?'~/ U P ](co == a, Cm+1 == b). 

Therefore, G has been reduced to a tree T containing 
subtrees Ii, I~, ... , If, and II+ l' Mathematical induction 
completes the proof of the theorem. 

Corollary: If Ii is already a tree, then all the bonds 
of Ii appear in T. 

Proof: By Definition 2 it is immediate that the 
removal of any bond from a tree results in a disconnec­
ted graph. Therefore, a tree cannot be reduced further, 
i.e., If== Ii' if Ii is a tree. Hence, Ii appears in T. 

'R. Zwanzig, J. Chern. 39,1714 (1963). 
2L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949). 
3J. E. Mayer, in Handbuch der Physik, edited by S. FlUgge (Springer, 
Berlin, 1958), Vol. 12, pp. 134-141. 

4J. P. Straley, J. Chern. Phys. 57, 3694 (1972). 
sL. Runnels and C. Colvin, J. Chern. Phys. 53, 4219 (1970). 
'See, for example, T. L. Hill, Statistical Mechanics (McGraw-Hill, New 
York, 1956), Chap. 5. In this reference a connected graph is called a 
"cluster." 
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fields* 
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All space-times that admit a covariantly constant, test, electromagnetic field are constructed. All 
solutions to the Einstein-Maxwell equations with constant electromagnetic field are given. 

1. INTRODUCTION 

Honig, Schiicking, and Vishveshwara recently gave an 
elegant discussion1 of the motion of a charged test 
particle in any space-time (M, g) with a covariantly 
constant (hence source- free) electromagnetic field F. 
But they did not address the question: Which (M, g) ad­
mit such an F, even a test field F? This note answers 
this question. The argument will be familiar to mathe­
maticians, but physiCists may find it novel. For simpli­
city, we will confine the work to some local neighbor­
hood in (M, g). 

2. HOLONOMY OF SPACE-TIME 

Choose any point P E M in space-time. Fix, once and 
for all, a simply connected neighborhood U of p. Paral­
lelly carry an orthonormal tetrad 0 p around any closed 
path in U beginning and ending at p, yielding some new 
tetrad 0' : OJ, = AO P' where A is some homogeneous 
Lorentz ~ransformation depending only on the choice of 
path. The set of all such A at p for all possible paths 
forms Cartan's (local) holonomy group2.3.4H(p). H(P) 
is a subgroup of the homogeneous Lorentz group L; H(p) 
is in fact independent of P E U. Roughly, the higher the 
symmetry of (M, g), the smaller H(p) is. 

Let T be any geometric- object field on (M, g) for 
which covariant differentiation V is defined. Can there 
exist in U a covariantly constant T, VT = O? If so, T 
can be uniquely constructed by giving its value T(p) 
at one point p E U, and then carrying T parallelly all 
over U along paths in U. This construction must be 
path- independent; equivalently, T(p) must be left in­
variant at p when it is carried parallelly around any 
closed path beginning and ending at p. That is, T(P ) 
must be invariant under the action of H(p): 

Lemma (see e.g., Schouten 2): (M, g) (locally) ad­
mits a covariantly constant, test, field T iff there exists 
T(p) at any point p EM, invariant under the holonomy 
group H(p). 

3. CONSTANT, TEST, ELECTROMAGNETIC FIELD 

The differential problem, "solve VF = 0," is thus 
reduced to an algebraic problem (Cartan's favorite 
trick!): Choose a point p; find an electromagnetic field 
tensor F( p) ;" 0 such that its invariance group G[F( p)], 

G[F(P )] == ~ A ELI AF(P) = F{P)! ' 

contains the holonomy group: H(p) s;. G[F(p)] s;. L. 

Choose a favored observer at P with tetrad 0 l!..-= (et, 
ex' ey' e z) so that the tetrad components F " of F(p) 
reduce to one of two canonical forms 5 : "F{P) null" or 
"F(p) nonnull." 

(A) F(P) null: Fix =- Fxt =FAz =- Fzx =A=const, 
other components vanish. G[F(p)f is generated by the 
two null rotations6 which leave invariant the null direc-
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tion def!ned bv k := e~ + e z• Define the spinor7 0 A(p) by 
oA(p)OA(P) = kAAjthen G[OA(p)] = G[F(p)]. Therefore 
(by lemma) (M, g) must admit a covariantly constant 
spinor field OA (equivalently, a covariantly constant, 
complex, null bivector field F + i*F). By a result of 
Ehlers and Kundt,8 it is necessary and sufficient that 
in some local coordinates 

g = 2K(u,x,y)du2 + 2dudv + dx 2 + dy2, 
and 

F = 21/ 2Adu /"0.. dx. 

(B) F(P) nonnull: Fez =- Fa =A cos8 = const., 

(la) 

(lb) 

FAA = - FAx = A sine = const., other components vanish. 
GlF(P)] is the direct product of the one-parameter 
group of boosts in the (tz) plane with the commuting 
one-parameter group of rotations in the (xy) plane. It 
is a fundamental result3 that if the tangent space T p is 
reducible under H(p), then (M, g) is correspondingly 
reducible into the direct product of (pseudo-) Riemanni­
an manifolds of lower dimension. Here, Tp reduces to 
the (tz) and (xy) planes under H(p), so (M,g) = (M+,g+) 
(9 (M,gJ, where (M +' g) is a Lorentzian 2-manifold and 
(M _, gJ is a Riemannian 2- manifold. The vector fields 
et and e A lie entirely in (M +' g); ex and e; lie entirely 
in (M_, g_>. In some coordinates, 

where 

and 

(2a) 

(2b) 

(2c) 

F = A cose (- g +)1/2dt /"0.. dz + A sine(gJ1/2dx /"0.. dy. (2d) 

Equations (1) and (2) give all space-times (M, g), and 
all test fields F, that solve VF = O. 

4. ELECTROVAC SOLUTIONS 

Now impose the Einstein- Maxwell equations for a 
nontest F, to find all solutions with covariantly constant 
F. The resulting electrovac space-times are well 
known. 

(A) F null: The Einstein- Maxwell equations for Eqs. 
(1) read 

(o~ + o;)K(u,x,y) =- 4A 2• 

The general solution K is a linear superposition, 

(3) 

K = Kem + KgraV' where Kern is the particular solution, 

Kern = - A2(x 2 + y2), 

and Kgrav is any homogeneous solution, 
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Kern represents the transverse, "monopole," always 
focusing gravitational disturbance due toF; this dis­
turbance is homogeneous for local observers (despite 
the dependence of Kern on x and y). K rav represents an 
arbitrary "plane-fronted gravitationa1: wave with parallel 
rays"S ("pp wave"). So the electrovac space-time 
given by Eqs. (1) and (3) describes an arbitrary, gravi­
tational pp wave traversing a region of constant, null F, 
such that the wave direction is everywhere parallel to 
the Poynting vector. 

(B) F nonnull: The Einstein- Maxwell questions for 
Eqs. (2) imply that (M +' g +) is a two- dimensional anti­
deSitter space-time9 of radius A-1, and that (M _, gJ is 
a 2-sphere of radius A-1. This solution is the "Bertotti­
Robinson magnetic universe"; for discussions see 
Bertotti,lO Robinson, 11 and Lindquist, 12 and Exercise 
32.1 of Misner, Thorne, and Wheeler. 13 
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Relationships are developed which describe exactly the degeneracy associated with nearest neighbor 
pairs of occupied sites (1 - 1), mixed sites (0 - I), and vacant sites (0 - 0) for dumbbells distributed 
on a one-dimensional lattice space. The first moments of these statistics are calculated. thereby 
permitting an evaluation of the error inherent in the use of the Bragg-Williams approximation for 
this situation. 

L INTRODUCTION 

A statistical mechanical treatment of adsorption, 
elasticity, alloys, magnetism, and other cooperative 
phenomena which involve the nearest neighbor approxi­
mation, i.e., in which the total interaction energy E i is 
written 

(1) 

(where n l1 , n0 1' and noo are the number of occupied, 
mixed, and vacant nearest neighbor pairs respectively 
and V 11' VOl and V 00 are the related potential energies 
of interaction), requires knowledge of the degeneracy 
associated with each type of nearest neighbor pair. 

For simple particles, each of which occupies a single 
lattice site, the question of nearest neighbor pair de­
generacy for a one- dimensional lattice space has been 
considered in a previous paper.1 The purpose of the 
present paper is to extend these previously reported 
results to situations in which dumbbells (particles which 
occupy two adjacent sites) are distributed on a one­
dimensional lattice space. The treatment of the adsorp­
tion of homonuclear, diatomic molecules involving 
nearest neighbor interaction represents one application 
of the statistics to be developed herein. Obviously, the 
subscripts 0 and 1 could refer to electronic spin or 
chemical species as well as occupation. 

If one neglects the end compartments of the lattice 
space, the numbers n l1 , nOl' and noo are related by 

2q = 2nll + n 01 ' 

2(N - 2q) = 2noo + nOl' 

(2) 

(3) 

where q is the number of dumbbells and N is the number 
sites of which the lattice space is composed. 

Equations (2) and (3) may be derived on the basis of the 
following reasoning (see Fig. 1). If a line is drawn from 
each occupied site to its nearest neighbor (see Fig.lA), 
there will be 4q lines. The total number of lines can 
also be determined by noting that between the two parts 
of a dumbbell there are two lines, between occupied 
nearest neighbor pairs there are two lines, and between 
mixed nearest neighbor pairs there is one line. Thus 

4q = 2q + 2nl1 + n 01 ' 

which is given in Eq. (2). 

Next draw a line from every empty site to each of its 
nearest neighbors (see Fig. IB); there will be 2(N - 2q) 
lines. Of these, two lines will be between each vacant 
nearest neighbor pair and one line will be between a 
mixed nearest neighbor pair. Hence Eq. (3). 
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Thus from Eqs. (2) and (3) any of the numbers n1l' 
n01 or noo can be determined approximately in terms 
of another number, the number of dumbbells, and the 
number of lattice sites. 

IL OCCUPIED NEAREST NEIGHBOR DEGENERACY 

In this Section we will calculate A[ n11i q, N], the num­
ber of ways of arranging q indistinguishable dumbbells 
on a one- dimensional lattice space of N equivalent com­
partments in such a way as to create exactly nll occu­
pied nearest neighbor pairs. 

It has been shown2 that A [q, N], the total number of 
independent arrangements arising when q indistinguish­
able dumbbells are arranged in all possible ways on a 
one- dimensional lattice space of N equivalent sites, is 
given by 

(
N-q) 

A[q,N] == q . (4) 

If we consider the subset of the A(q, N) arrangements 
which contains only those arrangements in which exactly 
n l1 occupied nearest neighbor pairs occur, then we find 
that the selected arrangements always contain q - nll 
"units" (see Fig. 2). This arises because there are 
q - 1 separations between the q dumbbells. Cf these, 
n 11 separations are between occupied nearest neighbor 
pairs, so that q - 1 - nll separations are not between 
nearest neighbor pairs. Thus there are q - n 11 "units." 
Such "units" consist of one or more pairs of occupied 
sites together with a single vacancy (if one is needed) 
to isolate a "unit" from other dumbbells and/or other 
vacancies. Thus the number of separating vacancies 
is one less than the number of "units." For purposes 
of the following argument we will consider initially 
each of these "units" to be identical, regardless of the 
number of particles incorporated in it or whether or 
not it is terminated by a vacancy. 

There are N - 2q vacancies but not all of these are 
permutable, Le., not all of the N - 2q vacancies can be 

A 

I tOfOtorot !0f0! I tOfOt tOfOtOfOt 

B 

I t tOfOIOfOt tOfOt t tOfO! TOfOIOfOt I 
FIG.1(A). Figure used in deriving Eq. (1). A line is drawn from each 
occupied site to each of its nearest neighbor sites_ (B) Figure ulti­
lized in deriving Eq_ (2). A line is drawn from each vacant site to each 
of its nearest neighbor sites_ 
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FIG. 2. q = 7 indistinguishable dumbbells are arranged on a one­
dimensional lattice space of N = 24 equivalent sites to yield exactly 
nll = 3 occupied nearest neighbor pairs (represented by crosses). 
Regardless of the arrangements there are q - nll = 4 "units" (un­
shaded). These units can be permuted with N- 3q + n ll = 7 vacancies 
(shaded). There are (V) independent ways of arranging the "units" 
and the permutable vacancies. This figure shows three possible 
arrangements in which the indistinguishable "units" are composed of 
all the possible groupings of occupied nearest neighbor pairs, that is, 
the nearest neighbor pairs are in (1) different "units", (2) one in one 
"unit" and two in another, and (3) all nearest neighbor pairs are in the 
same "unit." 

t tIt 
FIG.3. The seVen dumbbells illustrated at the top of Fig.2 have six 
separations between them. Of the six separations, nll = 3 are bet­
ween occupied nearest neighbor pairs, (short horizontal lines) and 3 
are not (jagged lines). Figure 3 represents the arrangement shown 
at the top of Fig. 2. There are (~) ways of arranging the separations 
between the seven dumbbells with the constraint that three of the 
separations are between nearest neighbor pairs. 

FIG.4. Eight indistinguishable dumbbells are arranged on a one­
dimensional lattice space of N = 24 equivalent sites to yield nOl = 9 
mixed nearest neighbor pairs (represented by crosses). Regardless 
of the arrangement there are [(nOl - 1)/2] = 4 permutable "units" 
(unshaded) and N - 2q - 1 - [(nOl - 1)/21 = 3 permutable vacancies 
(shaded). Thus there are (4) ways of arranging the "units" with the 
permutable vacancies. 

interchanged to form additional independent arrange­
ments. Because one of the "units" on an end does not 
need a vacancy to isolate it, there are q - nll - 1 
vacancies which must be utilized to separate the q - nll 
"units." Thus the number of indistinguishable, permut­
able vacancies is N - 2q - (q - nll - 1) = N - 3q + 
n ll + 1. 

Consequently, the total number of individual objects 
is just the sum of the number of "units" and the num­
ber of permutable vacancies, i.e., (q - n ll ) + (N - 3q + 
n ll + 1) = N - 2q + 1. Now the number of ways of 
arranging N - 2q + 1 things of which q - nIl are one 
kind (indistinguishable) and N - 3q + n ll + 1 are 
another (indistinguishable) is the binomial coefficient 

( 
N - 2q + 1) (N - 2q + 1 ) 
q - n ll = N - 3q + n ll + 1 • 

We have assumed that all the "units" are identical. 
Clearly this is not correct. To remove this constraint 
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and to ascertain A[nlll q, N], we must determine the 
number of ways the dumbbells can be arranged to form 
the q - nIl "units." There are q - 1 separations bet­
ween the q dumbbells of which the "units" are com­
posed (see Fig. 3); n ll of these separations constitute 
nearest neighbor pairs and q - nIl - 1 separations do 
not involve nearest neighbor pairs. There are 

(q - 1) (q - 1 ) 
n
ll 

= q-l-n
ll 

ways of arranging the q - 1 separations where n ll of 
the separations are between nearest neighbor pairs, 

A[nlll q,N] is thus given by the product of the num­
ber of possible arrangements of the "units" and the 
number of possible ways in which the "units" can be 
constituted, i.e., 

(
q - 1) (N - 2q + 1) A[nu l q,N] = _ . 
n ll q nll 

(5) 

If A[nlll q,N] is summed over all values of nIl' 
[0 s n ll s q - 1] the result, by Vandermonde theorem3 

is (N;q) [see Eq. (4)]. 

III. MIXED NEAREST NEIGHBOR DEGENERACY 

Here we are concerned with nearest neighbor pairs, 
one of which is occupied and one of which is vacant. An 
approximate solution for the degeneracy of mixed 
nearest neighbors when simple particles are involved 
was determined by Ising. 4 To determine Arnoll q,N], 
we must consider two situations: when nOl is odd and 
when it is even. 

1. nOI odd 

When nOl is odd, one and only one end compartment 
is occupied (see Fig.4). If the occupied end compart­
ment is on the right- hand side, we construct "units" 
consisting of a single dumbbell or contiguous group of 
dumbbells and the adjacent vacancy (if one is needed) 
just to the left to isolate the "unit" from other dumb­
bells and vacancies. Initially we consider these "units" 
to be indistinguishable, one from the other, regardless 
of their composition or configuration. We observe that 
there are always [(nOl - 1)/2] of these permutable 
"units. " 

This arises because one of the n OI mixed nearest 
neighbor pairs is associated with the dumbbell on the end 
of the array. Two nearest neighbor pairs are then invol­
ved in each permutable unit. Thus there are [(nOI - 1)/2] 
"units." These indistinguishable, permutable "units" 
may be permuted with the indistinguishable, permutable 
vacancies to form independent arrangements. 

There are N - 2q vacancies, but not all of them can 
be permuted with "units" to form independent arrange­
ments. The number of vacancies which are required 
to form the "units" is (n OI - 1)/2. Thus there are 
N - 2q - [(nOl - 1)/2] - 1 indistinguishable permutable 
vacancies because one vacancy is required at the end 
of the array for a total of N - 2q - [(nOl - 1)/2] - 1 + 
(nOl - 1)/2 = N - 2q - 1 objects. These can be arrang­
ed in 

(
N - 2q - 1) (N - 2q - 1 \ 
(n Ol - 1)/2 = N - 2q - 1- [(n Ol - 1)/2]) 

independent ways. 

The "units" are not, of course, indistinguishable; the 
dumbbells may be arranged in various ways to form 
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"units" consisting of a range of numbers of dumbbells, 
subject only to the constraint that there be n 01 mixed 
nearest neighbor pairs. To determine the number of 
ways q indistinguishable dumbbells may be arranged to 
form [(n 01 - 1)/2] "units," we consider the q - 1 se­
parations between the q dumbbells (see Fig. 5). [(n01 -

1)/2] of these are the separations of the dumbbells by 
two mixed nearest neighbor pairs and q - 1 - [(n 01 -

1)/2] separate adjacent dumbbells. These separations 
may be arranged in ([(-n1 

-1)/2]) ways. This is just the 
01 

number of ways q indistinguishable dumbbells can be 
arranged to form [(n 01 - 1)/2] "units." 

Consequently, if we require the compartment on the 
right end of the array to be occupied while the end com­
partment on the left is vacant then there are (f,;2~1~/2) 
(
r1 .ru 
(n -1)/2) independent arrangements possible. Of course, 

01 
with equal probability the end compartment on the left 
could have been occupied while the end compartment on 
the right could have been empty, so that in general if n01 
is odd we obtaiI' 

(
N - 2q - 1) (q - 1 ) 

A[no11 q,n] = 2 (n01 - 1)/2 (n 01 - 1)/2 

2. nOI even 

(n01 odd) 
(6) 

If n01 is even, then in any single arrangement one of 
two situations exist: 
(a) Both end compartments are vacant (see Fig. 6), or 

(b) both end compartments are occupied (see Fig. 7). 

If there are n01 mixed nearest neighbor pairs and if 
both end compartments are vacant, then there are al­
ways [no/2] "units," each of which consists of a dumb­
bell or a contiguous group of dumbbells together with a 
vacancy (if one is needed) to isolate the "unit" from 
other "units." Regardless of their composition, we 
initially regard these units as identical, indistinguish­
able entities which can be permuted with some of the 
vacancies. 

Not all of the N - 2q vacancies are permutable, i.e., 
they cannot all be pOSitioned indiscriminately to form 
new arrangements. Because one and only one of the 
end units requires a vacancy to isolate it from the 
interior units, only [(n 01 - 2)/2] of the vacancies are 
required to form mixed nearest neighbor pairs. Further­
more, two additional vacancies, one at either end, are 
not permutable. Thus there are N - 2q - [(n 01 - 2)/2]-
2 = N - 2q - [no/2] - 1 permutable vacancies or a 
total of [no!2] + N - 2q - [no/2] - 1 = N - 2q - 1 
permutable objects. These can be arranged in 

( 
N - 2q - 1) ( N - 2q - 1 ) 
no!2 = N - 2q - 1- [no/2] 

independent ways. 

Clearly, the "units," contrary to our initial assump­
tion, are not identical. There are (r~~ 12)-1) ways of 
arranging the q dumbbells in the [no/2] units. This 
can be demonstrated by the following reasoning. There 
are q - 1 lines which can symbolize the separation of 
the q dumbbells (see Fig.8). Of these lines, [(n01 - 2)/2] 
represent separations of the dumbbells by two mixed 
nearest pairs and q-1-[(n01 - 2)/2] lines separate ad­
jacent dumbbells. These q - 1 lines can be arranged in 
(f(n1 

/2)-1]) independent ways. This represents the num-
01 

ber of ways the q dumbbells can be arranged to form 
[no!2] "units" when both end compartments are empty. 
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ttl I ftt 
FIG. 5. Figure 5 considers the particular arrangement shown in the 
top arrangement in Fig.4. There are q - 1 = 7 separations between 
the eight dumbbells. Of these separations [(nOl - 1)/2] = 4 are separa­
tions between vacant and occupied sites, i. e., between mixed nearest 
neighbor pairs (short horizontal lines) and q - 1 - [(nOl - 1)/2] = 3 
are separations between two dumbbells (jagged lines). Thus there are 
(~) ways in which the seven separations may be arranged to form the 
four "units." 

FIG. 6. Eight indistinguishable dumbbells are arranged in such a way 
that both end sites are empty and that there are eight mixed nearest 
neighbor pairs. There are [no/2] = 4 "units" (unshaded) and N - 2q­
[no/2) - 1 = 3 permutable vacancies (shaded). 

FIG. 7. Eight indistinguishable dumbbells are arranged in such a way 
that both end compartments are occupied and that n01 = 8. There are 
[(no/2) - 1] = 3 permutable "units" (unshaded) and 4 permutable 
vacancies (shaded). 

1++11+1 
FIG. 8. This figure represents the situation illustrated in Fig. 6. 
There are seven separations between the eight dumbbells; [nol/2] = 3 
separations involving mixed nearest neighbor pairs (short horizontal 
lines) and q - 1 - [nOl/2] = 4 are separations between dumbbellS 
(jagged lines). 

1++11++ 
FIG. 9. This figure represents the situation illustrated in Fig. 7. 
Of the seven separations between the eight dumbbells 4 (short hori­
zontal lines) are separations involving mixed nearest neighbor pairs 
and q - 1 - n ol/2 = 3 are separations between dumbbells (jagged 
lines). 

Thus 

represents the number of ways q particles can be ar­
ranged to form exactly n01 mixed nearest neighbor pairs 
under the constraint that both end compartments are 
vacant. 

If situation (b) exists, in which both end compart­
ments are occupied, then there are [(no/2) - 1] per­
mutable "units" each composed of a dumbbell or group 
of dumbbellS and a vacancy to isolate a "unit" from adja­
cent "units" (see Fig.7). There are N- 2q-1- [(nOl/2) 
- 1] permutable vacancies or a total of N - 2q - 1 ob­
jects which can be permuted. These objects can be 

d · (N-2 q -r) arrange m (n
01

/2)-1 ways. 

There are q - 1 lines symbolizing the separation of 
the q dumbbells (see Fig. 9); of these lines, [no! 2], 
constitute separation by two mixed nearest neighbor 
pairs and q - 1- [no/2] are separations between 
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adjacent dumbbells. Thus the number of ways that q 
indistinguishable dumbbells can be arranged among the 
"units" and the dumbbell groups on the end is (:-1/2), 

01 

Consequently, when both end compartments are occu­
N-2q-1 )(q-1 ) pied, the q dumbbells can be arranged in «n /2)-1 n /2 

(11 01 

ways to form exactly n01 mixed nearest neighbor pairs. 

A[noll q,N], the total number of independent arrange­
ments which contain exactly n 01 mixed nearest neighbor 
pairs (when n 01 is even), is then the sum of those 
arrangements in which both end compartments are 
empty and in which both end compartments are occu­
pied, is given by 

A[noll q,N] 

(
N - 2q - 1) (q - 1 ) (N - 2q - 1) (q - 1 ) 

=:: n01/2 (nOli 2) - 1 + (nOli 2) - 1 no/2 

(
N - 2q - 1) (q - 1 ) 
(nOli 2) - 1 (nOli 2) - 1 

(nO! even) (7) 

The normalization for A[no11 q,N] can be shown to be 

(8) 

where A[ nOli q, N] is given alternately by Eqs. (6) and (7) 
as the sum proceeds over all values of n01 ' 

IV. VACANT NEAREST NEIGHBOR DEGENERACY 

We now calculate A[ noo I q, N], the number of indepen­
dent ways of arranging q indistinguishable dumbbells on 
a one- dimensional lattice space conSisting of N equiva­
lent sites in such a way as to create exactly noo pairs 
of vacant nearest neighbors. 

rM9:l1 f I f I 0f0/@i9;l1 f I OfDIIL12f3[l§f§JILlSf3D 

FIG. 10. Seven indistinguishable dumbbells are arranged on a one­
dimensional lattice space of N = 24 equivalent sites to yield four 
vacant nearest neighbor pairs (represented by crosses). Regardless 
of the arrangement there are N - 2q - nOO = 6 "units" (unshaded). 
These "units" are permuted with q - (N - 2q - nOO - 1) = 3q - N + 
nOO + 1 = 2 dumbbells (shaded). There are (~) = 28 independent ways 
of arranging the "units·, and the permutable dumbbells. This figure 
shows four possible arrangements in which the indistinguishable 
"units .. are composed of all the possible groupings of vacant nearest 
neighbor pairs. 

tltlltltl 
FIG.l1. Figure 11 deals with the top arrangement shown in Fig. 10. 
The ten vacancies illustrated in Fig. 10 have N - 2q - 1 = 9 separa­
tions between them. Of the nine separations, nOO = 4 are between 
vacant nearest neighbor pairs (short horizontal lines) and 5 are not 
(jagged lines). There are (2) = 126 ways of arranging the separations 
between the vacancies to form six ·"units." 
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Any arrangement of q indistinguishable dumbbells on 
a one-dimensional lattice space contains N - 2q - noo 
"units" (See Fig. 10). These "units" consist of a group 
of one or more contiguous vacant sites and a dumbbell 
(occupying two adjacent lattice sites) if one is needed 
to isolate the group of vacancies from other vacancies 
and/ or other dumbbells. We initially consider these 
"units" to be indistinguishable one from another, regard­
less of their composition or configuration. Thus the 
number of dumbbells necessary to separate the "units" 
is N - 2q - noo - 1, or one less than the number of 
"units. " 

There are q indistinguishable dumbbells; however, 
not all of these can be permuted to form additional 
independent arrangements; some of the dumbbells must 
be employed to separate a "unit" from the rest of the 
array. Because N - 2q - noo - 1 dumbbells are re­
quired to isolate the "units," there are q - (N - 2q -
noo - 1) =:: 3q + noo - N + 1 indistinguishable permut­
able dumbbells remaining to be permuted with the 
"units." Consequently, there are always q + 1 objects 
to be permuted,N - 2q - noo "units" and 3q + noo-
N + 1 permutable dumbbells. These objects can be 
arranged in 

( q + 1 ) (q + 1 ) 

N - 2q - noo = 3q + noo - N + 1 

independent ways. 

The "units" are initially considered to be indistin­
guishable; in reality, however, vaCaIicies can be moved 
from one "unit" to another to form new arrangements. 
To determine A[nool q,N], we must ascertain the num­
ber of independent ways that "units" can be constituted, 
subject to the constraint that the number of "units" 
does not change. 

We note that there are N - 2q vacancies with N - 2q-
1 separations between them (see Fig. 11). Of these se­
parations, noo are indistinguishable from each other and 
separate nearest neighbor pairs of vacanCies, and N -
2q - 1 - noo separate pairs of vacant nearest neighbors. 
These separations may be permuted in 

( 
N - 2q - 1) =:: (N - 2q - 1 ) 
noo N - 2q - 1 - noo 

independent ways. 

A[nool q,N] is then determined to be the product of 
the number of independent ways the "units" can be 
arranged and the number of independent ways in which 
the" units" may be constructed. Thus 

A[noo I q, N] = (q + 1 ) (N - 2q - 1) 
N - 2q - noo noo 

is the desire quantity. 

A[noo I q, N] is summed over all values of n oo' [0 s: 
noo s: N - 2q - 1] the result from the Vandermonde 
Theorem3 is (N~q), in accordance with Eq. (4). 

V. THE FIRST MOMENT 

(9) 

With the degeneracy expressions for nearest neighbor 
pairs, Eq. (5), Eq. (6) or Eq. (7) and Eq. (8), it is possible 
to calculate the moment of these statistics and thereby 
determine the nature and magnitude of the error intro­
duced by the Bragg- Williams approximation. 
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First to determine (nll) as a function of coverage, 9, 
where lim(2q/ N) == 9, we proceed as follows: From 
Eq. (5)N->OO 

q-l 

n~o nnA[nnlq,N] (N - q - 2) (N - q)-l 
------ = (N-q-1) 

q-l q - 2 q 
I; A[nlll q, N] (10) 

nu=O 

Then the ensemble average density of occupied nearest 
neighbor pairs is 

lim«nll)/N) = 9 2/2(2 - 9). (11) 
N....co 

Similar calculations for nOl and nOD yield 

lim«n ol)/ N) = 29[1 - 9V (2 - 9) (12) 
N->oo 

and 
lim«noo)/N) = 2(1 - 9)2/(2 - 9). (13) 
N->oo 

Thus for dumbbells, on a one- dimensional lattice space, 
the relationship 

describes the" reaction" 

2(01) P (11) + (00). 

Equation (10) may also be interpreted in terms of the 
concept of the "range" or order. 5 (J, the short-range 
order, is defined as 

(14) 

(15) 

(J == (4nll)/ N - 1 (- 1 ::0 (J ::0 1). (16) 

Then 

a = 29 2/(2 - 9) - 1. (17) 
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Because L, the long range order, is defined as 

L == 4q/ N - 1 = 29 - 1 (- 1 ::0 L::o 1), (18) 

the relation between the short range order and the long 
range order can be shown to be 

(J = (L + 1)2/ (3 - L) - 1. (19) 

Equation (16) may be compared to the Bragg-Williams 
approximation, 6 

(20) 

and thereby permit an estimate of the magnitude of error 
introduced through the use of the Bragg- Williams ap­
proximation. The Bragg- Williams approximation is only 
valid at L c< 1, i.e., when 9 c< 1. 

It should also be noted from Eq. (11), that the value 
of 9 which maximizes (nOl)/ N is 

9max = 2 - ../2 "" 0.586 

and the value of (nOl)/ N at 9 max is 

(no1)/N = 2[3 - 2../2] "'" 0.344 . 

'R. B. McQuistan, J. Math. Phys. 13, 1317 (1972). 
2D. Lichtman and R. B. McQuistan, J. Math. Phys. 8, 2441 (1967). 
3J. Riordan, Combinatorial Identities (Wiley, New York, 1968). 
"E. Ising, Z. Physik 31, 253 (1935). 
5K. Huang, Statistical Mechanics (Wiley, New York, 1963). 
·W. L. Bragg and E. J. Williams, Proc. Roy. Soc. A 145,699 (1934). 

(21) 

(22) 
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Explicit and easily computable formulas for the physical quantum numbers 1 3, Y. and S 3. and also 
two additional quantum numbers for all states spanning an arbitrary irreducible representation 
of S U(6) are obtained by using Gel'fand-pattern technique. This result is accomplished by 
establishing a correspondence between the 3 diagonal S U(3)®S U(2) generators + 2 "quark-spin" 
generators. and the 5 "canonical" generators HI - H 5' the eigenvalues of which are given by the 
Gel'fand patterns of S U(6) in the ordinary way. The S U(3)®S U(2)c S U(6) content of the S U(6) 
representations taken as examples is displayed explicitly. The possibility of doing this suggests that 
Gel'fand patterns may be useful even in a nonmaximal decomposition. although the patterns are 
intrinsically linked to the "canonical" chain of decomposition: S U(n) :J U ll)®S U(n -I) 
:J U 1(I)®U 2(l)®S U(n -2):J·· etc. The procedure developed in the case of S U(6) is generalized to 
the twofold nonmaximal decomposition of S U(m n) :J S U(m)®S U(n). 

I. INTRODUCTION 

The Gelfand pattern technique 1.2.3 establishes an ele­
gant solution to the problem of uniquely constructing an 
orthonormal basis of the irreducible representations 
(IR) of (S)U(n). The labeling of states within an IR is 
based on the "canonical" decomposition SU(n)::J U 1(1) ® 
SU(n - 1) ::J U 1(1) ® U2(1) ® SU(n - 2) .. , etc. In the 
case of SU(6) the physical decomposition chain is, how­
ever, SU(6) ::J SU(3) ® SU(2), and this is the reason why 
the "pattern method" has been thought of as nonapplic­
able in the study of the physical SUe 6) symmetry. 4 The 
usual prescription for reading off the quantum numbers 
from the Gelfand pattern of SU(6) does not reveal any­
thing of physical interest. The Gelfand patterns, how­
ever, contain a maximal amount of information, and 
furnish the eigenvalues of 20 diagonal operators, 5 of 
which are the Casimir5 •6 invariants of SU(6). Of the 
remaining 15 operators, 5 are just the diagonal genera­
tors of SU(6), and the 10 others may be chosen7 as the 
Casimir invariants of the subgroups in the "canonical" 
chain of decomposition. The eigenvalues of the Casimir 
invariants of the SU(m) subgroup are polynomials [deg 
LEQ(m) GEQ(2)] of the entries in the mth row of the 
Gelfand pattern. These entries themselves constitute 
an equivalent set of classifying numbers, and the pos­
sibility of constructing other sets are clearly conceiv­
able. The present paper will give indications that in 
the case of SU(6), the 3 Casimir invariants of the sub­
groups in the decomposition SU(3) ® SU(2) [2 for SU(3), 
1 for SU(2)] may be part of another set. The additional 
information contained in the Gelfand patterns might be 
exploited to solve the technical questions involved in the 
nonmaximal decomposition of SU(6) generally, and par­
ticuJarly in the one of phYSical significance. After the 
completion of this work, by a communication of M. 
Hamermesh, the author was made aware of some papers 
that have previously escaped his attention. J. D. Louck, 8 

Biedenharn, Louck and Giovannini,9 J. D. Louck,10 and 
Brody, Moshinsky, and Reneroll have published papers 
on tensor operators and generalized Wigner coefficients 
of (S)U(n) which mathematically represent a wide g<:n­
eralization of some of the aspects of the present paper, 
but in other respects the present paper is concerned 
with problems that are essentially different from those 
of Refs. 8-11. References 8 and 9 are concerned with 
the coupling of two IR's of the same group U(n) and the 
reduction of the direct product involved into the direct 
sum of IR's of U(n) once again. In order to obtain the 
generalized Wigner coeffiCients, the embedding of U(n) ® 
U(n) c U(n2) is taken into consideration. The nice and 
very general results cannot be compared directly to the 
results of the present paper, because it is concerned 
with the SU(6) content of the direct product of two 
different groups, namely SU(3) and SU(2). 

T.A.Brody et.al. ll take into conSideration the IR's of 
SU(n) as part of U(nr)::J U(n) ® U(r), r ~ n - 1, and 
introduce the concept of "auxiliary Wigner coefficients." 
Taking n = 3, r = 3 - 1 = 2, the SU(6) case may be 
handled within the framework of Ref. 11, but the examples 
given in the paper are just SU(3) and SU(4), not SU(6). 
Furthermore, T.A. Brody et.al. also are primarily con­
cerned with the Wigner coefficients of the reduction of 
direct products of the IR's of SU(n) into direct sums of 
IR's of the same group. J. D. Louck10 gives an excellent 
survey of the theory of tensor operators in the unitary 
groups, using Gelfand patterns throughout his paper and 
thus recommending this elegant scheme for wider use. 

The present paper is primarily concerned with a 
group of paramount phYSical importance, namely SU(6) 
[SU(6) N is now enjoying a re-birth] and gives results 
that are immediately applicable. The generalization of 
the procedure to S U(mn )::J SU(m) ® SU(n) puts no re­
straint on m and n (cf.Ref.ll: U(nr)::J U(n) ® U(r), with 
the restraint r ~ n - 1). 

II. CORRESPONDENCE BETWEEN THE "QUARK-SPIN" GENERATORS AND THE GENERATOR"S H1·Hs 
The Gelfand pattern of SU(6) is: 

6th row: m 16 m26 m36 m46 m56 m66 = 0 

5th row: m 15 m25 m35 m45 m55 

4th row: m 14 m24 m 34 m44 (1) 
3rd row: m 13 m23 m33 

2nd row: m 12 m22 

1st row: m l1 
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where In i ;· '" m; "-I '" m;+I.} ("in betweenness rule"). 
When the ~iagonar generators in the defining (quark) 
representation are taken to be the set 

(A) 

hI :::: ~ diag (1, - 1,0,0,0,0), 

h2 == _1_ diag (I, 1,- 2,0,0,0), 
2.3 

h3 -= _1_ dl.ag (1, 1, 1,- 3,0,0), 
3.4 

h4 = _1_ diag (1,1,1,1,- 4,0), 
4.5 

h5 == _1_ diag (1, 1, 1, 1, 1, - 5), 
5.6 

(2) 

(3) 

(4) 

(5) 

(6) 

and these are generalized to the diagonal generators 
H 1-11 5 in a general IR {proceeding for example by the 
Schwinger12 boson-operator realization for all the gen­
erators [35 in the case of SU(6)]}, the eigenvalues of the 
diagonal generators are simply the difference between 
the average of two adjacent rows in the Gelfand-patternI3 : 

1 i 1 ;+1 

H, -) M j :::: -: ~ mi,j - -. - ~ mi'l,j' (7) 
1 j=1 Z + 1 j=1 

These numbers, however, do not reveal the desired 
physical information. 14 This situation is remedied by 
considering the generators of SU(3) (9 SU(2), three of 
which are diagonal, namely! 3 = F 3 (9 I, Y = (2/../3)F 8 (9 

I, and ~ :::: 1 (9 S3' when the eight generators of SU(3) 
are denoted F l' F 2' ... ,F 8' and those of SU(2) are S1' 
S2 and S3' The 8 + 3 generators of SU(3) (9 SU(2) are 
extended by the 24 "quark-spin" generators Q'j -= F,Sj 
giving a set of 35 generators for the SU(6). Two "quark­
spin" generators are diagonal, those are Q33 and Q83' 
We now choose the Gell- Mann matrices15 as the generators 
of SU(3) in the defining representation, and the Pauli 
matrices analogously for the SU(2). The resulting dia­
gonal SU(6) generators are: 

(B) 

li3 == ~ diag (1,1,- 1,- 1,0,0), 

Y :::: ~ diag (1, 1, 1, 1, - 2, - 2, ), 

~ :::: ~ diag (1,- 1,1,- 1,1,- 1), 

Q 33 == F 3S 3 == t diag (1,- 1, 1,- 1,0,0), 

(8) 

(9) 

(10) 

(11) 

v'~ Q 83 == YS 3 = ~. diag (1,- 1,1,- 1,- 2, 2). (12) 

[the whole set of SU(6) generators developed from the 
SU(3) (9 SU(2) and quark-spin generators will be de­
noted the a-set and their explicit representation in the 
6 dimensional matrices just defined will be denoted the 
a-representation hereafter.] A solution of the relevant 
set of 25 linear equations now establishes the corres­
pondence between the sets (A) and (B) of generators 
through the transformation 

(e) 

li 3 :::: 2(H2 + H 3 ), 

Y = 4(H4 + H 5 ), 

53 = H I -H2 + 2(H3 -H4) + 3115 , 

1 
Q33 =2" (HI +H2 )-H3, 

Q83 = 13 {!. (HI -H2 + 2H3 + 4114 )- 2H5}. 
2 3 
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(17) 
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[The same notation is used for the SU(3) (9 SU(2) rele­
vant generators both in the defining representation and 
after generalization to the general IR of SU(6).] 

A check confirms the linear independence of the set 
defined in (e) given the linear independence of HCH5' 

III. EXPLICIT FORMULAS FOR THE PHYSICAL 
QUANTUM NUMBERS I j, Y, AND S 3' TWO 
ADDITIONAL QUANTUM NUMBERS 

The correspondence (e) now makes Eq. (7) applicable 
in calculating the physical quantum numbers 13 , Y, S3' 
interpreted as the third component of isospin, the hyper­
charge, and the third component of the intrinsic (angular 
momentum) spin, respectively, of the states (particles) 
spanning the IR of SU(6). One also gets two additional 
quantum numbers, which in some cases [Le., in the 
defining (quark) representation] turns out to be just 
proportional to the products 13S3 and YS 3 of the physi­
cal quantum numbers just defined. In other cases, the 
physical interpretation of the additional quantum num­
bers is not that clear, but frequently they may serve 
the purpose of lifting a degeneracy of [3' Y, and S3 within 
an IR. Using Eq. (7), one gets these formulas for the 
"new" quantum numbers 

Y == m 14 + m 24 + m 34 + m 44 

- t (m 16 + m 26 + m36 + m 46 + m56 + 0), 

S3 = mll - (m12 + m 22 ) + m 13 + m Z3 + m33 

- (m 14 + m 24 + m 34 + m 44 ) + m 15 + m 25 

+ m35 + m45 + m55 

- ~(m16 + tnz6 + m36 + m 46 + m56 + 0), 

Q33 = Hmll - (m 13 + m 23 + m 33» 

(18) 

(19) 

(20) 

+ t(m 14 + m 24 + m34 + m 44 ). (21) 

v'~ Q83 = Hmll - (m12 + m 22 ) + m I3 + m 23 

+ m33 + Hm14 + tn24 + m 34 + m 44 ) 

- 2(m 15 + m 25 + m35 + m 45 + m 55 ) 

+ m 16 + m 26 + m36 + m 46 + m56 + o}. (22) 

Inspecting Eq. (20), we note that the spin of the particles 
is integer whenever the sum of the entries m 16 - m56 
is even, and half-todd) integer when this sum is odd. 
The entries m I6 - mS6 (m66 == 0) determine the IR of 
SU(6). We thus directly see whether the particles of an 
IR are bosons or fermions whenever the IR of SU(6) 
is specified. 

From Eq. (19), we see that within an IR, the hyper­
charge is determined by the.4th row in the Gelfand 
pattern, and Eq. (18) reveals the dependence of the 2nd 
and the 4th row only for [3' In fact, if one makes the 
identification 

m 11 = m 12 + tn22 , 

4 

rn 12 + m 22 == ~ m i4 
icl 

6 
m 13 + m 23 + 0 =.E m i6 (m66 = 0), 

i~l 

one may establish a SU(3) Gelfand pattern 

(23) 

(24) 

(25) 
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m~3 m:n 0 

m~2 m;2 (26) 

m~1 

where the formulas (18) and (19) in terms of the primed 
entries just represent the ordinary way of reading off 
the quantum numbers 13 and Y from the 5U(3) Gelfand 
pattern (26). 

In the case of some low lying IR's of 5U(6), the three 
quantum numbers 13, Y, and 53 display the 5U(3) SI 5U(2) 
decomposition right away. In general, one has to use the 
(!I-set of generators expressed in terms of the E ij 
operators of Ref. 1, 2 and establish the Casimir invar­
iants (C 2 and C 3 ) and 52, respectively, of the 5U(3) and 
5U(2) subgroups in the decomposition 5U(6) ::.J 5U(3) '2J 
5U(2) and also the invariant 12 of the isospin [5U(2)] 
subgroup of 5U(3). 

IV. APPLICATION TO SOME IMPORTANT SU(6) 
REPRESENTATIONS 

(a) The defining (quark) representation is specified 
by m I6 = 1, m 26 = m36 = m 46 = m56 = m66 = O. 

There are six possible Gelfand patterns, describing 
six orthonormal states II) --7 16): 

100000 

1 0 0 0 0 

1 000 0 0 

10000 

1 0 0 0 1 0 0 0 

1 0 0 --7 11), 

1 0 

1 0 0 --7 12), 

1 0 

1 o 

1 0 0 0 0 0 1 0 o 0 0 0 
1 0 0 o 0 1 0 o 0 0 

1 0 o 0 1 0 0 0 

1 0 0 --7 13), o 0 0 --7 14), 

0 0 0 0 

0 0 

1 0 0 0 0 0 1 0 0 0 0 0 

1 o 0 o 0 0 o 0 o 0 

o 0 0 0 000 0 

o 0 0 --7 I 5), 0 0 0 --716>. 

0 0 o 0 

0 0 

Using formulas (18)-(22) one gets the following quantum 
numbers (notation: IYi' 13, Y, 53' Q33' (2j-l3)QS3)' the last 
five symbols representing the eigenvalues of the diagon­
al (!I-set generators, Y i representing all other quantum 
numbers): 

11)= IYI,+~,+t"+~,,t,t), 

I 2) == I 'Y 2' + ~, + t, ,- ~, ,- ~,- t), 
13)= IY3,-t+t,,+t,-t,+t), 

14) = I Y 4' - ~, + to , - t , + t, - t), 

15)= IY5,0,-}',+~,,0,-t), 

16) = I Y 6,0, - t" - t , 0, + t). 
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By inspection, we may sort out the 5U(3) @ 5U(2) de­
composition, namely 6 = (3, ~). 

1199 

These results are well known of course, and we don't 
bother to plot the two 5U(3) weight diagrams of 53 = 
+ t and 53 = - ~, respectively. 

(b) The representation conjugate to the quark-repre­
sentation is described by m I6 = m 26 = m36 = m 46 = 
m56 = 1, m66 = O. Here also we get six Gelfand pat­
terns and the formulas (18)-(22) give the following 
states described by their quantum numbers: 

II) = IYI,O,t"~,,o,-t), 

12) = IY2' 0, t,,- t, 0, t), 

13) == 1.y3,-!,-t,,~,,-t,t>, 

I 4) == 1;:4' - ~,- t, ,- ~, , ~, - t), 

15) == IY5,~,-t"~,,t,~), 

16) = IY6' ~,- t,,- t,- t,- t). 

The quantum numbers 13, Y, 53 themselves immediately 
give the 5U(3) SI 5U(2) decomposition. 

(c) The 56-dimensional representation is described 
by m I6 = 3, m 26 = m36 = m 46 = m56 = m66 = O. 
Starting with 

II) 3 0 0 0 0 0 

30000 

3 0 0 0 

300 

3 0 

3, 

we enumerate the states corresponding to the Gelfand 
patterns from II) to 156). The "key" is given in the 
Appendix and also the quantum numbers calculated by 
using formulas (18)-(22). By inspecting, one gets the 
following 5U(3) weight diagrams for states all having 
53 = + i and 53 = - i: 

y 

110) 18) 15) I') . .' . . 
126) 12 4) 12\> 

--+---<-...... ----+--'3 
133) 131) . ' . 

, 135) 

y 

120) 1'8) 11 3) 14) . .'. . 
145) 143) 138) 

--+----.:. ..... --+:........:*-"--+-- '3 
154) 152) .' . 

, 156) 

Six more states are nondegenerate and may be plotted 
as follows: 

y 

12) 
• 

--1--+--+--1----+--'3 

Iso) 

y 

--+--+--+-+---+--'3 

, 55) 

Let us plot all the candidates to the vacant places in 
5U(3) weight diagrams: 
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y 
1 6) 1'5 ) 

y 
17) I 9) 

• • • , • 1'4> III) I") 112) 

129) 127) 25) 122) 130 ) 140 128) 123) 
, 13 9 ) 

'3 
142) 141) 13~) 1.'4) 13'7) 

134) 132 ) 149) 147) • • • • 148) 146 ) 153) 151 ) 

Knowledge of the IR's of SU(3) now gives uniquely the 
decomposition: 

56 = (10,3/2) EB (8,1/2). 

The problem of how to single out the individual states 
requires the additional tools mentioned earlier in 
Sec. III. 

'3 

V. GENERALIZATION TO A TWOFOLD, NONMAXIMAL 
DECOMPOSITION OF SU(mn) ::;) SU(m) (>9 SU(n) 

There are (m2 - 1) + (n2 - 1) traceless generators 
of SU(m) @ SU(n). These are extended by the (m2 - 1) • 
(n2 - 1) "product" generators, furnishing (m2 - l)n2 + 
n2 -1 = (m· n)2 - 1 traceless generators which may be 
taken as the a-set generators of SU(mn). Given explicit 
matrix representations of the generators in the defining re­
presentations of SU( m) and SU(n) [this may be, for example, 
those connected with the Gelfand patterns for SU(m) 
and SU(n), respectively], the a-set generators of SU(mn) 
may be expressed by the H 1 - H mn-l and the E i' gen­
erators. This establishes the link to the Gelfand pat­
terns of SU(mn). 

VI. CONCLUDING REMARKS 
Adaption of Gelfand patterns to the physically impor­

tant case of SU(6) =:l SU(3) (/9 SU(2) opens possibilities in 
several directions. One is the use of tensor opera­
torsJ·9.10.13 in a "dynamic" theory, involving both SU(6) 
symmetry-conserving and symmetry-breaking inter­
actions. The theoretical predictions might then be com­
pared with experiment. 16 
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APPENDIX 

Enumeration of states corresponding to the Gelfand 
patterns of 56: 

11) ~ 3 0 0 0 0 0 

3 0 0 0 0 

3 0 0 0 

300 

3 0 

3 

12), 13), and 14) are produced by lowering mll in steps 
of one. Then 

15) ~ 3 0 0 0 0 0 

3 0 0 0 0 

3 0 0 0 

300 

2 0 

2 

16) and 17) follow by reducing m ll in steps of one. 

18) ~ 3 0 0 0 0 0 

3 0 000 

3 0 0 0 

300 

1 0 

1 

19) follows by redUCing m ll to zero. 

110) follows by setting both m ll and m 12 to zero. 

TABLE I. The eigenvalues of the diagonal a-set generators for the 56 representation of SU(6), calculated from the Gelfand patterns using the 
formulas (18)-(22). 

State no. [3 Y S3 Q33 (2/"3)Q83 State no. [3 Y S3 Q33 (2/h)Q 83 State no. [3 Y S3 Q33 (2/"3)Q83 

1 3 1 3 l 20 3 1 3 3 l 39 0 0 l 0 j , 2 2 , " " 
, , 

2 3 1 l l 21 1 0 3 l 0 40 0 0 l l , , , t , , 2: " 2 ~ 3 3 1 l l 22 1 0 l 0 
, 

41 --1 0 l , 
i 

-, -, , -3 , ;: ~ 4 1 3 l 23 1 0 l l -~ 42 0 0 l l 
2 2 ;: 2 2 -i 2 3" 

5 l 1 3 l 24 0 0 3 0 0 43 0 0 0 0 2: , 
~ 

, , 
6 l 1 l 25 0 0 l , l 44 -1 0 l 0 l 

2 , -" if i ;: 3 i 3 
7 

, 
1 l 3 26 -1 0 

, 
0 45 -1 0 0 2 ! -1 -s 2 2 

8 l 1 l 27 0 0 l l 46 
, 

-1 l 
-2 -, 2 r " 3 2 2: 

9 l 1 3 l 28 0 0 0 47 l -1 
, -, -~ 6 2 3 , -, 

10 1 
, 

29 -1 0 
, 

0 l 48 l -1 
, -, 2 2 , , ,- i , 

11 l 1 l l 30 -1 0 l 3 49 l -1 l -g , , 
~ 1 i -, -2 

12 l 1 l 31 ~-1 l 50 0 -2 
, 

0 , 
I ~ 

-, , -3 
13 l 1 32 ~-1 51 

, 
-1 -1 l , 

2 2 -, 
~ 4 -. " 

, 
" 14 l 1 l 33 -~-1 l 52 l -1 l l , 

f 
, 

~ 2 -, ? ;: 2 -. ~ 15 l 1 34 -l-l l -£ 53 l -1 l , 
f 

, -, -~ ~ " f ~ -I • 16 1 l 35 0-2 0 -1 54 -1 l 

f ¥ -~ " ¥ , 2 .. ~ 17 1 
, 

36 1 0 l 55 0 -2 -t 0 2 i t -. 2 2 1 3" 
18 l 1 l 37 1 0 l 0 56 0 -2 0 1 ~ 2 t ~ ~ 3 2 
19 1 l 38 1 0 l 0 -2 -2 .- .. , -, 
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111) ~ 3 0 0 0 0 0 

3 000 0 

3 0 0 0 

200 

2 0 

2 

The states 112) ~ 116) now follow just as the states 
16) ~ 110) are produced starting with 15). 

117) ~ 3 0 0 0 0 0 

30000 

3 0 0 0 

100 

1 0 

1 

and 118), 119), and 120) follow by setting m 11 to zero, 
then also m 12 and finally all three entries, m 11 , m 12 , 

and m 13 equal to zero. 

121) ~ 3 0 0 0 0 0 

3 0 0 0 0 

2 0 0 0 

200 

2 0 

2 

The procedure which started in passing from 111) ~ 
112) is now repeated, giving the sequence 122) ~ 130). 

131) ~ 3 0 0 0 0 0 

3 0 000 

1 0 0 0 

100 

1 0 

1 

132) ~ 135) are produced by putting the l's to 0 starting 
with m 11• 

J. Math. Phys., Vol. 15, No.8, August 1974 

I 36) ~ 3 0 0 0 0 0 

2 0 0 0 0 

2 000 

200 

2 0 

2 
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Proceeding as from I 21) to 135), one gets the sequence 
137) ~ 150). 

150) ~ 3 0 0 0 0 0 

2 0 000 

151) ~ 3 0 0 0 0 0 

10000 

o 0 0 0 

000 

o 0 

o 

1 000 

100 

1 0 

1 

152) ~ 156) are produced by putting the l's to zero, 
again starting with m 11 • 
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In the present work we study the differential operator H = -(l/2)d 2/dx 2+ m 2X 2/2+g Ix 2. This 
operator known as the Hamiltonian of the quantal oscillator has been a matter of study since the 
beginning of quantum mechanics. Recently, it has become again actual after the paper of Calogero 
where the correspondent N body problem (developed in many works) is studied. Parisi 
and the author have used H as Hamiltonian, studying the anomalous dimensions in one-dimensional 
quantum field theory. Finally, Klauder, using H as a simple degree of freedom example, has 
studied some qualitative features of quantum theories with singular interaction potentials. In the 
following work we are going to study H, showing that H is equivalent to "half an harmonic 
oscillator" for the odd and even eigenspaces separately. 

It is well known 1-5 that from the formal differential 
operator H is possible to construct a self-adjoint opera­
tor Ii acting in L2(R), that is bounded below if g 2:: -

1/8. 6 An intuitive argument for this condition on g is the 
following: 

Using the Heisenberg uncertainty principle 

and considering a wave function finite in some small 
region of radius r 0 about the origin and equal to zero 
outside this region, the mean value of the kinetic energy 
in this state is of the order of 1/8r2 and the mean value 
of the potential energy is of the order of g/r2. 
Then the Hamiltonian is bounded below only if the sum: 

l/Bra + g/ra 
is bounded below when r 0 --7 0; that is: g 2:: - i . 
Now assuming g 2:: - i, the eigenvalue problem 

Hu = "Au 

has the following solutions: 

An = m(2n + a + 1), 

(1) 

(2) 

( 3) 

where cn are normalization constants, a = ~ v1 + Bg, n 
is a nonnegative integer, and L~(mx2) are the generalized 
Laguerre polynomials. 7 

It is easy to verify that if g 2:: O. also, then 

vn(x) = e(x)un(x) - e(- x)un(x) 

are eigenfunctions of the problem (2) with the same 
eigenvalue where e(x) is the usual e function. 

So that un' vn are a complete orthonormal system of L2. 

We consider the operator 

1 d2 m 2x2 
Ho- 2- + ---

dx 2 2 

that is the Hamiltonian of the harmonic oscillator, the 
eigenvalue problem for H 0' has the following solutions8 : 

A~ = m(n + ~), 

( 
mX2) l/I n = c~Hn(mx) exp --2- , 
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where H n(mx) are the Hermite-Tchebycheff polynomials. 

We note that the l/I n are a complete orthonormal set 
for L2(R). If we consider the operator H restricted over 
the space generated by its eigenfunctions {un} and the 
operator Ho restricted over the space generated by 
{l/I2n}, we can show there is a real number (3 such that 
Ho and H + (31 are unitarily equivalent. 

In fact, let Ho and fl + fJI be as defined above, then there 
is a unitary operator Wand a real number (3 such that 

WHoW*= H + (31. 

We define W: l/I2n --7 un' W is obviously an unitary map 
from the Hilbert space generated by {l/I 2n} to the 
Hilbert space generated by {u,,}. We have 

[WHo W*- (0 + (3f)]Un ={m(2n + ~)- m(2n + a + 1 + (3)}un. 

If (3 = - (a + ~) this expression is equal to zero and we 
are done. 

We note that if g > 0 also if + (31 restricted to the sub­
spaces generated by Vn is unitarily equivalent to an 
"half harmonic oscillator" so that H is the direct sum of 
two "half harmonic oscillators." 
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For compact topological groups (discrete or continuous) a basis of the group algebra is defined 
which consists of irreducible tensors only. This tensor basis is generally discussed and compared with 
similar constructions for finite groups and SU(2). 

1. INTRODUCTION 

The object of this paper is the definition of a special 
orthogonal basis of a(S), the group algebra of a com­
pact group S. The basis is adapted to the decomposition 
of the semisimple algebra a(S) into simple constituents 
(and thus to all irreducible representations of S) being 
the union of bases of the simple algebras. (We call a 
basis with this property convenient; otherwise, incon­
venient). Furthermore, this basis is adapted to a group 
of automorphisms of a(S) homomorphic to S because its 
elements transform under these automorphisms accord­
ing to unitary irreducible matrix representations 
(unirreps) of S. (We denote orthogonal bases with this 
property tensor bases). 

Tensor bases were proposed by several authors: for 
finite groups (inconvenient ones) by Gamba,l Killingbeck,2 
and de Vries; 3 for SU(2) (essentially the one given here) 
by Racah4 and Corio. 5 

Tensor bases can be of physical interest because they 
define in the carrier space of an irreducible unitary 
representation of S a set of irreducible tensor operators 
complete with respect to all operators defined in this 
Hilbert space and, if the basis is convenient, even ortho­
normalized in a certain way. These operators are there­
fore especially suited for operator equivalences.6 . 7 

For every finite- dimensional unitary representation 
of S orthonormalized sets of irreducible tensor opera­
tors exist which are complete with respect to all opera­
tors of this carrier space. But in case of a reducible 
representation some of these operators certainly do 
not represent elements of a(S). It is therefore tempting 
to extend this reducible representation of S to an ir­
reducible unitary representation of a larger compact 
group S' ~ S. In this case the complete set of tensor 
operators (with respect to S) can be considered to re­
present (part of) a tensor basis of a(S'). An example 
of a group extension leading to tensor operators with 
transformation properties impossible for an element 
of a(S) was given by de Vries. 8 

In case the representation of S is infinite- dimensional 
a similar procedure would require a non compact group 
S'. We do not deal with this problem. If the representa­
tion of S is infinite- dimensional, we consider only the 
bounded operators representing elements of a(S) and 
unbounded ones intimately connected with them (genera­
tors, etc.). 

The basic definitions and some general conclusions 
are given in Sec. 2. In Sec. 2A the definition of the group 
algebra a(S) is outlined. In Sec. 2B a group of auto­
morphisms of a(S) is introduced as the "tensor repre­
sentation" of S. Two theorems stating necessary and 
sufficient conditions for irreducible representations to 
be contained in the tensor representation are proven 
in Sec. 2C. Our tensor basis is defined in Sec. 2D. There 
is also discussed what is needed to construct, for a 
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given unitary representation of g, the set of operators 
representing the tensor basis. Section 2E deals with 
group extensions leading to complete sets of irreducible 
tensor operators. 

The general results of Sec. 2 are specialized for 
finite groups in Sec. 3. In Sec. 3A a formula is derived 
for the number of times (zero included) a given ir­
reducible representation appears in the tensor repre­
sentation. In Sec. 3B some special results for double 
point groups are mentioned. In Sec. 3C our tensor basis 
is compared with the one used up to now exclusively 
for finite groups. In Sec. 3D group extensions are re­
considered for finite groups. 

Section 4 deals with the consequence following from 
the results of Sec. 2 for SU(n), especially in case n = 2. 
In Sec. 4A modifications possible for Lie groups (Lie 
algebra instead of the group, universal enveloping alge­
bra instead of the group algebra) are mentioned. In 
Sec. 4B necessary and sufficient conditions for an ir­
reducible representation to appear in the tensor repre­
sentation of SU(n) are stated. Finally the tensor basis 
of a(SU(2» is explicitly given in terms of operators 
representing elements of the group and/or the Lie alge­
bra. 

2. GENERAL THEORY 

A. The group algebra (j, (S) 

The definition of the group algebra a(S) of a compact 
group S and its properties are extenSively dealt with in 
mathematical textbooks. 9,1 0 Similar treatments exist 
for finite groups 11 , 12 and SU(2) 13 also in the phySical 
literature. In the following we therefore accentuate only 
the propositions not to be found there stating the other 
facts in a less formal way. 

If a group is compact an invariant integral 

M[J1 = Mxff(x)] = Mxff(yxz)] for ally,z E S (2.1) 

exists for all complex-valued continuous functions de­
fined on S. We assume it to be normalized (M[1] = 1). 
The set of these functions forms a linear space. It is 
a unitary space if the scalar product is defined by 

(2.2) 

Completion gives the Hilbert space L2(S) of complex 
valued square -integrable functions on S. 

In L2(S) a group 'U(S) of unitary operators y is de­
fined by 

yf(x) =f(y-1x), Y E g, Y E 'U(S),f E L2(S). (2.3) 

'U(S) ~ S and the mapping S ~ 'U(S) is called the regular 
representation of S. 
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By 

(f,agh =MAa(x)(f,xg)l] for allj,g E L2(g) (2.4) 

a bounded linear operator is defined for every a E L2(g). 
The set 

<1.(S) = {a: a E L2(g)} (2.5) 

is a Hilbert space isometric to L2(g) if the scalar pro­
duct in <1. (g) is defined by 

(a, b) 2 = (a, bh (2.6) 

<1.(g) is a symmetric ring if the product ab is defined 
by the successive action of the. operators and the involu­
tion as the mapping a ~ a + , a + being the adjoint operator. 
In the following the term group algebra is used for the 
symmetric Hilbert ring <1.(g). 

Every representation x ~ U(x) of g by unitary opera­
tors U(x) in a Hilbert space JC can be extended by 

(1/I,B(a)cph = M Aa(x)(1/I, U(x)cp):rd for all 1/1, cp E JC 
(2.7) 

to a representation a ~ B(a) of <1. (g) which is symmetric 
[B(a+) = B+(a)]. Although the extension of a unitary 
representation of g to a symmetric one of <1.(S) is always 
possible in principle, it is practicable only if the follow­
ing condition is satisfied: 

Condition 1: The group elements are parametrized 
by a set of real variables and the invariant integral 
is expressed as a sum and/or integral over these para­
meters. 

To point out the connection (2.7) between representa­
tions of g and a(g) which may be traced back to Eq. 
(2.4), we introduce instead of the definition (2.4) the 
shorter symbolic notation 

(2.8) 

for the elements of <1.(S). Equations in which this nota­
tion is used have always to be understood in the sense 
of Eq. (2.4). 

From Eqs. (2.1)- (2.4) follows 

ya = M x[a(y-1x)x] (2.9) 

The mappings a ~ ya therefore define a representation 
of g isomorphic to the regular one. 

B. The tensor representation of 9 
We introduce a second representation of g by 

Definition 1: The tensor representation of g is the 
homomorphism y ~ (a ~ yarl);y E g;y E 'U(g); 
a, yar1 E <1.(S). 

Using Eqs. (2. 1), (2. 6), and (2.2), it is easily verified 
that 

yarl =MAa(y-1xy)x] (2.10) 

is an element of <1.(g) if a E <1.(S), and that the mapping 
a ~ yay-l defines a unitary operator in the Hilbert space 
<1.(g). [This unitary operator for which we do not intro­
duce a new symbol must not be confused with the one 
defined by Eq. (2.9)]. Since the mapping a ~ yar1 is 
also an automorphism of the symmetric ring <1.(g) it is 
an automorphism of the Hilbert ring <1.(g). 
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Because of Eq. (2.10) an element of the center 

~(g] = {z : Z E g; xz = zx for all x E g} 
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(2.11) 

induces the identical transformation a ~ a, but the re­
verse is also true (see the following section). 

C. Units 

<1. (g) is a semisimple algebra decomposing into a 
direct orthogonal sum of finite- dimensional, symmetric, 
and simple algebras <1. a(g): 

<1.(g) = :B EEl <1. ",(g), <1. "'(g) simple and symmetric, 
a (2. 12) 

dimension of <1."'(g) = n~ < OCI (2.13) 

Equation (2. 12) implies a unique decomposition 

a=:B aa, aaE <1. a(g), (2.14) 
0: 

of all elements into pairwise annihilating and ortho­
gonal components: 

(2.15) 

If an irreducible unitary representation of g is ex­
tended to a symmetric (irreducible) representation of 
<1.(g), then the ring of operators representing the ele­
ments of <1.(g) is isomorphic to one of the subrings 
<1. ",(g). Therefore, 

A = {Q'} = index set of equivalence classes of 
unirreps of g, (2.16) 

no: = dimension of the unirrep D a. (2.17) 

Every simple algebra <1. "'(g) is isomorphic to the algebra 
of no: x no: matrices. This implies the existence of a 
basis {ej'},: eJ~ E <1.(S); Q' E A;j ,k = 0, .•. , na - 1} the 
elements of which sometimes,14 and in the following 
called units, satisfy 

yej;. = :B Df}(y)el\ for all y E 'U(g). 
I 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Equation (2.20) implies that the basiS is orthogonal, and 
that the elements e ~ are normalized to n~2. Equation 
(2.21) shows that the regular representation of g decom­
poses into a direct sum of irreducible representations 
appearing with multiplicities equal to their dimensions. 

The set {ej,J is an example for a basis of <1.(S) which 
is the union of bases of the subalgebras a a(g). Any such 
basis has two convenient properties: 

(1) Its (nonvanishing) elements remain linearly indepen­
dent in every representation. 

(2) They may be defined by successively defining bases 
of the finite-dimensional subspaces <1. a(S). 

We accentuate these properties by 

Definition 2: A basis of <1.(S) is convenient if it is 
the union of bases of the subalgebras <1. a(g); otherwise 
it is inconvenient. 
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A basis of a subalgebra <la(S) can also be obtained 
via a matrix representation aa~ Mcx(aa). If {Ma(i): 
i == 1, ... , n~ is a set of n~ linearly independent na X na 
matrices, then the set {a~ == 2:) Mj1(i)ej1: i == 1, ... , n~ 

Jk 

constitutes a basis of <lcx(S). Because of 

(2.22) 

[following from Eq. (2. 20) and the bilinearity of the 
scalar product] this basis can be orthonormalized even 
without detailed knowledge of the invariant integration. 
The operators B(a~) onto which the elements a~ are 
mapped are completely determined by the matrices 
M "(i) if in JC, the carrier space of the unitary repre­
sentation of S, a basis {l/I ~ is known the elements of 
which transform according to unirreps of S. If such a 
basis is not known it has to be constructed or what 
amounts to the same the operators B(ej"i,) have to be 
won from the unitary operators U(y). 

Because of 

(2.23) 

such a construction presupposes a knowledge of 

6. == {Dj"i,(x): XES; a E A;j, k == 0, 1, ... , na - I} 

== a complete set of unirreps of S (2.24) 

To make the construction of the operators B(e!},) 
practicable, the following condition must be fulfilled. 

Condition 2: All matrix elements Di"i,(x) E 6 have 
to be given as known functions of the real parameters 
mentioned in Condition 1. 

From Eqs. (2.10), (2.23), and (2.21), follows 

yeYky-1 == z:; Dij(y)D~k(y)erm' 
1m 

(2.25) 

From this results 

Theorem 1: The tensor representation of S is a 
faithful representation of S/ J[S]. 

Proof: yay-1 == a for all a E <I(S) is equivalent to 
yej1y-1 == ej"i, for all a,j, k. This implies DljJy)D~k(Y) == 
(jl](jmk which is only possible if D"(y) == ~»).J:<.a, I Wy 1== 1, 
Ea == na x na I-matrix. Therefore,D"(YJUa(x) == 
Da(x)Da(y) for all XES. Since this holds for all unir­
reps, the same relation is true for the regular repre­
sentation. But the latter is faithful; hence y E J[8]. 

Theorem 1 comprises a necessary condition for an 
irreducible representation of type f3 to be contained in 
the tensor representation: The subduced representation 
DB J, J[S] 15 has to be the identical representation. Theo­
rem 1 does not imply that the tensor representation 
necessarily contains all irreducible representations of 
Sf J[S] but only sufficiently many to make the representa­
tion faithful. Note however the following sufficient con­
dition: 

Theorem 2: If S has a faithful unirrep D a then 
every irreducible representation of SfJ[S] is contained 
in the tensor representation. 

Proof: A similar argumentation as in the proof of 
Theorem 1 shows that the Kronecker product 
D a X D a * (~ D a * X D a) is a faithful finite- dimensional 
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representation of S / ~[S] if D a is a faithful unirrep of S. 
From this it follows16 that the 2n-fold Kronecker pro­
ducts Da x Da. x ... X Da x Da* (n == 1,2,,") contain 
all unirreps of SfJ'[S]' Therefore, only elements have to 
be found which transform according to these Kronecker 
products. But this is done by the elements of <I(S) cor­
responding to the n-fold products Dn (X)Dj*h (x)··· 

J I 2""2 
DJ~\ (x) E L2(S) as can be seen from Eq. (2.10) 

n n 

D. The tensor basis 

Like every other unitary representation of S the ten­
sor representation decomposes into a direct sum of 
finite- dimensional irreducible representations. As the 
decomposition of the regular representation is clearly 
visible if the units are taken as basis of <I(S), the de­
composition of the tensor representation can be made 
obvious by the choice of a suitable basis. 

Definition 3: A set {zBr: Zs.-(;r 0) E <I(S); f3 E A; 
r == 0, ... , nB - I} is an irreducible tensorial set (ITS), 
its elements are the components, and f3 is the type of the 
ITS, if for all y E 'U(S) 

YZSry-l == ~D~(y)zss' DB E 6. (2.26) 
s 

Invariants are ITS's of type f3 == 0 [DO(y) == 1 for all 
YES]. 

Theorems 1 and 2 can be restated as conditions for 
the types of ITS's. 

Definition 4: A tensor basis is an orthogonal basis 
of <I(S) the elements of which are components of ITS's. 

Definition 5: Coupling coefficients [aj,§i I vyr] are 
complex numbers satisfying 

DJ'k(Y )Dr!.(y) == 2:) [aj~ I vyr ]D~s(Y)[ a/il3ml Vi's]* 
vyrs 

for Da,DS,DY E 6. and all YES. 

The indices 

v, w == 0,1, ... , m a i3 Y - 1 

m a6Y == multiplicity of DY in D a X D B* 

distinguish unirreps occuring more than once. If 
m aay == 1, which always holds for Simply reducible 
groups, 17 V == W == 0 can be omitted. 

(2.28) 

Theorem 3: Every set {[ ajak I vf3r]: a, {:3 E A; 
j,k == 0, ... ,na -l;v == 0, ••. ,m aaB -1;r == 0, ••. , 
n B - I} of coupling coefficients defines uniquely a con­
venient tensor basis the elements belonging to <I cx(S) 
being normalized to n~f2; and vice versa. 

Corollary: ITS's of type f3 exist if and only if 
m aaB;;' 1 for some a EA. 

Proof: (a) Assume the coupling coefficients to be 
given and set 

Z~Br == z:; [ajakl vf3r je j"i,; 
jk 

then z~Br E <la(S). 

(2.29) 

(2.30) 



                                                                                                                                    

1206 P. Kasperkovitz and R. Dirl: Irreducible tensorial sets 

is the inverse transformation of (2.29), as follows from 
Eqs. (2.27),y = 1-element of S. Since the z's are ob­
tained from the e's by a unitary transformation, they are 
like these orthonormalized and a basis of (tm). The re­
quired transformation properties (2.26) follow from 
Eqs. (2. 29), (2.25), (2.30), and (2.27). 

(b) Assume the tensor basis to be given. Its elements 
must permit a labelling by a (convenient basis), {3r 
(components of ITS's), and an index v if (tam) contains 
more than one linearly independent ITS of type /3. Fur­
thermore, the elements have to be orthogonal (Definition 
4) and normalized like the e's (Theorem 3). This im­
plies that unitary transformations like (2.29) and (2.30) 
exist. That the expansion coefficients appearing there 
satisfy Eqs. (2. 27) is a consequence of the transforma­
tion properties (2.25) and (2.26) of the e's and the z's. 

(c) The corollary follows from the completeness of the 
basis (2.29). 

Both aspects of Theorem 3 may be of practical inter­
est. 

Condition 3: The coupling coefficients [ajak I vf3r] 
are tabulated or calculable by means of algorithms. 

If Condition 3 is satisfied, the linear combinations (2.29) 
can be calculated at least successively. If also Con­
ditions 1 and 2 are fulfilled, all bounded operators z~llr 
[B(z~r)] may be expressed as "linear combinations" of 
the unitary operators x [U(x)]. A better estimation of 
Condition 3 may be gained noting that the coupling co­
efficients [ajj3l/ vyr] are related to the usual Clebsch­
Gordan (CG) coefficients18 (ajf3ZI vyr) by 

[ajj3ll vyr] = 2: (ajj3Z' I vyr)UPz" 
z' 

(2.31) 

the unitary n B x nil matrix UB being defined by 

DS*(y) = UBD1i(y)UB+, Db,D8 E A. (2.32) 

The only thing that can be said about the coupling co­
effiCients without further knowledge of the group refers 
to the identical representation (13 = 0, r= s = 0): 

maaO = 1, 
(2.33) 

Equation (2.33) shows that every subalgebra (ta(S) con­
tains just one linearly independent invariant. 

The second part of Theorem 3 is of interest if a con­
venient tensor basis is constructed successively by 
means of matrix representations Ma(z';Sr) (c!. Sec. 2. C). 
The postulated transformation properties of the ma­
trices follow from Eq. (2. 26) by substituting y--? D a(y), 
zSr ~ Ma(zsr). It is of advantage to satisfy them first 
because matrices transforming differently (f3r '" {:3'r') 
are already orthogonal with respect to the scalar pro­
duct defined on the right side of Eq. (2. 22). The ele­
ments of the matrices so constructed are then coupling 
coefficients because of Theorem 3. If the matrices Ua 
are known, the CG coefficients (ajak I vf3r) are obtained 
as "by- product" of such a construCtion. 

E. Tensor operators 

It follows from Eqs. (2.10), (2.7), (2.1), and (2.26) 
that 

U(y)B(ZSy)U(y-l) = 2:D~y(y)B(zBS). (2.34) 
s 
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As was to be expected, ITS's are represented by tensor 
operators. 19 If the carrier space JC of a unitary repre­
sentation is irreducible, then the algebra of its opera­
tors is isomorphic to one of the algebras (t a.(S). In this 
case the operators B(z~BY) offer a complete set of ortho­
normalized irreducible tensor operators. If JC is redu­
cible, then irreducible tensor operators which are not 
linear combinations of the operators B(z~Br) always 
exist. Nevertheless, even then complete sets of ortho­
normalized tensor operators exist if the representation 
is finite- dimensional. 

Theorem 4: (a) Every finite-dimensional unitary 
representation of a compact group S can be extended to 
an irreducible representation of a compact group S' :J S. 

(b) There exist tensor bases of (tm') represented in 
this irreducible representation of S' by operators which 
are irreducible tensor operators not only with respect 
to S' but also to S. 

Proof: (a) The n- dimensional Hilbert space engen­
ders an irrE:ducible representation of S' = U(n). [This 
does not exclude that JC may also be irreducible for 
proper (compact) subgroups S' C U(n).] 

(b) Choose a set A' of unirreps of S' for which the sub­
duced representations D' t S are direct sums of unirreps 
DE A. 

Theorem 4 may be satisfying from an esthetic point 
of view. However, a group S' will be of more than aca­
demic interest only if it has a rather simple multiplica­
tion law and/or admits physical interpretation. If one 
is only interested in a complete set of orthonormalized 
tensor operators, this can be obtained far easier by a 
direct construction. 

(Hint: Choose a basis {lPwaj} for which 

U(y)lPwaj = 2: Dfj(y)lPwak. 
k 

Define operators Ewaj.w~a'j' by 

Ewcxi.u'a'i,t/lw"et"i" == °w'w"Oa 1 a"Oj'i,,1J;Waj-

The set of operators 

Zwaw'a'vBY = H [aja'j'l vf3r]EWaj.,Q'a'j' 
JJ 

(2.35) 

(2.36) 

(2.37) 

is then the desired one. Since their matrix elements in 
the symmetry adapte~ basis (2.35) are just the coupling 
coefficients defined by Eqs. (2.27), the operators (2.37) 
are quite similar to the Wigner operators introduced by 
Biedenharn.20) 

3. FINITE GROUPS 

A. Total multiplicity 

For finite groups (with discrete topology) (t(S) is 
/ S 1- dimenSional. This allows to strengthen the Corol­
lary of Theorem 3. 

Theorem 5: For finite S the number of linearly 
independent ITS's of type f3 is 

m B = 2: m aaB = 2: X ~. 
a P 

(3.1) 

(3.2) 
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I e~1 
~ W X~X~~ = o~~,. (3.3) 

The first part of Eq. (3.1) was proved by de Vries3 

under the restriction 0' = a. The extremely useful form 
as a sum of primitive characters was given by Gamba1 
without proof. 

In Eqs. (3. 1)- (3. 3) 

{f.L} = {o, 1, ..• , I A 1- 1} = class parameter (3.4) 

and e ~ is a class of conjugate elements. 

B. Special results and explicit constructions 

As an example for the application of the Theorems 
1 and 2 we note 

Theorem 6: In the group algebra eL(g*) of a non­
Abelian double point group g* ITS's of type i3 exist if 
an only if DB is a unirrep of the adjoint point group g. 

Proof: (a) If: Every double point group g * being a 
finite subgroup of SU(2) is defined by a faithful two­
dimensional representation.21 If this is reducible g* 
is Abelian; if not, Theorem 2 applies and 3[S*] = 3[SU(2)]. 
But g*1 3[SU(2)] ~ g. 

(b) Only if: Theorem 1. 

To express the elements of the tensor basis as linear 
combinations of the elements x raises no difficulties. 
Condition 1 is always satisfied for finite groups by a 
parametrization with i = 0, ..• , I 9 1- 1 and 

M[J1 = (II I g I) '6 f(x i)' (3.5) 
i 

For finite groups appearing in physical problems 
numerous tables22 exist so that for a certain group 
only small calculations are necessary to satisfy also 
Conditions 2 and 3. Examples of tensor bases for the 
double point groups 0* and T* constructed according to 
Eq. (2. 29) were given by Bliimelhuber and Miih1.23 

C. Another tensor basis 

These exist infinitely many tensor bases definable 
in different ways. In this section our definition (2.29) 
is compared with the one used up to now exclusively for 
finite groups. 

Its definition is based on the following facts: 

U(S) C eL(S), if g is finite, (3.6) 

(3.7) 

If the group elements are labelled by the class para­
meter (3.4) and by 

{II} = {O, 1, ..• , Ie p 1- I} = in-class parameters, (3.8) 

then, as was noted by Gamba, 1 the mappings a --7 yay-1 
induce permutations xp u --7 xp u" By choosing a basis 
{XOO;x10, ... ,x1. le 1-1;x20, ... ,x2.le21-1;' •. } Gamba 
obtained a decompcisition of the tensor representation 
into a direct sum of I e ~ I-dimensional permutation re­
presentations. These so- called class representations 
may be reducible. By decomposing all of them into 
irreducible constituents a tensor basis can be defined. 
It suggests itself to achieve the decomposition by pro­
jecting the irreducible representations out of the class 
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representations.24 But if an irreducible representation 
is contained more than once in a class representation, 
then immediately the question arises: How are the pro­
jection operators and the elements of eL(S) onto which 
they act to be chosen so that the ITS's resulting from 
the projection are orthogonal? This problem was solved 
essentially by de Vries3 and completely by Gilmore25 
(and independently by the authors). Before giving this 
solution we explain the notation used therein. 

The I A I groups 

3 ~ = {x: x E g; xx po = x poX} 

= centralizer of x ~o 

of order 

Ihl=lgl/lepl 

are special subgroups of g. For their unirreps we 
introduce the symbols 

A~ = {or~} = index set of equivalence classes 

(3.9) 

(3.10) 

of unirreps of 3~, (3.11) 

nO'. ::::: dimension of the unirrep DO'.P, (3.12) 
p 

D~fO(x) = 1 for all x E 3~' (3.13) 

Beside the unirreps DO'. E D. we need equivalent unirreps 
DO'.(~) of g which subduce direct sums of unirreps DO'.Il 
of 3p: 

DO'.(~)(x) = Wa(p)+DO'.(x)wa(~), 

[WO'.(~)]-1 = WO'.(~)+, 

DO'.(~) J, 3~ = direct sum of unirreps DO'.P of 3~' 

m aa~ = multiplicity of D a p in D a J, 3 ~, 

(3.14) 

(3.15) 

(3. 16) 

(3. 17) 

{v(ororp)or~j~: or E A;O'~ E A~,mO'.a~ '" 0; 

v(oror ll )=O,l, ••• ,m O'.a -1;j~=0,1, ••• ,na -1} 
p ~ 

= row index of D O'.(~). (3.18) 

Theorem 7: The set {z~ (BO)Br: f.L = 0, ... , I A 1- 1; 
(3 E A;r = 0, •.. ,nB- 1;v({30) = 0, ... ,m BO - I} of ele­
ments 

Z~(BO)O- = '6 WB(lllB )· .. " ) r,ve a~ O'.pJ~ v(BO'.p O'.pi p 

x _1_ '6 DB(g)* ( )yx _v- 1 ( ) I g I y n B v(BO'.~)O'.~jp,v(BO)OO y ~(j.1 3.19 

constitutes an inconvenient tensor basis, where the ele­
ments (3.19) are normalized to (njl I 3p 1)1/2. 

Proof: (a) The elements (3.19) are components of 
ITS's: Substitute yx --7 X in YZv(BO)Jlry-1 and use the re­
presentation properties of DB(~)(x) and Eqs. (3.14), (3.15). 

(b) The elements (3.19) are orthogonal and normalized 
to (n B I 31lI)l/2: They are orthogonal in f.L because of 
z~(B'O)'8'r' E e~ and Eq. (3. 7). In calculating <z~(B'O)'B'r" 
z~(1l0)Br)2' take into account Eq. (3.7), the equivalence 

(3.20) 

the multiplication properties, the orthogonality rela­
tions,26 and the special form (3.16) of the unirreps 
DB(P), and Eqs. (3.10), (3.15). 
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(c) There are I S I different elements (3.19): For fixed 
J).(3r there exist 

I e~ I 
mBO == -I S I L; XB(y~) (3.21) 

YpE3~ 

and therefore because of Eq. (3.3) altogether 

L; mBOnB = L; I c:?~ I = I S I (3.22) 
jiB ~ 

different elements. 

(d) Inconvenience: Convenience implies the invariants 
to be multiples of the elements zSoo [see remark fol­
lowing Eq. (2.33)]. But 

~ __ 1_ '" _ '" a -1/2 a 
Zooo - I I LI x~u - LI X~ Wana Zooo' 

c:? ~ u a 
(3.23) 

The tensor basis (3.19) has several disadvantages 
compared to the one proposed by us [Eq. (2.29)]: 

(1) The defining equations (3.19) make sense only for 
finite groups. (If class and in-class parameters27 are 
known, it is possible also for continuous groups to de­
fine something similar to Gamba's class representa­
tions if one considers functions defined on the in-class 
parameters and square-integrable with respect to them. 
But these representations cannot be constituents of the 
tensor representation.) 

(2) The basis is inconvenient. Therefore, if its ele­
ments are represented by operators, linear dependences 
not existing within a(S) appear in general. 

1 0 0 0 0 

0 0 0 0 
IJ 

0 0 0 1J2 • 0 

A= B= 

0 0 0 IJn-l 0 
1 

II = primitive nth root of 1 

(b) Irreducibility: A and B generate a unirrep of a sub­
group of order n3 •28 Therefore the whole set of ma­
trices generated by A, B, and the P(x)'s, is a unirrep 
of S', faithful per definition. 

(c) Definition and structure of S~: S~ is the subgroup of 
S' represented in this n- dimensional representation by 
diagonal matrices. As is shown below [see (e)] all dia­
gonal elements are powers of II. Therefore, S~ may be 
identified with a subgroup of the n-fold direct product 
c:?n 0 . ··0 c:?n represented in this n-dimensional repre­
s~ntation by the diagonal matrices with elements Dkk = 
lI'k, k,i k = 1, .. . ,n. 
(d) Definition and structure of S2: S2 is the subgroup of 
S' represented in this n-dimensional representation by 
permutation matrices generated by the matrices Band 
P(x),x E S. Since every such permutation matrix de­
fines a permutation of n objects S2 may be identified 
with a subgroup of Sn' 

(e) Structure of S': If a permutation matrix P is multi­
plied by a power of A the resulting matrix X has the 
same structure as P, i.e.,X and P have zeros and non:­
vanishing matrix elements on the same places. The 
only difference is that the elements different from zero 
are l' s for P and powers of II for X. The product X IX 2 
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(3) In most cases the construction of this basis en-
tails calculational efforts not worthwhile in view of its 
application. Because to give the z's as linear combina­
tions of the x's one has not only to determine the I A I 
subgroups 3~ but also all the matrices WB(~). What is 
of interest in applications are the matrix elements of 
the corresponding operators in symmetry adapted 
bases (Wigner-Eckart theorem). But there appear auto­
matically CO coefficients (or, depending on the defini­
tion of the reduced matrix element, coupling coeffiCients) 
and therefore these have to be calculated also in this 
case now at the latest. 

D. Group extensions 

As mentioned in Sec. 2E, it may be of interest to ex­
tend a reducible representation of S to an irreducible 
one of S' (::J Sl. The desired simplicity of the multipli­
cation law suggests to look primarily for finite exten­
sions if S is finite. Such ones exist if the suppositions 
of Theorem 4 (a) are somewhat limited. 

Theorem 8: Every n-dimensional permutation 
representation of a finite group S can be extended to an 
irreducible unitary representation of a finite group 
S' ::J S, where S' ~ S i <8 S 2 (semidirect product), Sic 
c:?n 0 ... 0 c:?n (n-fold direct product of the cyclic group 
of order n), S2 C Sn (symmetric group of order n I). 

Proof: (a) Definition of S': Define S' by the matrix 
group generated by the permutation matrices P(x), 
XES, and the matrices 

0 
1 
0 

0 
0 

o 
o 
o 

1 
o 

(3.24) 

(3.25) 

of two matrices Xl and X 2 having the structure of PI andP2 , 

respectively, has the structure of PIP 2' Therefore, 
every matrix X representing an element of S' has the 
structure of a permutation matrix P x representing an 
element of S2 (C S'): P x is uniquely determined by X 
and thus also the diagonal matrix XPj/ := D x repre­
senting an element of S~. Hence every x' E S' has a 
unique decomposition x' == x Jx 2' x ~ E 81, x 2 E 82, 81 
is a normal subgroup since PDP-l is diagonal if D is a 
diagonal and P a permutation matrix. 

In his thesis29 de Vries raised the question how to 
extend a finite group g to a finite group S' so that for all 
0' E A elements of a{8') can be found which transform 
according to D a under the automorphisms correspond­
ing to S. 

Corollary: All types 0' E A of irreducible repre­
sentations of a finite group S can be realized within the 
group algebra of a finite extension S' with I S' I ~ 
ISIISIISI!. 

Proof: (a) Choose as permutation representation 
the regular matrix representation (basis {x}). Theorem 
8 shows that this I S 1- dimensional representation can be 
extended to a unirrep of a group S' with I S' I ~ I S II S I I S II . 
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(b) The I g I-dimensional unirrep D1' E fl.' may be chosen 
to be of such a form that D1' J, g is a direct sum of unir­
repsD"E D. [cf.Sec.2E,Theorem4 (b)]. Theunitsrela­
ted to D1' are then the elements e;'jk, ,,'j'k' E G.1'-(S'), a, a' 
E A,j,k = 0, .. . ,n,,- 1,j',k' = 0, ... , n,,'- 1. 

(c) For every a E A the subalgebra (P'(g') contains 
elements transforming according to D" because of [cf. 
Eq. (2. 25)] 

Y E g: 

D~'jk''''j'k'(Y) = ° "",Okk·Dj"j,(y), 

ye1'.k ooorl = 6 D9f.(y)e 1 '-'k 000' 
a) • j' J J CX,} I 

4. COMPACT LIE GROUPS 

A. The universal enveloping algebra 

(3.26) 

If g is a compact n-dimensional Lie group, the results 
of Sec. 2 may be slightly modified. The modifications 
arise from considering the Lie algebra instead of the 
group and embedding the group algebra in the universal 
enveloping algebra. We introduce these concepts only 
to such an extent that our considerations can be related 
to similar results of other authors. 

For a compact n-dimensional Lie group it is possible 
to express the elements y E 'U(g) as 

Y(1)l' "',1)n) = exp[i(1)ll l + ... + 1)nl ,)], (4.1) 

where the 1)'s are real parameters and the l's, the 
generators, are self-adjoint operators in L2(g). The 
real n-dimensional vector space spanned by the genera­
tors may be identified with the Lie algebra .e(S) if the 
Lie bracket is defined by the commutator. Since the 
generators are unbounded operators their domain of 
definition are only subsets of L2(g). The functions 
D j"}.*(x) belong to the domains of all generators: 

IjDjk*(x) = 6 Cij(i)Df1,*(x), i = 1,2, ... , n (4.2) 
I 

A = {CJk(i): i = 1, ... , n; a E A;j, k = 0,1, ... , n" - I} 

= a complete set of symmetric [C"(i) = C"+(i)] 

irreducible matrix representations of .e(g). (4.3) 

fl. and A are related by 

D"(1)l"",1)n) = exp{i[1) l C"(l) + ... + 1)nC ,,{n)]}. (4.4) 

Because of Eqs. (4. 1) and (4.4) a second definition of an 
IT S equivalent to the first one is obtained if Eq. (2. 26) 
is replaced by 

[Ii' zSr] = 6 qr(i)zSs' CS E A. (4.5) 
s 

Further modifications are suggested by the following 
reasoning: The elements a E ct(g) are "linear combina­
tions" of the elements x E 'U(g) and these in turn power 
series in the elements Ij E £(9). Therefore it must be 
possible to express also the elements of ct(S> as power 
series in the generators. But considering polynomials 
in the generators and their linear combinations, one 
embeds ct(S> in a somewhat more general construction: 
the universal enveloping algebra 30 , 31 &(g). As was al­
ready done for the Lie algebra .e(S) we identify &(g) 
with a set of operators in L2(g). Every operator P E &(S> 
leaves a subspace irreducible with respect to ct(S) in­
variant and defines there an operator belonging to ct(g). 
For this we write symbolically 

p = 6 p", P E &(g), P" E ct(g). (4.6) 

" 
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Like ct(g) the algebra & (g) is an associative ring and 
a linear space. It also admits a group of automorphisms 
isomorphic to g/3[S] which is known as the adjoint 
group. 31 It is therefore possible to extend the definition 
of ITS's substituting the condition z/3r E ct(g) by Z r E 
& (g). But every such ITS in &(g) defines by Eq. (l. 6) 
elements of ct(g) which are ITS's of the same type be­
cause of Eq. (2. 15). From there it follows together with 
Theorem 3 (Sec. 2D) that also polynomials in the gene­
rators, being components of ITS's ("multipole opera­
tors,,20), can be used to define coupling or CG-coeffi­
cients. The best known example are the generators 
themselves which are usually chosen to be components 
of ITS's.32 

B. Special results and explicit constructions 
Theorem 9: In the group algebra ct(SU(n» ITS's of 

type f3 exist if and only if DB is contained in a Kronecker 
productD x ••. x D* of n1 D's and n 2 D*'s with n1 == n 2 
modulo n, where D is the n- dimensional unirrep used to 
define SU(n). 

Proof: (a) Only if: DB must be a unirrep of 
SU(n)j 3[SU(n)] (Theorem 1). 3[SU(n)] = 3n is a cyclic 
group of order n, represented in D by matrices 11l'E: 
i = 1, ... , n}, II = primitive nth root of 1, E = n x n 
I-matrix. The necessary and sufficient condition for a 
Kronecker product of n1 D's and n2 D*'s to be a repre­
sentation of SU(n)j 3n is therefore n1 == n2 modulo n. 

(b) If: The above mentioned Kronecker products con­
tain all unirreps of SU(n)j 3n since these are also unir­
reps of SU(n) and every such one is contained in a Kro­
necker product D x ... x D*. Since D is faithful, there 
must be ITS's for every unirrep of SU(n)/ 3n (Theorem 2). 

Note that in Theorem 9 ct(SU(n» may be replaced by 
&(SU(n» because of Eq. (4.6). 

Theorem 9 says in particular that in ct(SU(2» ITS's 
of type j = integer (duality = 0 33) exist, and only these. 
This is also seen if the tensor basis (2.29) is construct­
ed explicitly. Since SU(2) is multiplicity-free 
(mili2i3';; 1), the elements of a convenient tensor basis 
are determined up to phase factors already by their 
transformation properties and normalization. If unir­
reps are chosen the elements Dtzm'(x) of which are ex­
pressed by Wigner's formula34 as polynomials in the 
matrix elements D;{~,(x), t_hen Condition 3 is satisfied 
because the matrices Ui (j = j) and the CG-coefficients 
(jmjm' IJM) are then known35: 

Z~M = 6 [jmjm' I JM]eimm, 
mm' 

= 6 i2m(j m + M j - m IJM)etz+ M, "'. 
m 

(4.7) 

Since the coupling coefficients are the matrix elements 
of the z's in a symmetry adapted baSiS, Eq. (4. 7) may be 
interpreted as a definition of a tensor basis by means of 
irreducible matrix representations. This, however, was 
already done a long time ago by Racah4 who was also 
interested in the inverse transformation of (4.7) since 
he needed the e's for the construction of higher-dimen­
sional Lie algebras. 

To introduce parameters, it suffices to parametrize 
Dl/2(x), possible in several ways. The Eulerian angles10 
a:f3y are best known; equally useful are the class-para­
meter ¢ ("angle of rotation") and the in-class para­
meters J, cp ("axis of rotation").27,36 The matrix ele­
ments of Dl/2(X) are then linear combinations of ex­
ponential functions of the parameters and fulfill there­
fore Condition 2. Condition 1 is also satisfied because of 
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1 2. 1" 14
• M[f] = - 1 da sin{3 d{3 dyf(x(a{3y» 

161T2 0 0 0 

1 1~ 1" ~ = - (1 - coscf»dcf> siM d..9- j dcpf(x(cf>..9-cp». 
161T2 

0 0 0 (4.8) 
Therefore, for instance, 

e{"m' = 2j + 1 12
" da f sin{3 d{3 14

" dyDi'!m,(a{3y)x(a{3y). 
161T2 0 0 0 ( ) 4.9 

There exist, however, other expressions for the units 
exploiting the fact that SU(2) is a Lie group. If we use 
the symbols J j for the generators, one of these reads 

M?: 0, 

eJ - J M -----='- eJ 
. ((j±m)!(j'f m - M )!)1/2 PjJ.".,(Jo). 

m±M,m- (j'fm)!(j±m+M)! ± PjJm(m) , 

i-M 
P~m(t) = (t - mtl n. (t 'f n), 

n =-J 

ei = 6 e i = 2j + 1 1" sin..9- dJ 
m mm 81T2 0 

2" 14" X 1 dcp dcf> sintcf> sin(j + t )cf>x(cf>Jcp). 
o 0 

(4. 10) 
(4.11) 

(4.12) 

(4.13) 

To obtain Eq. (4. 10), we used the usual matrix repre­
sentations Mi(J j ) 37 and the fact that 

(4.14) 

The coefficients yjMmm' are chosen in such a way that 
the contributions of the powers Jf> cancel out for n > 
2j - M if the expressions 

(4.15) 

are inserted into Eq. (4. 14). From Eqs. (4.7) and (4.10) 
follows 

M?:- 0, 

ziJ±M = JrQ~'M(Jo)ei, 

Q~'k(t) = 6 i2m(j m ± M j - m I JM) 

xm(j ± m)! (j 'f m - M) !) 1/2 Pilm(t) • 

(j'fm)!(j±m+M)! P~m(m) 

Q~'M is a polynomial of degree J. For 

. . (2J+ 1)!(2j -J)!) 1/2 . 
zlJJ =J~(-l)J-J (2j +J+ 1)!(J!)2 eJ, 

[J., ~MJ = [(J 'f M)(J ± M + 1)]1/2Z~M±1> 

[ cf. Eq. (4. 5)], and the commutation relations of the 
J/s imply 

[J j , polynomial in J k of degree n] 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

= polynomial in J k of degree n. (4.20) 

The polynomials J1fQ~'M(J 0) appearing in Eq. (4.16) 
coincide (up to phase factors) with those obtained by 
Corio. 5 He used matrix representations J j --7 Mi(J j ) 

and orthonormalized the (2j + 1)2 linearly independent 
matrices {Mi(JJJ&): r = 0, ... , 2j; s = 0, •.. , 2j - r}. 

As a further possibility we finally note that the units 
may be introduced in Eq. (4. 7) also in the form 

J. Math. Phys., Vol. 15, No.8, August 1974 

1210 

(2j + I)! 
eimm• = (2j)! (

(j + m)!(j + m')!\1/2 . (- l)r 

(j-m)!(j-m')!) ~r!(2j+l+r)! 
x Jr+i-mJ!+i- m ' (4.21) 

given by Shapir038 and clearly reflecting the embedding 
<t(SU(2» c 8(SU(2». 

In principle Conditions 1-3 are also satisfied for 
SU(3). However, to obtain similar expressions as for 
SU(2), first the different definitions scattered in the 
literature have to be fitted together. We do not deal 
with this question here but limit ourselves to the con­
sequences of Theorem 9: In <t(SU(3» exist ITS's of type 
(P, q) if and only if p == q modulo 3 (triality = 0).33 
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On analytic nonlocal potentials. II. Analyticity of the S 
matrix, for fixed I, its representations, and a dispersion 
relation for fixed t 

Te Hai Yao* 
Department of Physics and Astronomy, University College, London WC], England 
(Received 31 January 1973) 

For a class of analytic short-ranged nonlocal potentials, we study the analyticity of the S matrix in 
the k plane, for fixed I, using Fredholm method for the Lippman-Schwinger equation for the 
partial scattering solution, and contour deformation in the analytic continuation of the S matrix, 
thereby extending a representation of the S matrix in terms of Fredholm determinants. We also 
obtain a representation of the S matrix in terms of Jost functions, for I = O. For a subclass of this 
class of potentials, we obtain a dispersion relation for the full scattering amplitude, for fixed t in the 
range 0 ;:: t > - 4y', where y is some parameter of the potential, using summation of the partial 
amplitude expansion of the full amplitude. Analyticity properties of the partial scattering solution, 
for all I, and of the regular and Jost solutions, for I = 0, are also discussed. 

1. INTRODUCTION 

In a previous article! we proposed a class of analytic 
short-ranged nonlocal potentials V(x,x') defined by the 
following conditions (A): 

(A1) V(x,x') is real, V(x,x') = V(x',x). 

(A2) V{x, x') is rotationally invariant: 

V(x,x') = V(x,x', cosv), 

x = Ix I > 0, x' = lx' I > 0, 1?- cosv ?- - 1, 

where v is the angle between x and x'. 

(A3) V(x, x', cosv) = (e-YX / x a ) V(x, x', cosv)(e-Yx'/ x'a) , 

I' > 0, ~ > Q! ?- 0, 

where V(x, x', cosv) is holomorphic in x and x', in 
Re x > 0, Re x' > 0, for 1 ?- cosv ?- - 1, and continuous 
in all three variables in Re x > 0, Re x' > 0, 
1 ?- cosv ?- - 1, and 

I V (x, x' cosv) I ~ const, Re x> 0, Re x' > 0, 1 ?- cos v ?-l. 

We obtained a forward dispersion relation for poten­
tials satisfying these conditions. 

Here we first study the analyticity of the S matrix in 
the k plane, for fixed 1, arriving at the holomorphy of the 
S matrix in the whole k plane cut from i I' to i IX) and 
from - i I' to - i IX) , which we shall call D, perhaps with 
the exception of poles at the nonreal zeroes of Az(k), 
where Az(k) is the Fredholm determinant of a certain 
integral operator. We extend the domain of validity of 
a representation of the S matrix in terms of Fredholm 
determinants introduced by Bertero et al. 2 to D. The 
scattering solution l/Iz (k; x), for fixed 1, is shown to be 
holomorphic in k and x, for k in nand Re x> 0, perhaps 
with the exception of poles in D at the zeroes of Az(k). 

We then show that, for Q! = ~,and V(x, x', cosv) a 
double Laplace transform of a suitable spectral function, 
the partial amplitude expansion of the full amplitude, 
valid for k > ° and cose in an ellipse with foci - 1, + 1, 
where e is the scattering angle, can be summed for k in 
n, and t in the range ° ?- t > - 41'2, where t is the square 
of the momentum transfer, and that the resulting full 
amplitude is holomorphic in n, perhaps with the excep­
tion of poles at the nonreal zeroes of .t:l.z(k), where 1 is 
arbitrary, for ° ?- t > 4y2 if we assume that t:.z(k = 0) ;e ° for all 1. We obtain a dispersion relation for the full 
amplitude, in the energy variable, for ° ?- t > - 41'2. 
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Finally,for 1 = 0, we study the regular solution ({J(k;x), 
the Jost solutions !±(k; x), and the Jost functions £±(k), 
for kin n and Rex> 0, and obtain a representation 
of the S matrix in terms of the Jost functions, for poten­
tials satisfying Conditions (A). The Jost functions are 
meromorphic in n, and the regular solutions and the 
Jost solutions are holomorphic in k and x, for k in n 
and Re x > 0, perhaps with the exception of poles in n. 

For 1 ;e 0, we may Similarly define the regular solUtion, 
the Jost solutions, and the Jost functions, and obtain a 
representation of the S matrix in terms of the Jost func­
tions, for potentials satisfying Conditions (A), if the lth 
partial potential Vz (x, x') vanishes sufficiently rapidly 
as x and/or x' approach zero. 

We remark that the results obtained in Ref. 1 and this 
article for potentials satisfying Conditions (A1)-(A3) 
can be immediately generalized in the case of potentials 
satisfying Conditions (A1), (A2), and the follOwing Condi­
tions (A3'): 

e-Yx(x + a)m - e-Yx'(x' + a)m 
V(x, x' cosv) = V(x x' cosv) ---"-'----.:.:.'-.. 

xCI. ' , x'a' 

I' > 0, a> 0, m ?- 0, ~ > Q! ?- 0, (A3') 

where V(x,x', cosv) satisfies the same conditions as in (A3). 

We also remark that an unsubtracted dispersion rela­
tion holds for the full scattering amplitude, for ° ?- t > 
- 4y2, for potentials satisfying Conditions (A1), (A2), and 
(A3'), with m integral, Q! = ~, and V(x, x', cosv) belonging 
to the double Laplace Transform class mentioned above. 

We note that a local Yukawian potential 

V(x) = Joo d(3 e-6x p«(3) , J.L> 0, x> 0, 
~ 

with a continuous and absolutely integrable spectral 
function can be expressed as 

V(x) = e-~X V(x), 

where V(x) is holomorphic in Rex> ° and satisfies 

I V(x) I ~ const, Rex> 0. 

2. THE POTENTIAL, THE KERNEL, THE SCATTERING 
SOLUTION, AND THE PARTIAL SCATTERING 
AMPLITUDE 

For potentials satisfying Conditions (A) the partial 
potentials Vz(x,x'), defined by 

Vz(x,x') = (21TXX') f+1 d cosv V(x,x')Pz{cosv) 
- ! 

Copyright © 1974 by the American Institute of Physics 1211 
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satisfy the following conditions: 

(1) VI (x, x') is real, Vl(x,x') = VI (x', x), 

x>o,x' > ° 
(2) VI (x, x') = (e-P/xo) VI (x,x')(e-P'/x'o), 

i>O;;>-1 

where 

(i) V/(x,x') is holomorphic in Rex> O,Rex' > 0. 

(ii) I V/(x, x') I ~ const/{2TTI, Rex> O,Rex' > 0.3 

In the following, VI (-!.. x') is defined for Rex> 0, 
Re x' > 0, in terms of VI (x, x'), by the above relation (2). 

We introduce the function K ,(k; x, x') defined by 

KI(k;x,x') 

= / 1." dx" I V {x", x') 
(

k l+1 (kx) h (1) (kX») ~ (kx ")j (kx") ) 

ik 0 kl+1 I 

+ ((kX)h{kX») fco dx"[kl(kx")M.1) (kx")] V (x" X') 
kl'ik" r I" 

(2. 1) 
in Imk > - y, Rex> 0, Rex' > O,and 

Kl(k;x,x') = ° 
in Imk > - y, x = 0, Rex' > 0, i.e., 

K (k' x x') = 1. 00 

dx" G (k' x x") V (x" x') I , , 0 I" I" 

Gl(k; x, x") = [(k~X> hf>(kxmsx){kx min)j l{kx minW ik, b' 0, 

GI(k;x,x") = [-1/(21 + 1)](x~+tn/x~ax)' 

The functions zjz (z), zhj1) (z), and their derivatives satisfy 
the following inequalities, for all z in the first and the 
third and for all z "" ° in the second and the last: 

( 
I z I ) 1+1 

Izj (z)1 ~ De 11mzI 
I 1 + Iz I ' 

(2.2a) 

I zhiJ)(z) I ~ De-lmz( I z I )-1 
I 1 + Iz I ' 

(2.2b) 

/ !!"'-(Zj (z» / ~ De IImzl ( Izi )1 
dz I 1 + Iz I ' 

(2. 2c) 

A (k' X x') = 1."" ... 1. 00 
dx ... dx I, n , , 0 0 1 n 

This solution 1/1 1 (k; x) is unique in the space of bounded 
measurable functions and is seen to belong to COO{O,oo) 
from the following relationship: 

I/II(k;x) = (kx)jl(kx) + fooo dx" GI(k;x,x") 

x fooo dx' VI (x", x') 1/11 (k; x'), (2.10) 

where fo"" dx' VI (x", x') 1/1 1 (k; x') is holomorphic in x", 
for Rex" > 0. 

From (2. 10) we also find that 1/1 1 (k; x) satisfies the 
following partial wave integrodifferential equation: 

(£ + k 2 _l(l + 1») y(z) = 1. ""dx' VI(x,x')y(x'), x> 0. 
dx2 x2 0 (2. 11) 
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I ~(zh(l){z» / ~ De-1mz( Iz I )-(1+1) 
dz I 1 + Izl ' 

(2.2d) 

where D is a constant for fixed l. 5 

The function K I(k; x, x') is holomorphic in k, x, and x' 
in Imk > - y, Re x > 0, and Re x' > 0, and we find the 
following inequalities,for Imk ;;. - (y - E), y ;;> E > 0, 
X ;;> 0, Re x' > 0: 

IK I (k; X, x') I ~ N(E) I k 1-1 e (y-<)" I e.-P'/ x'o I, (2. 3b) 

where N{E) depends on E only for fixed l. 

From Fredholm theory7 and the inequality (2. 3a) we 
find that, for k > 0, the equation 

1/11 (k; x) = (kx) j I (kx) + 1."" dx' K I(k; x, x') I/II(k; x'), (2. 4) o 
x> 0. 

has a bounded continuous solution, the scattering solution, 
given explicitly by the formula 

1. "" Al (k; x, x') 
I/II{k; x) = (kx) j I (kx) + dx' (kX')j I (kx') , 

o AI{k) (2. 5) 

when AI(k) "" O,where AI(k) and AI(k;x,x' ) are the Fred­
holm determinant and the Fredholm minor of the integral 
operator K I (k) on the space of bounded measurable func­
tions, with kernel K I{k; x, x'), k > 0, x> 0, x' > 0, and are 
given by 

"" Al{k) = L; [(- l)n/n!] AI,n(k), 
n=O 

AI,O{k) = 1, 

AI,n{k) = 

(2.6) 

K l{k; xn' xl)' .. K I{k; xn' x n ) 

n;;>l, (2.7) 

"" AI(k;x,x') = L; [(-I)n/n!]A I, .. {k;x,x' ), (2.8) 
n=O 

AI,O{k;x,x' ) =KI{k;x,x' ), 

n;;>l, (2.9) 

Conversely, we may show that any solution of (2. 11) with 
absolutely continuous first derivativeS and vanishing at 
the origin necessarily satisfies (2.10)9 and consequently 
is given by (2. 5) if it is bounded and if Al (k) "" 0. 

For k > 0, Al (k) "" 0, the solution (2. 5) has the follow­
ing behavior as x --) 0: 

1/1 1 (k; x) = O(x) , ,,-0 
~0(x2 lnx), 

1/1 1 (k; x) ,,=:; 0/ 0(x2- 0), 

1/1 1 (k; x) = 0 0(x2-0) , 
x-

1 = 0, 

1 = 1, 0 = 0, 

1 = 1, 0 "" 0, 

l;;> 2, 

(2. 12) 



                                                                                                                                    

1213 T. H. Yao: On analytic nonlocal potentials. II 

and the following asymptotic behavior: 

1/1 (k;x) "" sin[kx- (I1r/2)] + e iLkx -(Z1I/2)1 Tl(k), 
l x-+oo 

where 

T I (k) == (- 11k) 1. 00 

dx(kx) j I (kx) I."" dx' Vz (x, x') 1/1 1 (k; x') 
o 0 (2. 13) 

and is the partial scattering amplitude. 

Using (2. 2a) to (2. 2d) we have 

1/1' (k' x) == 0(1) 
l , x- 0 

hence we have 

I/II(k;x)*I/I~(k;x) -l/Iz(k;x)I/I/(k;x)* ~ O. 

We may then show that 

Tl(k) == eiOz(k) siniil(k), (2. 14) 

where ii I (k) is real.1 o ii I (k) is the phase shift. The 
asymptotic form of 1/1 1 (k; x) then becomes 

1/1
1 
(k; x) "" eiOt(k) sin[kx- (17r/2) + iii (k)]. (2.15) 

x .... oo 

If we define the S matrix Sl(k) as 

(2. 16) 

then we have 

SI(k) == e2i ol (k). (2. 17) 

Using (2. 5), we have the following explicit form for 
TI(k): 

Tl(k) == TF)(k) + [TF)(k)/6 1(k)], (2.18) 

T}1)(k) == (- 11k) fooo dx(kx)jl(kx) 

x fooo dx'VI(x,x')(kx')jt(kx'), (2.19) 

Tf2) (k) == (- 11k) I.oo dx(kx) jt (kx) I. 00 dx' VI(x, x') 
o o· 

x fooo dx" 6 t (k; x', x")(kx") j I (kx"). (2. 20) 

From a result of Ref. 2 for 1 == 0 and its generalization 
to arbitrary l, we have the following representation for 
the S matrix: 

where F l (- k) is the Fredholm determinant of LI(k), 
LI(k) being a Hilbert-Schmidt operator in a certain 
Hilbert space with kernel 

LI (k; x, x') == I.oo dx" V (x x") G (k' x" x') o I' I'" 

We have2 

a Z,l (k) fooo dx L z (k; x, x), 

00 

Az(k) 6 Al,n(k), 
n=O 

Az,o(k) == 1, AU (k) == 0, 
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Az,n(k) == 
0 n-1 0 

al ,2(k) 0 n-2 

al ,3(k) al ,2(k) 0 
(- 1)n 

n! 

az,n(k) az,n-l(k) az,n-2(k) ... 

U sing the relationship 

fooo Kz(k)n(x,x)dx == al,n' 

we find thaP2 

Hence we have 

n '" 1, 

1213 

0 0 

0 0 

0 0 

az,2(k) 0 

n", 2 

(2. 21) 

We shall find in the following section that the zeroes 
of 6 1 (k), for k > 0, are finite in number, and that T I (k) 
can be extended to a function holomorphic in a neighbor­
hood of the positive real axis of k. 

In Secs. 3,4,5, we shall consider analytic extensions 
of 6 1(k), TI(k),and Sl(k), in the k plane,for fixed l. We 
shall consider also an analytic extension of I/Iz (k; x) in 
the k and x planes, for fixed l. 

3. ZEROES OF A/(k) AND BOUND STATES 

Using the inequality (2. 3a), we may extend the definitions 
(2.7) and (2. 6) of 6 Z,n(k) and 6 z(k) to the region Imk>-y. 
We may show that so defined, 6 z (k) is holomorphic in 
Imk > - y. Also, from (2. 36), we have15 

M(f) == fooo dx x(1-6)e-<x, 

Imk '" - (y-f), Y "'f >0, k '" O. 

Hence we have 

~ 1, Imk '" - (y - f), y '" f > 0 (3. 1) 

for fixed l. Hence the number of zeroes of 6 z(k),for 
fixed l, in Imk '" - (y - f), y '" f > 0, is finite. 

We have 

KI(-k*;x,x')==KI(k;x,x')*, Imk>-y, x",O, x'>O. 

Hence we obtain: 

6 1(- k*) == 6 1(k)*, Imk> - y. (3.2) 

Using the inequality (2. 3a), we may also extend the 
definitions (2.9) and (2. 8) of 6 1 n(k;x,x') and 6 z(k;x,x') 
to the region Imk > - y, for x ",' 0, Rex' > O. We find that 
6 z (k; x, x'), so defined, is holomorphic in k and x' in 
Imk > - y, Rex' > 0, for x '" 0, and continuous in x and 
x' in x '" 0, Rex' > 0, for Imk > - y. Furthermore, we 
have 
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16oI.n(k;x,x') 1 

~ xe(y-c)xle-yx'/x'a IN(E)n+1M(E)n(n+1)(n+1)/2, 

1 601(k; x,x') 1 ~ const· xe(y-E)x 1 e-Yx' / x'a I, (3.3) 

Imk ? - (y - E), y ? E> 0, x? 0, Rex' > O. 

The partial scattering amplitude TI(k) may now be de­
fined for IImk 1 < y, 60 1 (k) "" 0, by 

TI(k) = TP)(k) + [T{2)(k)/6o I (k)], (3.4) 

where TP)(k) and T/2)(k) are given by (2. 19) and (2. 20), 
now extended to IImk 1 < y. We find that T}15 (k) and 
TP) (k) are holomorphic in 1 Imk 1 < y. Hence, from the 
holomorphy of 60 1 (k) in Imk > - y and the boundedness 
of TI (k) for k > 0, 60 1 (k) "" 0, we find that TI(k) is holo­
morphic in a neighborhood of the positive real axis of k. 

We now relate the zeroes of 601(k) in Imk ? 0 to solu­
tions X I (k; x) of (2. 11) with absolutely continuous first 
derivative satisfying 

XI (k; x) = O(x), 
x->o 

(3. 5) 

We shall find that any solution X (k; x), k "" 0, satisfying 
the above condition also satifies: I 

X, (k; x) = 0(1) , 
I x-+o 

x-> 00 

We suppose that (3.6) is valid. Since we have 

d 
dx [XI(k;x)* xi(k;x) - XI(k;x)XI(k;x)*] - xz(k;x)* 

x J 00 dx' Vz(x,x'hl(k;x') + XI(k;x) o 

(3.6) 

x J 00 dx' VI (x, x') XI(k; x')* = - 2i Imk 2 1 XI(k;x) I, o 
we obtain 

JOO d 
dx - [XI (k; x) * Xl (k; x) - XI (k; x) XI (k; x') *] 

o dx 
= - 2iImk2 1000 

dx 1 XI (k; x) 12. 

Hence from (3. 5) and (3. 6) we obtain 

.. Imk2 = 2 Imk· Rek = 0, i.e. k 2 is real, 

.. Imk = 0 or Rek = O. (3.7) 

We now suppose that 601(k) = 0, Imk = O. Then the 
equation 

(3.8) 

has a finite number of bounded measurable solutions. 7 

For each such bounded solution we may write (3. 8) as 

(k' x) = JOO dx" G (k' X x") J 00 dx' V (x" x') (k' x') Xl' 0 I" 0 I' XI , • 
(3.9) 

We may demonstrate using (3. 9) that XI (k; x) belongs 
to COO(O, <Xl) and that it satisfies (2.11). We may also 
demonstrate 
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XI (k; x) = O(x) 
x-+O 

Xl(k;x) = 0(1) 
x-+O 

USing (2. 2a) to (2. 2d). 

We may write (3. 9), for k "" 0, in the following form: 

(kx)h U)(kx) 
X (k' x) = I IU)(k) + I (2) (k) 

I , ik I I' 

with 

I/
1
)(k) = 1000 

dX"(kx")j I (kX") 1000 

dx' VI (x", x') XI (k; x'). 

We have 

XI(k;X)*Xl(k;X) - XI(k;xhl(k;x)* ~ o. 
Hence we may show 

I}l)(k) = 0, 

IP)(k;x) = 0(e-YX/x6 ), 

IP)/(k; x) = O(e-YX / xa), 
x-+ 00 

using (2. 2a) to (2. 2d). Hence loW dx 1 XI (k; x) 12 < <Xl and 
(3. 6) holds. 

For k = 0, we find immediately that XI (k = 0; x) be­
longs to COO(O, <Xl) and satisfies (3. 5). 

For 60 1 (k) = 0, Imk> 0, again (3.8) has a finite num­
ber of bounded measurable solutions 7 which may be 
shown to belong to coo(O, <Xl) and to satisfy (2. 11). And 
again we may demonstrate that such bounded solutions 
satisfy (3. 5) and (3. 6). 

We thus find that the zeroes of 60 1 (k) in Imk ? 0 can 
only lie on the real axis or the upper imaginary axis, 
and placed symmetrically about the origin, from (3. 2). 

Suppose now that X I (k; x) has absolutely continuous 
first derivative and satisfies (2. 11) and the condition 
(3.5), with Imk ? O. Then we have 

1 Joo dx' VI (x, x'hl (k; x') 1 ~ [J 00 dx'i VI (x, x') 12]1/2 
o 00 0 

x [J dx'lxI(k;x')2]1!2 ~ const· (e-YX/xa). o 
Hence, using the condition (3. 5), we find that 16 XI (k; x) 
must satisfy (3. 9) with 

1000 

dx(kx)j I (kx) 1000 

dx' VI (x, x'hl (k; x') = O. 

Hence XI (k; x) vanishes exponentially as x --7 <Xl. Hence 
we may change the' order of integrations in (3. 9) and 
obtain (3.8). Consequently 601(k) = 0.7 

We may demonstrate that the function X(k;x) = 
[XI (k; x)/ X ]Ylm(e, cp), where e and cp are the polar angles 
of x and X I (k; x), is any bounded COO (0, <Xl) solution of 
(3.8), and where k is a zero of 60 1 (k), with Imk? 0, 
m = 1, 1 - 1, ... ,- 1, belongs 1 7 to W2,2 and consequently 
are bound state solutions of the system of angular 
momentum quantum numbers 1 and m. It also follows 
from this and the self-adjointness of the Hamiltonian 
operator of the system that the zeroes of 60 1 (k) in 
Imk ? 0 must lie on the real axis or the upper imaginary 
axis. 

We suppose now that Imk ? 0 and that 
I 

x(k;x)= 6 [Xlm(k;x)/x]YZm(e,cp) 
mo-I 
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is a bound state solution of the system of angular momen­
tum quantum number I, where e and cp are the polar 
angles of x. Then x(k;x) satisfies the following equation: 

X(k;x) == (- 1/471) I dx' [exp(ik Ix - x' I )/x - x' I] 
x I dx" V(X',x")x(k;x"). 

Hence using the expansion 

exp(ik I x - x')/Ix - x' I 
00 

== ik 2:; (21 + 1) h}l}(kxmax)jz (kxmin ) Pz{:x:' x), 
10 0 

x = I x I x == xx, x' == I x' I x' == x' x' , Ixl '" Ix'l, 

we find that there is at least one function X z m (k; x) which 
is not identically zero and which satisfies (3. 9) and is a 
bounded Coo(O, co) solution of (3.8). Hence Az(k) == 0. 

Further, using a result of Ref. 18, we find that no 
zeroes of Az (k) can occur in Imk >-- 0, for I sufficiently 
large. Hence the total number of zeroes of A z (k), for all 
I, in Imk >-- 0, is finite. 

4. ANALYTIC CONTINUATION OF THE PARTIAL 
SCATTERING AMPLITUDE 

In Sec. 2 we defined the partial scattering amplitude 
Tz(k),for Ilmk I < y,with the exception of nonreal 
zeroes of Az (k), by (3.4). It is holomorphic in this 
region. We now consider an analytic continuation of 
T z (k), by contour rotation. 

We consider, for k == iK, Y > K > - y, the function 

f
oo - e-Yx' 

h (k' x) == dx'V (x x') - (kx')')' (kx'). 
I' 0 I' x'o· z 

We have 

hz(iK;X) == lim lim fR dx' Vz(x, x') e-~x' (iKX'):iz(iKX'). 
€.,. 0+ R-+OO € X c5 

The integrand is holomorphic in x' in Rex' > 0. We 
may write 

hz(iK;X) = lim lim (I + f - 1 )dX' 
,~O+ R~oo C1 C 2 C 3 

x Vz(X, x') (e-YX' / x' 0) (iKX') jl (in'), (see Fig.l) 

where C1 and C3 are circular arcs of angle w, 71/2> w> 
- 71/2. 

U sing the bound 

I(iKX')j (iKx')I~DeII<IIX'ICOSCP( IKllx'l )Z+l 
z 1 + IK II x' I ' 

for x' == I x' I eiq>, w >-- cp> 0, obtainable from (2. 2a), we 
find that 

lim IC
I 

dx: Vz(x,x') (e-YX'/x'O) (iKX')jz(iKX') == 0, 
€-O+ 

Hence 

hz(iK; x) == 100 

d I x'i eiw V(x, I x' I eiw ) (e-Y I x' I eiw / I x' 16 ei6w ) 
o x (iK Ix'leiw)jz(iK I x' I e iw ). 

For y > K > - y, hl(i K; x) is holomorphic in x in 
Rex> ° and is bounded there. Hence we may apply the 
same change of contour of integration to the integral 

1000 

dx(iKX) j z (iKx)(e-Y x / x 6) hi (iK; x) 
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o e: 

FIG. 1. 

and obtain 

TP}(iK) == Tz (1)W(iK), 

where 

T?} W(k) 

x' Plane 

R 

- -k
1 1000 

d Ixleiw(kl xleiW)jz(k I xle iw) 
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x (e-ylx le
iw 

/ I X 16 eiOw) 1000 

d I x'i eiw V( I x I eiw, I x'i eiw ) 

x (e-ylx' le iw / I x' 10 eioW) (k I x' I eiw) jz (k I x' I eiW) 

is defined in the strip I Imke i W 1< y cosw, which is the 
strip I Imk 1< y cosw rotated through w in the clockwise 
direction about the origin (Fig. 2). Further T(j)W(k) is 
holomorphic in the strip Ilmke iw I < y cosw. Hence we 
have continued Tf1}(k) to a function holomorphic in 
I Imke iw I < y cosw, for every w in the range 71/2 > w> 
- 71/2, and hence to a function holomorphic in n. 

Using the holomorphy of Az(k; x, x') in k and x', in 
Imk > - y, Rex' > 0, for x >-- 0, and the bound (3.3), we 
find that Tf2}(k) can be continued to a function holo­
morphic in Imk > - y, cut from iy to i co. Hence T I (k) 
has been continued to a function holomorphic in 
Imk > - y, cut from i y to i co, perhaps with isolated 
poles at the nonreal zeroes of Al (k). We have, in this 
region of holomorphy 

Ilmke iw 1< y cosw, 

FIG. 2. 

(4.2) 

(4.3) 
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T(2)(k)=-1/k f""dlxleiW(klxleiW)j (klxle iw ) z 0 z 
X (e-Y Ixle

iw II x 1 6e i6w ) 

X fo"" dx' Vz(! xl eiw,x') (e-y"'lx'6) 

X fo"" d Ix" le iw .c.z(k;x', Ix"l eiw)(k Ix"le iw ) 

X j z (k I x" I e iw ), IImke iw 1< y cosw. (4.4) 

Similarly, we may use (2. 5) to define a function 
!/Iz (k; x) in IImk I < y, .c. z (k) "" 0, x '" 0, which is holo­
morphic in k in IImk I < y, .c. z (k) "" 0, for fixed x '" 0, 
and which is a solution of (2.11)19 with the behavior 
near the origin x = ° given by (2. 12), for IImk I < y, 
.c. ~ (k) "" 0, and to continue it to a function holomorphic 
in kin Imk > - y, .c.z(k) "" O,and cut from iy to i oo , 
for fixed x '" 0, and having the behavior near the origin 
given by (2. 12),for fixed kin Imk > - y, .c.z(k) "" 0, 
and not on the cut. For Imk '" y, the function !/Iz (k; x) 
need not be a solution of (2. 11). 

-1'1" 1 e iw 
(. f"" f"" I I I I" e 1 .c. Z.n ZK) = 0 ••. 0 d Xl ••• d Xn e·nw -1-'-"-1-6-i-6-W 

Xl e 

X 

.c.z. 0 (iK; x, x') = K z (iK; x, x'), 
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5. FURTHER ANALYTIC CONTINUATION 

The Fredholm determinant .c. l (k) was defined in Sec. 
2 for IImk I < y by (2.6) and is holomorphic there. We 
now continue .c. l (k) to a function holomorphic in the 
whole k plane cut from - iy to - ioo. 

We consider k = iK, y> K > - y. From the holo­
morphy of Kl(k;x,x') in x and x' in Rex> O,Rex' > 0, 
the inequalities (2. 2a) and (2. 2b), and using the method 
of contour rotation similar to what we did in Sec. 4, and 
also using induction and the relationships 

.c.z.n(iK) = fo"" dx .c. z.n-1 (k; x, x), 

.c. (iK'X x') =-n f"" dx".c. (iK'X x")K (iK'X" x') z. n " 0 Z. n-1 " Z" 

+ .c.Z.n(iK)KZ(iK;X,X'), 

we may show that .c.Z,n(iK) and .c.z.n(iK;X,X') satisfy 

.c.Z.O(iK) = 1, 

-)'1" Ie iw e n 

Ixn l6 e i6w 

n ;;. 1, 

(5. 1) 
_1',,' -yl"leiW 

.c.z.n(iK;X,X') = f"" ... f"" d I x I .. ·d Ix leinw _e_ e 1 

-)'1" le iw 
e n 

o 0 1 n X'6 IXl16ei6W IXnl6ei6W 

Az(iK;X,X') Az(iK;X, I Xli e iw ). ··AZ(iK;X, IXnl e iw) 

AZ(iK; I Xli eiw,x') 

X n '" 1, x '" 0, Rex' > 0, 

A Z (iK; I xn I eiw, x') 

where 1T/2 > w > - 1T/2 and 

'. , ((iK)Z+l(iKX) hjl) (iKX») f"" ,, ((iKX")jl(iKX"») e-YX" V (x" x') + ((iKX)jz(iKX») 
AI(ZK,X,X)= -K 0 dx (iK)I+l X"6 Z' (iK)I(-K) 

-yx" 

X J""dx"[(iK)Z(iKX") h}l) (iKX")] ~ Vz(X", x'), Rex>O, Rex' >0. 
x x 

Hence we have 

.c.I,n(iK) = .c.r,n (iK), 

where .c.r,n(k) is defined, using (2. 2a) and (2. 2b), in the strip IImke iw 1< y cosw, 1T12 > w > -1T12, by 

.c./o(k) = 1, 
, -ylx1le iw -)'Ix le iw 

.c.W (k)=J"" ... f""dlxll ... dlx le inw e " e n 
Z.n 0 0 n IXll6e.6w IXnl6ei6W 

Az(k; IXl I e iw , I Xli e iw ) •• 'Al(k; IXll eiw , Ixnl e iw ) 

X 

where Al (k; I x I e iw , I x' I e iw ) is given by 
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IImke iw 1< y cosw, rr/2 > w > - rr/2, 

I x I> 0, I x'i > 0. 

Since A I (kj I x I eiw , I x' I e iw ) is holomorphic in k in 
IImke iw 1< y cosw, rr/2 > w > - rr/2,for Ix I> 0, 
lx' I > 0, we find, using (2. 2a) and (2. 2b), that Af n(k) is 
holomorphic in IImke iw 1< y cosw. And uSing . 

IA (k'lx I eiw I x'le iw ) I.;; const· Ix Ie Ilmkeiwllxl 
I' , , (5. 4) 

for I Imke iw I.;; y cosw - E, Y cosw :;;. E > 0, rr/2 > w > 
- rr/2, we find that the series 

f; (- l)n A W (k) 
h=O n! I,n 

is convergent and the sum is holomorphic in IImke iw 1< 'Y 
cosw. Hence A I (k) has been continued to a function holo­
morphic in I Imke iw I < 'Y cosw, rr/2 > w > - rr/2, and 
hence to a function holomorphic in the whole k plane cut 
from - i y to - i co, if we use a previous result. We de­
note this function by A I (k) also. For k in I Imke i w I < 'Y 
cosw, rr/2 > w > - rr/2, we have 

A (k) == ~ (- l)n AW (k). (5.5) 
1 n=O n! I,n 

Further, using the relation 

IAI(kjlxleiw,lx'le iW ) I.;; const , 
Ikl cos2w 

k;r.O, k==±lkle iW , rr/2>w>-rr/2 (5.6) 

for fixed 1, and (3. 1), we find that 

A/(k) ~ 1, (5.7) 
I k I .... 00 
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for fixed 1, uniformly in (3rr/2) - E :;;. argk :;;. - (rr/2 - E), 
for any fixed E in the range rr/2 > E > 0. Hence from 
(2. 21), we find that the S matrix S I (k) is holomorphic in 
fl, perhaps with the exception of isolated poles which are 
finite in number in the regions (3rr/2) - E :;;. argk :;;. -
«rr/2) - E), rr/2 > E > 0, and I Imk I .;; 'Y - E, 'Y> E > 0, 
at the nonreal zeroes of Al (k), and that we have the rep­
resentation 

S/(k) == A I (- k)/A/(k), 

for kin n. 
USing 

h}l)(_ z*) == (- l)lh
l
(z)*, 

and 

VI(x*,x'*) == V/(x,x')*, 

(5.8) 

which follows from Schwartz reflection principle,20,21 
we get 

A1 (- k*) == AI(k)*. (5.9) 

Consequently, we have 

SI(- k*) == SI(k*)-l == S/(k)*. (5. 10) 

From (5.7), we also have 

SI(k) ----+ 1 (5.11) 
I k I .... 00 

for fixed 1, uniformly in (rr/2) - E :;;. W :;;. - (rr/2 - E), 
rr/2 :;;. E > 0, for w == - arg(± k). 

The partial scattering amplitude T 1 (k) is therefore 
continued to a function holomorphic in n, perhaps with 
poles at the nonreal zeroes of A/(k), via the relationship 

SI(k) == 1 + 2iTI (k). (5.12) 

Using (5. 1), and the bounds (2. 2a) and (2. 2b), and using 
contour rotation, we obtain the following representation 
for T I (k) in I Imke iw I < 'Y cosw, rr/2 > w > - rr/2: 

TI(k) == TP)(k) + [T/ 2 )(k)/A I (k)] (5.13) 
where 

-y Ix I e iw 
TP)(k) == - 1 100 

d I x leiW(k Ix leiw)j (k Ix leiw) ...:c
e __ _ 

k 0 / Ixloeiow 

x foo d I x' I e iw iT (Ix le iw I x' le iw ) o I' 

x (k I x'leiW)jz(k I x'le iw ), 

T(2) (k) == ~ (- 1)n B (k) 
I n=O n! I,n' 

e-ylx'leiw 

lx' 10 eiow 

(5. 14) 

(5. 15) 

1 J.oo e-ylxle iw e-ylx'le iw 
BI,o(k)==-k 0 dlxleiw(klxle iw ) jl(klxle iw ) . C"dlx'leiwiT(lxleiw,lx'leiw) . I x I ° e' 0 W • 0 z I x' I 0 e' 0 W 

00 -ylx"l e iw 

X J. d I x"leiwA (k'lx'le iw Ix"l e iw ) e (k I x"leiw)j (k I x"le iw ) o I" I x" 10 eiow z , 

_ 1 00 . '. . e-ylxl eiw 
uO _. . e-Y lx' I eiw 

B z (k)==- f dlxle,w(klxle,w)J (klxle' w) 1. dlx'leiwV(lxle' w Ix'le'w) 
,n k 0 z Ixloeiow 0 'lx'loeiOw 

-ylx"le iw -ylx le iw 
xlooodlx"leiW(klx"leiw)jz(klx"leiw) e [00 ... Co dlx I"'dlx le inw e 1 

Ix"16eiOw'0 '0 1 n IXlloeibw 

x 

A1(kj lx' le iw , Ix" le iw ) 

AI(kj IXlle iw , Ix"le iw ) 
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(5. 16) 

-ylx le iw 
e n 

IXnloeiOw 
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From (5. 10),(5. l1),and (5. 12),we have 

T I (- k*) = TI(k)*, 

T I (k) ----+ 0 
1 k 1-+ 0 

(5. 17) 

(5. 18) 

for fixed 1, uniformly in rr/2 - € ~ arg(± k) ~ - (rr/2 - €), 
rr/2 ~ € > O. 

Further, the scattering solution 1/1 1 (k; x) admits an 
extension to a function holomorphic in k and x, for k in 
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n, perhaps with the exception of isolated poles at the zeroes 
of Al (k), and Rex> 0, if we use contour deformation. 
We call this extended function 1/1 1 (k; x) also. For k in 
I Imke iw I < y cosw, rr/2 > w > - rr/2, it has the follow­
ing representation: 

1 00 (_ 1)n 
I/II(k;x) = (kx)jl(kx) + -- 2:; -- I/Il';n(k;x), 

Az(k) noO n! 

Az(k) .e 0, Rex> 0 (5. 19) 
____________________________________________ ~I with 

Af(k;x, Ix'i e iw ) 

At(k; IXll e iw , I x'le iw ) 

x 

where At(k; x, I x' I e iw), is defined, for I Imke iwl < "y cosw, 
rr/2 > w > - rr/2, Rex> 0, I x' I > 0, by 

Af(k;x,lx'le iw ) 

(
k 1

+
l (kx) h<l) (kX») x (kX")j (kX"») 

- I 1 dx" I 
- ik 0 k l + l 

e-YX" (kX) j I (kX») 
x -- V(x", Ix' le iw ) + . 

x"/) k l • zk 

x (roO d I x" I e iw [kl(kl x" le iw ) h(1)(kl x" le iw )] 
~IXI I 

-ylx"le iw _ 
x e . V(lx"leiw, Ix'i eiw) 

Ix" I /) e,6w 

-yx" ) + 1 dx"{k l (kx")h(1)(kx,,)}_e- V(x", Ix' le iw ) 
c I x"/) 

(5. 21) 
where C is an arc from x to I x I e iw , and 

Af(k; x, I x' I e iw ) == 0, x = O. (5.22) 

The function 1/11 (k; x) in the above domain of definition 
in the k plane has the behavior near the origin x == 0 
given by (2. 12), and for IImk I > y, x> 0, it need not be 
a solution of (2. 11). 

We have, for kEn, 

1/11(- k*;x) = (- l)l+ll/ll(k;x)*, X ~ O. (5.23) 

6. ANALYTICITY OF THE SCATTERING AMPLITUDE 
IN THE t PLANE AND A DISPERSION RELATION 
FOR FIXED t 

We here consider a class of potentials satisfying Con­
ditions (A) for Q! = i, and also the following condition: 

Vex, x', cos II ) = 1000 1000 

d{3d{3'e-Bxe-B' x' a({3, f3', COSIl), 

where a({3, p', COSIl) satisfies 
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n ~ 1 

(i) a({3,{3',cOSIl) isreal, a({3,{3',cOSIl) = a({3',{3,cOSIl); 

(ii) a({3, (3', COSIl) is continuous in <X) > (3 > 0, 
<X) > {3' > 0, and 1 ~ COSIl "" - 1, and in this region 

I a({3, (3', COSIl) I .. ~({3, (3'), 

~({3, (3') = ~({3', (3), 

foO foO d{3 d{3' ~({3, (3') < <X) , 
o 0 

where ~({3, (3') is continuous in <X) > (3 > 0, <X) > {3' > O. 

For such a potential, the partial potentials satisfy 

VI (x, x') = xl/2 e-YX VI (x, x') x'1/2 e-YX' , 

VI (x, x') = loCO loCO d{3 d{3' e-Bx e-B 'x' a I ({3, (3'), 

where 
+1 

a I ({3, (3') = 2rr i1 d COSIl a({3, (3', COSIl)P1(COSIl) 

and 

(i) a 1«(3, (3') is real, a 1({3, (3') = a 1({3', (l); 

(ii) az«(3,{3') is continuous in <X) > (3 > 0, <X) > (3' > 0, 
and in this region 

la z({3,{3') I .. const[~({3,{3')N21 + 1]. 

The partial scattering amplitude T I (k), for k > 0, has 
the follOwing form 

(6. 1) 

where TP)(k) and T}2)(k) are, from (2. 19) and (2. 20), 
given by 

T}l)(k) = (- l/k) 1000 1000 

d(3 d{3'a l ({3,{3') 

x J. 00 dx(kx) j (kx) xl /2 e- ( '1+ B)x o I 

X 1000 
dx'(kx')jI(kx')X'1/2 e-<y+B')x', (6.2) 
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Tf2) (k) = (- l/k) 1000 1000 1000 

d(3 d{3' d(3" a 1 ((3, (3') 

x 1000 
dx' x,1/2 e-ty+B')x' PI(k;x',(3") 

x 1000 
dx(kx)jl(kx)x1 /2 e-(y+B)x 

x 1000 
dx"(kx"Li

I 
(kx") x"1/2 e-(y+B")x", (6.3) 

where we have used the following relationship22 

t. (k' x' x") = x"1/2 e-Yx" J.oo d a" e-B"x"p (k' x' a") 
1 ' , 0 fJ 1 , ,fJ '(6.4) 

with PI (k; x', (3") continuous in 'Xl > x' ;;. 0, co > (3" > 0, 
for k> 0, and22 

I PI (k; x', (3") I "" (Dd,j21 + 1) 1000 

d{3' ~({3', (3"), (6. 5) 

where D1 is a constant. 

We now show that, for k> 0, and t.1 (k) '" ° for all I, 
the series 

(l/k) 2:) (21 + 1)Tl(k)P1(cosO) 
1=0 

is convergent inside an ellipse in the cosO plane with 
foci at - 1, + 1, and semimajor axis equal to 1 + (2y2/k2). 
We denote the sum by F(k; COSO). If we introduce t = 2k2 
(1 - cosO), then g:(k; t) = F(k; cosO) is holomo:rphic inside 
an ellipse in the t plane which includes the interval 
0;;. t > - 4y 2• 

Using the bound23 

IC1(k;x,x') I "" ,jrr/(21 + l)xmin 

for k real, we find that 

IK1(k;x,x') I "" (D 2/..f2l+1) x'1/2 e-Yx ', 

where D 2 is a constant. Hence uSing Hadamard's 
theorem,14 we have,from (2.7), 

I t.1,n(k) I "" (1/(21 + 1))nl2 D 2M nnn/2, n;;. 1, 

M = J.oo dxx1 /2 e-YX o . 

Hence we have 

uniformly in k > 0. 

(6.6) 

(6.7) 

We consider the behavior of T fl) (k) and T P ) (k) as 
1 ~ co. We have24 

{" dx(kx) j 1 (kx) x1 /2 e- (y+B) x 

= ..j(rrk/2)· [k2 + (y + /3)2]-3/2. [(1 + t).Jk2 + (y + (3)2 

+ (y + fl)]{k/[..jk 2 + (y + /3)2 + (y + (3)]) 1+1/2. (6.8) 

Hence we obtain, 

11000 

dx(kx)jl (kx) x 1 /2 e-(y+B)x I 
"" ..j rrk/2 [(l + %)/(k2 + y2)] e-Al , 

where 

A = In[(..jk2 + y2 + y)/k], k > 0. 

Hence we obtain 

I T}l)(k) I "" .!. J.oo J.oo d{3d{3' ~({3,{3'). rrk. (1 + %)2 e-2Al 
k 0 0 .J2T+1 2 (k2 + y2)2 ' 

(6.9) 
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1 D M (00 00 ~({3 (3'))2 I T(2)(k) I .;; - 1 J J d(3d(3' , 
1 k ffzTI 0 0 hi + 1 

rrk (l + %)2 
X -' e-2 >"1. 

2 (k2 + y2)2 
(6.9) 

Therefore, using the inequality25 

I PI (cosO) I "" const· [e (1+1/2) I ImEl 1/ I sinO 11/2 (I + i)1/2], 

(6. 10) 
we find that the series 

00 

(l/k) 2:) (21 + l)T l(k)P1(cosO) 
1=0 

converges, for k > 0, and t.1 (k) '" 0, for all I, when 
I ImO I < 2A, which is the interior of an ellipse in the 
cosO plane with foci at - 1, + 1, and semimajor axis 
equal to cosh2A, which is 1 + 2y2/k2• Further, the sum 
F(k; cosO) is holomorphic in cosO inside this ellipse. 
Hence, we have demonstrated our previous statement. 

We now consider the analyticity of g:(k; t) in the k 
plane for fixed t in the range ° ;;. t > - 4y2. We have 
seen that TI (k) is holomorphic in n, perhaps with the 
exception of poles at the nonreal zeroes of t.1 (k), which 
are finite in number in the regions (3rr/2) - E ;;. argk ;;. 
- (u/2 - E), u/2;;. E > 0, and IImk I .;; y - E, Y ;;. E > 0. 
We examine the convergence of the series defining 
3'(k;t),for Imk >- y. 

U Sing the bound 

IC1(k;x,x')I.;; (constj.J2T+1)xmin , Imk;;. 0, 

which may be derived by 

I C1(k;x,x') I 
= I (kxmax) h }1) (kxmax)' xmin j Z (kxmin ) I 

= I xx' {1 d cosO, exp(ik I x - x' D P (cosO) I 
2 -1 I x- x'I l 

const +1 1 
.;; ~ x· J dcosO---

,,21 + 1 m1n -1 (sinO)1/2 

x 1 xmin 
..jl + a 2 - 2a cosO' a = xmax ' 

.;; (const/..j21 + 1) xmin , 

I x I = x, I x' I = x', x • x' = xx' cosO, 

and the bound 

I Cz (k; x, x') I"" (const/v'2l+1) xmin ellmkl(x+x'), Imk< 0, 

which may be Similarly derived, we obtain 

I Kz(k;x,x') I "" (const/v'21TI)x'1/2e-rx', Imk;;. 0, 

I Kl (k; x, x') I "" (const/v'21 + 1) e I Imk Ix x'1/2 e-Yx', 

Imk ;;. - (y - E), y;;' E > 0, 

for fixed I. Consequently we obtain 

(6. 11) 

uniformly in k in Imk;;. - (y - E), Y ~ E > 0. 

Equation (6. 8) holds for IImk I < y + {3, and the right 
side is the analytic continuation of the left side in n. If 
we denote the right side of (6. 8) by g I (k; (3), then we 
have, from (2. 19) and (2. 20), the following representation 
for TP)(k) and T/2)(k): 
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TP>(k) = (-1/k) 1000 1000 

d{3d{3'a , ({3,{3')gl(k;{3)gz(k;{3'), 

TP>(k) = (-1/k) 1000 1000 1000 

d{3d{3'd{3"a l ({3,{3') 

X 1000 

dx' x' 112 e-(y+B')x' PI (k; x', {3")gl (k; fJ)gt (k; (3"), 
(6. 12) 

in Imk > - (y - E), y?- E > 0, cut from i y to irt), 

where PI (k; x', (3")26 is holomorphic in k in this region 
for rt) > x' ?- 0, rt) > {3" > 0, and continuous in x' and (3" 
in rt) > x' ?- 0, <Xl > {3" > 0, for k in the above region, and 
(6. 5) holds for k in this extended region, for x' and (3" 
in the above region. We have 

I T?>(k) I .;: const J"" Joo d{3d{3' ~(/3, (3') I g (k' (3)g (k' (3') I I k I 0 0 ..j21 + 1 I' I' , 

I T(2)(k) I.;: const. D M (J'~J 1"" d{3d{3' ~({3, (3') I g (k' fJ) 1\2. 
1 I k I 1 0 0 ..f2f+1 1 , 1/ 

(6. 13) 
Since 

1..jk2 + (y + (3)2 + (y + (3) I ?-1..Jk2 + y2 + y I, <Xl >{3 >0, 

Hence the interval 0 ?- t > - 4 y2 is included in every 
ellipse in the t plane which is the map of the region 
lImO I < 2A in the 0 plane, for every such k. Hence, 
USing (6. 10), (6. 11), (6. 13), and (6. 14), we find that for 
each t in 0 ?- t > - 4y2 the series 

.!. ~ (21 + 1) TI (k) PI (1- _t_) 
k 1=0 " 2k2 

is convergent, uniformly with respect to k, in Imk > 
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- (y - E), y ?- E > 0, cut from iy to i<Xl, with k '" 0, and 
k not equal to any nonreal zero of /ll(k), for alII, and its 
sum 3'(k; t) is holomorphic in k in Imk > - y, cut from 
iy to i<Xl, with k '" 0 and k not equal to any nonreal zero 
of /ll(k), for all 1. And from (6.12) we find that, if 
/ll(k = 0) '" 0 for all 1, then, for each t in 0 ?- t > - 4y2 
the series (1/k)T l(k)PJ1 - (t/2k2)] is holomorphic in k 
in a neighborhood of k = 0, and we may similarly demon­
strate that the sum 3'(k; t) of the series 

00 

(1/k) L; (21 + 1) T , (k)P1[1 - (t/2k2)] 
1=0 

is holomorphic in a neighborhood of k = 0 under the 
same assumptions on il, (k = 0). 

for k in n, as may be demonstrated using the inequalities27 From (5.17), we obtain 

Re..J k2 + (y + (3)2 ?- Re..J k2 + y2 , <Xl > {3 > 0, 

I k2 + (y + (3)2 I + {32 + 2{3y > I k 2 + y2 I, <Xl > (3 > 0, 

we find 

I k' I,:: j;rki Ik 11/2 
gl( ,(3) ~ -2-' I k 2 + (y + (3) 11/2 

X ( 11- ~ I + 1 ) e->"I 
..Jk2 + y2 + Y I k2 + (y + (3)2 11/2 (6.14) 

for k in n, where A is given by 

A = In I (..J k2 + y2 + y)/k I 
and 

cosh2A = (1/lk 12)( I k2 + y21 + y2). 

We consider, for each k in Imk > - (y - E), y ?- E > 0, 
cut from i y to i <Xl , the ellipse in the t plane which is 
the map of the region lImO I < 2A in the 0 plane. The 
intercept of this ellipse with the negative t axis is given 
by 

t = - 2 I k 12. cosh2(2A)-1 = - 4y2, 
cosh2A + cos2rp 

E' Plane 

-- --
-y ------.....----:--

C IE) 

F1G.3. 
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k = I k lei'/'. 
(6.15) 

o 

3'(- k*; t) = 3'(k; t) * . (6. 16) 

We note that for k = i K, Y > K > 0, the intercept of the 
above ellipse in the t plane with the positive taxis 
approaches zero as K approaches y. 

We now discuss the asymptotic behavior of 3'(k; t). We 
have, from (3.1) and (6.11), 

1/lI(k)I>-L Ikl>R, Imk>-(y-E), y?-E>O 
(6. 17) 

for all 1, where R is a constant. We also have, for 
k = Ik le i '/', 7T?- cp > 7T/2, 7T/2> cp?- O,and Ik I» y, 
that 

A = (Y/I k I) I coscp I + O(y2/k2), 

lImO 1= (lftl/ I k I) I coscp I [1 + O(y2/k2)], 

where the approach to the asymptotic limit is uniform 
in cosC/>. Hence, from (6. 10) and (6. 13), we obtain 

I 3'(k; t) I .;: const/ I k I , 

for 7T ?- argk > (7T/2) + E, (7T/2) - E > argk ?- 0, 
7T/2?- E > 0, Ik I» y,for fixed t in the range 

(6. 18) 

O?- t > - 4y2. Consequently, we have the following 
unsubtracted dispersion relation28 for feE; t) = 3'(k; t): 

1 J. 

feE; t) = L:; i ~ (~ + ~ J"" dE' Imf(E'; t) 
;=1 j=l (1£ - Ej)J 7T 0 E' - E 

1 feE"~ t) - - J dE' , (6 19) 
27Ti c(d E' - E ' . 

(Fig. 3) where E '" E i' E is not on the cut from 0 to <Xl and 
is on the right of the contour C( E), the E i '~ are the 
negative bound state energies for the system in the Ith 
angular momentum state, which are greater than - y2, 
for alIi. E may be taken arbitrarily small. 

C(E) is the curve consisting of parts of the two half­
lines at an angle E > 0 with the negative real axis and 
on the left of the imaginary axis, and part of a straight 
line parallel to the imaginary axis and at a distance E 
to the right of E' = - y2. E is less than 7T/2 and y2 and 
is sufficiently small so that all E j are on the right of 
C(E). 
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7. THE REGULAR SOLUTION, THE JOST 
SOLUTIONS, THE JOST FUNCTIONS AND A 
REPRESENTATION OF THES MATRIX, FOR 1=0 

In this section we are concerned with solution of the 
s wave radial Schrodinger equation, the Jost functions, 
and a representation of the S matrix in terms of the 
Jost functions, for 1 = 0, for potentials satisfying Con­
ditions (A). 

A. The regular solution 

We introduce the following integral equation, for 
IImkl<y: 

cp(k; x) = (sinkx/k) + J
o
oo 

dx' KW(k; x, x') cp(k; x'), x > 0, 
(7. 1) 

where 

K(I) (k; x, x') = (1/k) 1."" dx" sink (x - x") Vo(x", x'). (7.2) o 

K(I) (k; x, x') is holomorphic in all its variables in the 
whole k plane, Rex> ° and Rex' > 0. 

For I Imk I < y - E, Y > E > 0, X;J> 0, and Rex' > 0, 
we have the following bound obtainable from (2. 2a) and 
(2. 2b): 

I K(I)(k;x,X/) I .;; const·x e I Imk Ix le-YX' /x'lil. (7.3) 

We also have 

I K(I)(k;x, x') I.;; ,x (l)(k; x) I e-yx'/x'lil, (7.4) 

for I Imk I < y, Rex> 0, Rex' > 0, where ,x (1) (k; x) is 
continuous in I Imk I < y, Rex > 0. 

For k > 0, (7. 1) has a unique bounded continuous solu­
tion given by 7 

(k. x) = sinkx + J 00 dx' 6 (1)(k; x, x') . sinkx' (7.5) 
cp, k 0 6(1) (k) k' 

when 6(1) (k) "" 0, where 6(I)(k) and 6(1) (k; x, x, x') are 
the Fredholm determinant and the Fredholm minor, 
respectively, of the kernel K(l) (k; x, x'). This solution 
belongs to COO(O, (0), is a solution of (2. 11) for 1 = 0, 
and satisfies the following relationships at the origin: 

cp(k;x = 0) = 0, 

d~ cp(k; x = 0) = 1. 

(7.6) 

USing (7.3) and (7.4), we may define the Fredholm 
determinant and the Fredholm' minor, 6 (I) (k) and 
6(I)(k;x,x'),in I Imk I < y, Rex> 0, Rex' > O,by 
Fredholm series, and so defined, 6 (I) (k) is holomorphic 
in IImk I < y,and 6(I)(k;x,x') is holomorphic in k,x, 
and x', in I Imk I < y, Rex> 0, and Rex' > 0. And for 
IImk 1< y - E, Y > E > 0, X;J> 0, Rex' > 0, we have 

16(I)(k;x,x') I.;; const·x· e I Imk Ix I e-YX' /x'li I. (7.7) 

For I Imk I < y, (7.5) defines a function cp(k; x), X;J> 0, 
which is a coo(O, (0) solution of (7. 1) (see Ref. 7) and of 
(2. 11) for 1 = 0, and which satisfies (7. 6). We call this 
solution the regular solution. Further, the function 
cp(k; x) can be extended, via (7. 5), to a function holomor­
phic in k and x, in IImk I < y and Rex> 0. 

As in Sec. 5, we may continue 6(I)(k) to a function 
holomorphic in II. If we call this function by 6(I)(k) also, 
then in the strip I Imke iw I < y cosw, 1T/2 > w > - 1T/2, 
we have a representation of 6(1) (k) given by (5. 5) and 
(5.2) with 6 / (k) replaced by 6(1) (k), 61,n(k) replaced by 
6<;) w(k), and Al (k; I x I e'w, I x' Ie iw) replaced by 
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k 0 
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-ylx"le iw _ 
X e v: (lx"l e iw I x'i eiw ) (7.8) 

Ix"llie iliw 0 , , 

where we have used the inequality 

IA(I)(k; Ix I e iw , Ix'i e iw ) I.;; const· I x I elImkeiwllxl (7.9) 

for I Imke iw I < y cosw - E, Y COSW > E > 0, and W 

fixed 

We may also extend the function 

g (I) (k; x) = J
o
oo 

dx' 6(1) (k; x, x') (sinkx' /k) (7. 10) 

to a function holomorphic in k and x, for k in II and 
Rex> 0, which we shall also callg(I)(k;x). Hencecp(k;x) 
has been extended to a function holomorphic in k and x, 
for k in II, perhaps with the exception of poles at the 
zeroes of 6 (I)(k), and Rex > 0, via 

cp(k; x) = (sinkx/k) + g (1) (k; x) (7.11) 

which we shall also call cp(k; x). For k in the strip 
IImke iw 1< y cosw, 1T/2 > W > - 1T/2, and for Rex> 0, 
cp(k; x) has a representation given by (5. 19) and (5. 20) 
with 1/I / (k;x) replaced by cp(k;x),1/Irn(k;x) replaced by 
cp':[(k; x), (k I x'i e iw ). j I (k I x'i e iw ) replaced by 
sin(k I x' I eiw)/k,andA1(k;x, I x' I eiw),A1(k; IXlle iw , 

lx' I e iw ), etc., replaced by A(I)(k; x, I x' I e iw ), 
A(I)(k; I XII e iw , Ix'i eiw),etc.,with 

A(I) (k; x, I x' I e iw ) = (1/k) J
o
x 

dx" sink(x - x")(e-yx"/x"li) 

X Vo(x", lx' I e iw ). 

For k > 0, 6 0 (k) "" 0, 6 (I)(k) "" 0, we have 

1/I o(k; x) = G(k) cp(k; x), G(k) "" 0, (7. 12) 

since then (2. 11) has a unique bounded solution with 
absolutely continuous first derivative and vanishing at 
the origin, for 1 = 0. The function G(k) is sectionally 
continuous. 

We have the following symmetry properties, for k in II: 

6(1)(- k) = 6(I)(k)., 

6(I)(k*) = 6(I)(k)*, 

cp(- k; x) = cp(k; x), Rex> 0, 

cp(k*; x) = cp(k; x) *, X;J> 0. 

Using 

(7. 13) 

(7. 14) 

I A (I) (k; I x lei w, I x' I e iw) I .;; const/ I k I cos2w, k "" 0, 
(7. 15) 

for k = ± I k I eiw,all w in 1T/2 > w > - 1T/2, we obtain 

(7. 16) 
I k I .... 00 

uniformly in the region (1T/2) - E ;J> I arg(± k) I ;J> 0, 
1T/2 > E > 0. Hence the zeroes of 6(I)(k) in the region 
(1r/2) - E ;J> I arg(± k) I ;J> 0, 1T/2 > E > 0, and also in the 
region I Imk I.;; y - E, Y > E > 0, are finite in number. 

We may define 6 0 (k) H(k) in 1T via 

H(k) = k + (l/i) 1.
00 

dx'e ikx' f" dx" Vo(x', x")1/I o(k; x"). 
o 0 (7. 17) 
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Then Ao(k) H(k) is holomorphic in n. Also we know that 
Ao(k) I/Io(k; x) is holomorphic in k and x, for k in n and 
Rex > 0. Further, I/Io(k; x)/H(k) is defined and is holo­
morphic in k and x, for k in n, perhaps except at the 
zeroes of Ao(k)H(k), where there may be poles, and 
Rex> 0, is a solution of (2.11) for I Imk 1< y, 1 = 0, 
and satisfies (7.6) with cp(k;x) replaced by I/Io(k;x)/H(k). 
Hence I/Io(k;x)/H(k), for kin n and Rex> 0, belongs to 
the same analytic function as cp(k; x). Hence we have 
obtained another representation for cp(k;x). 

B. The Jost solutions 

We introduce the following integral equations, for 
IImkl < y: 

P(k;x) = eiikx + 1000 

dx' K(II)(k;x,x')P(k;x'), x> 0, 
where (7. 18) 

K(m (k; x, x') = (1/k) fO dx" sink(x - x") Vo(x", x'). 
x (7. 19) 

K(II) (k; x, x') is holomorphic in all its variables in 
IImk I < y, Rex> 0, and Rex' > 0. We have 

IK(II)(k; x, x') I.:; const e-YX I e-Yx' I 1 , 
I k I Xli X'O Y - IImk I 

(7.20) 

for IImk I < y, k "'" 0, x> 0, Rex' > 0. We also have 

I K(II)(k· x x') I.:; const· e I Imk Ix I e-Yx' I 1 
, , X'ii Y - Ilmk I ' 

(7. 21) 

for Ilmk I < y, x;;> 0, Rex' > 0, using (2. 2a) and (2. 2b). 
We therefore obtain 

IK(II)(k;x,x')I.:; const e-YXle-YX'1 1 , 
1 + I k I x' 0 y - I Imk I 

for I Imk I < y, x;;> 0, Rex' > 0. 
(7. 22) 

Further, we have 

(7. 23) 

for IImk I < y,Rex > 0, Rex' > O,where X (II) (k;x) is 
continuous in I Imk I < y, Rex> 0. 

For k> 0, each of the integral equations of (7. 18) has 
a unique bounded continuous solution j± (k; x), respec­
tively, given by 7 

P (k· x) = e±ikx + 1."" dx' A(II)(k;x,x') e±ih' 
, 0 A (II)(k) , 

(7. 24) 

when A(II) (k) "'" 0, where A(ll) (k) and A(II) (k; x, x') are the 
Fredholm determinant and the Fredholm minor, respec­
tively,of the kernel K(II)(k;x,x'). Each of the solutions 
belongs to C""(O, 00), is a solution of (2. 11) for 1 = 0, and 
satisfies the follOwing behavior at infinity, respectively: 

f± (k; x) "" e±i kX. (7. 25) 
x"''''' 

USing (7.22) and (7. 23), we may define the Fredholm 
determinant and the Fredholm minor, A (II) (k) and 
A(II)(k;x,x'),in Ilmkl<y, Rex> 0, Rex' >O,byFred­
holm series, and so defined, A(II) (k) is holomorphic in 
Ilmk I < y,and A(II)(k;x,x') is holomorphic in k,x,and 
x', in Ilmk I < y, Rex> 0, Rex' > 0. And for Ilmk I < 
y - E, Y > E > 0, x;;. 0, Rex' > 0, we have 

I A(II)(k;x,x') I .:; [const/(l + I k I)] e-YX le-yx'/x'ol. 
(7. 26) 
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For Ilmk I < y, (7.24) defines functions j± (k; x), x;;> 0, 
which are C""(O, 00) solutions of (2. 11) for 1 = 0, and 
which satisfy (7. 25). We call these solutions the Jost 
solutions. Further, the functions j±(k; x) can be extended, 
via (7.24), to functions holomorphic in k and x, in 
IImk I < y, Rex > 0. 

Again, as in Sec. 5 we may continue A(II) (k) to a func­
tion holomorphic in II. If we call this function A (II)(k) 
also, then in the strip Ilmke iw 1< y cosw,1T/2 > w > -1T/2, 
we have a representation of A(II)(k) given by (5. 5) and 
(5.2) with A1(k) replaced py A(II)(k), At' n(k) replaced by 
A~I)W(k),andAl(k; Ix I e iw , I x'le iw ) replaced by 

A(II)(k; Ix I e iw , I x' I e iw ) 

= (1/ k) f"" d I x" I e iw 
Ixi 

x sin[k(lxl-lx"i)eiw](e-ylx"leiW/lx"IOeiOW) 

x vo(lx"leiw,lx'leiW), (7.27) 

where we have used the inequality 

IA(II)(k.lxleiw Ix'leiw)l.:; const 
e-ylxlcosw 

" 1+ Ik I 
for fixed w. 

y cosw - IImke iw I 
(7.28) 

We may also extend the functions 

g (II) ± (k; x) = 10"" dx' A(II) (k; x, x') e tikx' (7. 29) 

to functions holomorphic in k and x, for k in n and 
Rex> 0, which we shall call g(Il)± (k; x) also. Hence 
j± (k; x) have been extended to functions holomorphic 
in k and x, for k in n, perhaps with the exception of 
poles at the zeroes of A (II) (k), and Rex> 0, which we 
shall call P (k; x) also, via 

j±(k; x) = e±ikx + r g (II)±(k; x)/ A(ll) (k)]. (7. 30) 

For k in the strip I Imke iw I < y cosw, 1T/2 > w > - 1T/2, 
and for Rex> 0, P(k; x) have representations given by 
(5. 19) and (5. 20), with 1/1 1 (k; x) replaced by j± (k; x), 
I/Il~n(k;x) replaced by f~W(k;x), (klx']eiw)jz(klx'le iw) 
replaced by e± iklx'ie 'w, and Al(k; x, Ix' I eiW),Az(k; Ix 11 e iw, 
Ix'i e iW)etc., replaced by A(II)(k; x, Ix' I e iw), A (n)(k; Ix 11 
e iw, Ix'le iW), etc., respectively, with 

A(II)(k;x, I x'le iw ) 

= (l/k) I"" dlx"leiwsin[k(x-lx"le iw)] 
Ixl 

x (e-ylx"leiw/1 x"IOe iOw ) Vo(lx"le iW , I x'le iw ) 

+ (l/k) [ dx" sink(x-x")(e-Yx"/x"O) V.:>(x",lx'leiW ), 
. c (7. ~1) 

where C is an arc from x to I x I e iw • 

We have the following symmetry properties: 

A (II)(_ k) = A(II)(k), 

A(II)(k*) = A (II)(k)*, 

r(- k;x) = r(k;x), k real,Rex > 0, 

f±(-k*;x)=j±(k;x)*, x;;. 0, 

r(k*;x) = r(k;x)*, x;;. 0. 

Using 

I A(II) (k; I x I e iw , I x'i e iw ) I.:; const/ I k I cos2 w, 

(7. 32) 

(7.33) 

k "'" 0. 
(7. 34) 

for k = ± I k I eiw,all w in 1T/2 > w >-1T/2, we obtain 

(7. 35) 
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uniformly in the region (11/2) - E ;;, I arg(±k) I;;, 0, 
11/2> E > 0. Hence the number of zeroes of ~(ll)(k) in 
this region, and also in the region IImk I '" y - E, 

Y > E > 0, is finite. 

We note that the functions j± (k; x = 0) are holomorphic 
in n, perhaps with the exception of poles at the zeroes 
of ~ (II) (k). 

If we consider the following integral equations, for 

IImk 1< y, 

v± (k; x) = e±ikx + 1000 

dx'Ko(± k, x, x')v±(k; x'), x > 0, 
(7. 36) 

then we find, following the arguments concerning 
1/1 1 (k; x), that: 

(i) For k > 0, each of the equations of (7.36) has 
a unique bounded continuous solution given explicitly by 

v±(k'x) = e±ikx + 1.00 
dx'[~o(±k;x,x')/~o(±k)]e±ikx', 

'0 (7. 37) 
when ~o(± k) ~ 0. The solutions belong to coo(O,co), 
satisfy (2. 11) for 1 = 0, and have the following asympto­
tic behavior: 

v± (k; x) = H±(k) e±ikx + 0(1), 
x-co 

(7.38) 

where 

H±(k) = 1 - -k
1 fO dx' sinkx' 1. 00 

dx" Vo(x' ,x'')v±(k; x"). 
o 0 (7. 39) 

(ii) For I Imk I < y, the functions defined by (7.37) 
are CCO(O, co) solutions of (7.36) and of (2. 11) for 1:::: 0, 
and satisfy 

v± (k; x) = H± (k) e±ikx + o(e±i kx) (7.40) 
x-co 

with H±(k) defined by (7. 39) now extended to IImk I < y. 

(iii) The functions v± (k; x) can be extended to func­
tions holomorphic in k and x, for k in n, perhaps with 
poles at the zeroes of ~o(± k), and Rex> 0. We call the 
extended functions v± (k; x) also. For k in the strip 
I Imkeiwl < y cosw, 11/2> w > -1V'2, they are given by 
(5.19) and (5.20) with 1/Iz(k; x) replaced by v± (k; x), 
1/1 1'; n (k ; x) replaced by v ~ w (k; x), (k I x' lei w )j I (k I x' lei w ) 

replaced by eiik1x'l e' W and Al(k;x, I x' I eiw),Az(k; Ix I e iw , 
I x' Ie iw), etc., replaced by Ao(± k; x, I x' Ie iw), Ao(± k; 
I x I e iw , I x' I ei",), etc. 

(iv) The functions v± (k; x) are continuous at x = 0, 
from Rex> O,for k in n and ~o(± k) ~ 0. 

We may define ~o(± k) H±(k) in n via (7.39) and using 
contour rotation. Then ~o(± k)H± (k) is holomorphic in 
n. Also we know that ~o(± k)v± (k;x) are holomorphic in 
k and x,for k in n and Rex> 0. Further, v± (k; x)/ H± (k) 
are defined and are holomorphic in k and x, for k in n, 
perhaps except at the zeroes of ~o(± k)H±(k), where there 
may be poles, and Rex> 0, are solutions of (2.11) for 
IImk I < y, 1 = 0, and satisfy (7. 25) with v± (k; xl/Hi (k) 
in place of j±(k; x). Hence v± (k; xl/Hi (k), for k in nand 
Rex> 0, belong to the same analytic functions as ft(k; x), 
respectively. Hence we have obtained further representa­
tions for j± (k; xl. We have ~o(- k*)H-(k*) = ~o(k)* x 
W(k)*. 

We note that from their behavior as x ---7 co, we find 
thatft(k,x) are linearly independent when they are both 
defined, and when I Imk I < y, k ;" 0. 

We also note that from the representations v± (k; x)/ 
H±(k) of f± (k; x), the functions j± (k; x) are holomorphic 
in k and x, for k in n, perhaps with the exception of 
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poles where both ~ (II) (k) and ~o(± k )H± (k) are zero, 
and Rex > 0. A Similar remark applied to the function 
cp(k;x). 

C. The Jost functions and a representation of the S matrix 
We consider first k > 0, and ~o(k) ~ 0, ~(I)(k) ~ 0, 

~(Il)(k) ;" 0. Then we know that the functions f±(k; x) 
are linearly independent solutions of (2. 11) for 1 = 0, 
and that any bounded solution of (2. 11) for 1 = 0, and 
that any bounded solution of (2. 11) for 1 = 0, and with 
absolutely continuous first derivative is a linear com­
bination of ft (k; x). Further, one and only one bounded 
solution of (2. 11) exists, for 1 = 0, and with absolutely 
continuous first derivative, which vanishes at the origin. 
Hence we have 

1/1 0 (k; x) = G(k) cp(k; x), G(k) ~ 0, 

cp(k; x) =: (1/2ik)[£- (k)r(k; x) - £+(k)r(k; x)], 

(7.41) 

(7.42) 

for x ;;, ° and Rex > 0, where £+(k) and £- (k) are not 
both zero. 

Taking the Wronskian of both sides of (7.42) with r (k; x), we obtain 

£+(k) = _ 2ik W[r(k; x), cp(k; x)]x~oo . 

W[r(k; x),r(k; x)]x=oo 
(7.43) 

From the behaviors as x ---7 co of f± (k; x) and their 
derivatives, we obtain 

W[r(k;x),f-(k;x)]::::- 2ik. (7.44) 

Further, since both r(k; x) and cp(k; x) satisfy (2. 11) 
for 1 = 0, we have 

w [r(k; x), cp(k; x) L= 00 = W[r(k; x), cp(k; x)] x= o. (7.45) 

Consequently, from (7. 6) we obtain 

w [r(k; x), cp(k; x)] x= 00 = r(k; x = 0). (7.46) 

Hence 

£+(k) = r(k; x = 0). (7.47) 

Similarly, we obtain 

£-(k) = r(k; x = 0). (7.48) 

From (7.25), (7. 41), and (7.42), we have 

1/1 o(k; x) "" [ G(k)/2ik] [£- (k) e i kx - £+(k) e- ikx ]. (7.49) 
x-co 

From Sec. 2 we have 

1/Io(k; x) "" eiOo(k) sin[kx + oo(k)] 
x-oo 

(7.50) 

where 0o(k) is the s-wave phase shift. Hence we obtain 

£+(k) = k/G(k), 

£-(k) = [k/G(k)]e 2ioo (k) = [k/G(k)]So(k). 

(7. 51) 

(7.52) 

Hence the s-wave S matrix has the following represen­
tation: 

(7. 53) 

We also have 

1/I o(k;x) =: [k/£+(k)]cp(k;x). (7. 54) 
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If we define £±(k) by (7.47) and (7.48) whenever 
f> (k; x = 0) are defined in the k plane, then £± (k) are 
holomorphic in n, perhaps with the exception of poles 
where both A lI(k) and AO(± k) H± (k) are zero. Conse­
quently, the representation (7. 53) can be extended to n. 
We call £± (k) Jost functions. We have, from (7. 33), 

(7. 55) 

The relationships (7.42) and (7. 54) may be similarly 
extended 

A REMARK 

We remark that it can be shown29 that all bound state 
poles corresponding to energies E i with 0 > E i > - ")'2 

in the dispersion relation (6.19) and the dispersion rela­
tions in Ref. 1 are necessarily Simple. 
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We give examples of "analytic nonlocal potentials" which show local correlations for a finite range 
of the distance, bounded below and above. 

1. INTRODUCTION 

Any potential between two nucleons is nonlocal at 
small distances and becomes approximately local at 
large distances. Recently, studies have been made on a 
class A of analytic nonlocal potentials, and a subclass C 
of it, and dispersion relations have been obtained. 1,2 In 
this article we show, by explicit construction, that there 
exist potentials within these classes which show local 
correlations in a finite range of the distance, for dis­
tances neither too small nor too large. These examples 
suggest that the classes A and C might be sufficiently 
wide to include potentials having the properties men­
tioned in the beginning of this paragraph. 

2. LOCAL CORRELATIONS 

We first consider the class A of analytic nonlocal po­
tentials Vex, x!) defined by the following conditions (A): 

(AI) Vex, x!) is real, vex, x!) = vex! ,x) 

(A2) vex, x!) is rotationally invariant: 

V(x,x')= V(x,x', cosv) 

x = I x I > 0, x' = I:x' I > 0, I:;. cos v:;. - I , 

where v is the angle between x and :x' . 

exp( - yx)(x + a)m_ 
(A3) Vex, x' , cosv) x'" vex, x', cosv) 

x exp( - yX')(x' + a)m 
x'''' ,y>O, a>O, 

where Vex, x', cosv) is holomorphic in x and x', in Rex 
> 0, Rex' > 0, for I :;. cos v:;. - 1, and continuous in all 
these variables in Rex> 0, Rex' > 0, 1:;. cos v:;. - 1, and 

I Vex, x' , cosv) I .,; const. 

for Rex>O, Rex' >0, 1:;,cosv:;.-1. 

The following potential V1(x, x,) belongs to this class: 

V1(x, x') = exp( - YX)'V"l(X, x' ,cosv) exp(- yx') , 

where 

V1(x, x', cos v) =gexp{- Tl(X: b) 1/2 [In(;: ~) r} 
x exp{- T1(/'+ b} l/lln(;': ~JJ 2} 
• exp[ - T2 (Xx')1/2U] 

with g real, Tl > 0, T2 > 0, b > 0, c > 0, and u = 1- cosv. 
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The function V1(x, x', cosv) is bounded in Rex> 0, Rex' 
> 0, 1:;. COsv:;. -1, since Re(xx' p/2U :;. 0 for these values 
of x, x', and cosv, and since the functions 

( X )112~ (x+ c\J2 
f1(X,X')= x+b LIn x'+C} , 

f2(X,X')= C/:bYI2 ~n(;:d)r, 
map the region Rex> 0, Rex' > ° onto a region in the 
complex z plane which lies to the right of Rez = p, for 
some p<O. 

We next consider a subclass C of A, namely the class 
of V(x,:x') satisfying Conditions (A) with Vex, x', cosv) 
satisfying the following Condition (C) 3: 

(C) Vex, x', cosv) = fa" fa" d{3 d{3' exp(- (3x) 

X exp(- {3' x, )u({3, (3' ,cosv). 

where u({3, (3' , cosv) satisfies 

(i) u({3, (3' ,cosv) is real, CJ({3, (3' ,cosv) = CJ({3', (3, cosv); 

(ii) CJ({3, (3', cosv) is continuous in {3, (3', and cos v in 
co>{3>O, 00>{3'>0, 1:;,cosv:;.-1, and in this region 

I u({3, f3' ,cosv) I.,; ~ ({3, i3'), 

~({3,(3')=~«(3', (3), 

r r d(3 d(3' ~ ({3, (3') < co, 
o 0 

where ~({3, (3') is continuous in {3 and (3', in co > (3 > 0, 
00 > (3' > O. 

The following potential V2(x, x') belongs to C: 

V2 (x, x,) = exp( - yx)(x + a)&V2(x, x, , cosv) 

x exp( - yx' lex' + a)S, 

where 

- ~~ - ~x'2 
V2(x, x', cosv) = (x + a)S V1(x, x', cosv) (x' + a)S 

satisfies Condition (C) for some integer s > 0. This fol­
lows from a slight extension of a result on a set of suf­
fiCient conditions for a function of two complex vari­
ables to be a double Laplace transform of a continuous, 
bounded, symmetric, and absolutely integrable spectral 
function a«(3, f3') satisfying4: 

I (1 + (3)2a({3, (3')(1 + {3,)21.,,;; const., co > (3:;. 0, 00 > (3' :;. 0. 

We now consider local correlations for the potential 
V1(x, x'). We have 

V1(x, x,) = gexp(- yx)f(x, x')f(x', x) exp[ - Ta(Xx')l/2u] 

xexp(-yx'), 

fix, x,) = exp[ - Tdl(X, x')], 

Copyright © 1974 American Institute of Physics 1225 
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VI(x,x)=gexp[- 2yx], 

I VI {x, x') I", /glexp[- yxJW(x,x') 

with 

W(x, x') =/(x, x') exp(-yx'). 

We consider, for fixed x> 0, values of x' satisfying 

lx' -xl ~x/IO 

For these values of x', we have 

I VI(x,x'> I,.; D/VI(x,x)1 , 

where D« 1, if 

(
X )112( X )2 

Tl x+ b X+'C ~ 100(yx+A) 

(2.1) 

(2.2) 

where we have putD=exp(-A). For suitable values of 
TI' b, c, and A, this inequality is satisfied if and only if 
x lies in some interval [dl' dz], ~ > d l > O. Hence for 
these values of x, I VI(x, x,) I is very small compared 
with I VI(x, x) I == \glexp(-2yx) for values of x' satisfying 
(2.1). 

We have the following example of choices of TI, b, c, 
A and approximate values of dl and d:a: 
T1 =104, b=10/y, c=5/y, A=10, d1 ,,=2/y, d2 "'100/y 

For values of x, satisfying 

IX'-xl";x/10 

and for xE [dl' d2 ] with suitable choice of TI, b, c, and 
A, we may choose Tz large enough so that 

exp[ - T2(XX,)1/2U ]« 1 

for u outside some interval [0, p], where p satisfying 
2 > p > 0 may be initially chosen arbitrarily small. 
Hence we have shown that with suitable choice of TI , 'Ta, 
b, c, we have 

(2.3) 

with D« 1, for xE [dl' d2 ] and for x! outside the region 
1x'-xl";x/10, 1;;"COSII;;..1-p, 1»p>O. Hence the po­
tential VI(x, x') shows local correLations for XE [dl' ~], 
with suitable choice of Tl , Ta, b, c, and A. For x suffi­
Ciently small or sufficiently large, there is no local 
correlation. 

Similarly, for values of x' satisfying (2.1), we have 

I V2(x, x') I ~D I V2(x, x) I 
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with D «1, if 

(2.4a) 

TI(_X_)1/2(2-)2 ;;"100(yx+A _In(YX)2), yx< 1 
x+b x+c 

(2.4b) 

Again, for suitable values of T I, b, c, and A, (2.4a) or 
both (2. 4a) and (2. 4b) are satisfied if and only if x lies 
in some interval [d'l' a;], a; > di > O. For these values of 
x, I V2(x, x') I is very small compared with IV2(x, x) I 
= Igi (yx)4exp{- 2yx) for values of x' satisfying (2.1). 
For a choice of Tv b, c, and A which is the same as the 
example given for VI(x,:x'}, we obtain di "'2/y, ~ 
'" 100/y. 

Again, by chOOSing Tz sufficiently large, !V2(X, x'}! is 
very small compared with I V2(x, x)\, i. e., 

with D« 1, for x E [d~,~] and for r outside the region 
Ix' - x I ",x/10, 1 ~ coslI;;..1 - p, 1» p > O. Hence the poten' 
tial Va(x,x') shows local correlations for xE [di,~] with 
suitable choice of Tv Ta, b, c, and A. For x sufficiently 
small or suffiCiently large, there is no local 
correlation. 

Remark: After this article was completed, we found, 
in Ref. 5. an investigation on the analyticity in k of the 
S matrix for real and complex angular momentum for 
examples of nonseparable nonlocal potentials. 
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For a class of short-ranged nonlocal potentials, the T operator T(k) is studied in the region Imk > 
-'Y, where'Y > 0 is some parameter of the potential. Inversion formulas are obtained which deter­
mine the potential from tCE) = nVE) for any real E, for which tCE) is defined, perhaps with the 
exception of a countable set of points. 

1. INTRODUCTION 

The two-particle T operator t(E), where E is real, 
defined by 

t(E) = V + lim V 1 V, 
..... (}I- E + if-H 

where this limit eXists,! and where V is the interpart­
icle potential and H the internal Hamiltonian, occurs in 
the theory of three-particle systems2 with local pair in­
teractions. It is of interest to study the T operator for 
nonlocal potentials. 

In this article we first study the two-particle T 
operator T(k) in Imk > - y, where y > 0 is some para­
meter of the potential, for a class of rotationally invariant 
hermitian short-ranged purely nonlocal potentials. We 
find that T(k) is a Hilbert-Schmidt operator in L2(R3) 
holomorphic in Imk > - y, with the exception of a finite 
number of simple poles at~, i =: 1,2,'" ,N-, on the 
upper imaginery aXiS, for all the negative energy ei~n­
values Ej < 0, a finite number of simple poles at ± -VEt, 
i =: 1, 2, ... ,N' ,on the real axis, for all the positive 
energy eigenvalues E t > 0, and perhaps with the ex­
ception of a double pole at k = 0 and poles in 0 > 
Imk > - y. The function t(z) = T(rz) is analytic in 
1m-Ii" > - y in the two-sheeted z plane with a branch 
point at z = 0, whose only singularities in the first sheet 
21T> argz .. O,z ~ 0, are simple poles at z =: Ei, and 
z =: Ei. We then sh~ that for any real E, for which the 
operator t(E) is defined, perhaps with the exception of a 
countable set of pOints, the potential can be expressed in 
terms of the kernel of the integral operator t(E) by Fred­
holm series. The coordinate space is used in these 
considerations. 

Results on the pole structure of the scattering ampli­
tude F(k;cosO) in Imk > O,for physical scattering angle, 
Le., for 1 .. cosO .. - 1, are obtained as a corollary. 

The problem of determining a two-particle T operator 
t(E),for some real E for which it is defined,from pro­
perties of a three-particle system, is interesting. 

The class of potentials V(x, x') which we study here 
are defined by the following conditions3 - 4 

(1) V(x,x /) is real, V(x, x') = V(x /, x); 

(2) V(x, x') is rotationally invariant: 

V(x,x') = V(x,x/,cosv), x=: Ixl > 0, 

x' =: Ix' I > 0, 1 .. cosv .. - 1, 

where v is the angle between x and x'; 

(3) e-}'X(x + a)m - e-}'x'(x' + a)m 
V(:x x' cosv)= V(x x' cosv) -~---'-, , x a ' , x'a' 

y > 0, a > 0, m .. 0, ~ > a .. 0, 
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where V(x,x',cosv) is continuous in x,x',and COSI-' in 
IX) > x > 0, IX) > x' > 0, 1 .. cosv .. - 1, and in this 
region of the variables x, x', and cos v , we have 

I v(x ,x', cosv) I ~ const. 

The potential operator V with kernel V(x, x') is of the 
Hilbert-Schmidt class. 

2. THE RESOLVENT 

For any potential satisfying conditions (1)-(3), the 
spectrum sp(H) of the Hamiltonian operator H consists 

. of a sectionally continuous part from 0 to IX) with a 
finite number of discontinuities at the positive eigen­
values and a finite number of real nonpositive eigen­
values. 3,5 For z Et sp(H),the resolvent operator g(z) 
is defined by 

1 1 g(z) =: -- =: , 
z-H z-(Ho+V) 

(2.1) 

where H 0 is the free part of H and V the potential 
operator. We introduce the operator G(k), defined by 
G(k) ;:: g(z = k2), for Imk > 0 and k2 4: sp(H). G(k) is a 
bounded operator for k in this region of the k plane and 
holomorphic there. And following Ref. 6, we find the 
following for Imk> 0, k 2 4: sp(H): 

(i) G(k) is an integral operator of Carle man type satis­
fying the following resolvent equation: 

G(k) :::::; Go(k) + Go(k)VG(k), (2.2) 

where Go(k) == 1/(k2 - H 0) is a bounded integral opera­
tor of Carle man type with kernel Go(k;x,x'): 

- 1 eik1x-x'1 
Go(k;x,x')==-I I' (2.3) 

41T x - x' 
(ii) The kernel G(k; x, x') of G(k) is symmetric: 

G(k;x,x/) == G(k;x',x) (2.4) 

almost everywhere in R 3 X R 3, and satisfies the follow­
in kernel equation: 

G(k;x,x/) == Go(k;x,x') + J dx"IK(k; x,x")G(k;x",x') 
(2.5) 

as a function of x almost everywhere in R 3 for almost 
every x' in R 3, where 

K(k;x,x") = J dx"'Go(k;x,x"')V(X"',X"). (2.6) 

(iii) Any solution L(k;x, x') of (2.5) such that L(k;' ,x') E 

L2(R3) for each x' is the kernel G(k;x,x') for almost 
every x and x' inR3 x R3. 
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We now solve (2.5) for G(k;x,x') using iteration and 
Fredholm method. 

Putting 

G(k;x,x') = Go(k;x,x') + G~l)(k;x,X/}, (2.7) 

we obtain an equation equivalent to (2.5): 

G (l)(kix,x/) = Go(l) (k;x, x') + I dx"K(k; x,x")G(l)(k;x", x'), 

(2.8) 
where 

GO(l) (k;X,X/) = I dx"K(k;x,x"}Go(k;x",x /). (2.9) 

The inhomogeneous term is continuous and bounded 
in x in R 3, for x' in R 3, and (2. 8) has a unique continuous 
and bounded solution given by the Fredholm series,for 
each7 x': 

G(l)(k'x X/}= G (l)(k'x x') + Jd:Jc." A (k; x, X")r_(l)(k' x" x') 
J , 0' , A (k) ~u , , , 

(2.10) 

where A(k) and A(k;x,x") are respectively the Fredholm 
determinantS and the Fredholm minor of the kernel 
K (k; x, x"), and are holomorphic in k in lInk > - y, for 
x and x" inR3 x R3.3 

For Imk> 0,k2 Et sp(H},A(k) is never zero,3 the 
solution (j.l)(k; x, x') is continuous in x and x' in R 3 X R 3, 
and Gl)(k; . ,x') belongs to L2(Jl3) for each x'. Hence we 
have obtained the resolvent kernel, via (2.7). 

USing (2.10),we can define a function G(1)(k;x,x') for 
kin Imk > - y, A(k) ;1! 0, and for x and x' inR3 x R3: 

G (l)(k; x, x') = G (l)(k; x, x/)/A (k), (2. 11) 

where G (l)(k; x, x') is continuous in x and x' in R 3 X R 3, 
for Imk> - y,and holomorphic in k in lInk > - y,for 
x and x' inR3 XR3. Further,C(1)(kiX,X/) is symmetric 
and rotationally invariant, 

G (l)(ki x, x') = G(l)(k; x', x}, 

G(l)(k;x,x') = G(l)(k;x,x',COSII), 

x = Ixl ;;. 0, x' = Ix'i ;;. 0, 1 ~ COSII ;;. -1, 

(2.12) 

(2.13) 

where II is the angle between x and x', and satisfies 

I G (l)(kiX, x') I 

0:; ~
const, lInk >-0 0, 
const'ellmklx ellmklx', 0>-0 Imk >-0 - (y - f), y>-o f> O. 

(2.14) 

We define a function G(k;x, x'} for Imk > - y, A(k) ;1! 0, 
which is the resolvent kernel for Imk> 0, k 2 Et sp(H), 
by 

G(kiX,X') = Go(kiX,X') + G(l)(k;x,x'), (2. 15) 

where Go(k;x,x/} is now defined by (2.3) for Imk > - y. 

We now introduce the "eigenfunction expansion" of the 
resolvent kernel G(k;x,x'),for Imk > 0, k 2 Et sp(H). 
Using the formula 

G(k) = ("" dE(),.) (2.16) 
,-co k2 -">0..' 

where E(),.) is the spectral family of H, we obtain,for 
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any9 f andg E L2(R3) 

(j, G(k)g) = ~ J;*gj + £5 Ji*gt 
i=l k2_k~2 i=l k 2 - ki 2 

with 

+ J d~ k 2 ~ ~2 (g=f)(~)*(g=g)(~), ~ = I~ I 

H'o = J ax 1/It,O(x)*f(x), 

grO = .r dx 1/It,O(x}* g(x), 

(g=J}(~) = l.i. m. (2'IT~3/2 .r dx 1/I(~;x)*f(x), 

(g=g)(~) = l.i.m. (2'IT~3/2 I dx 1/1(~; x) *g(x) , 
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(2.17) 

(2.18) 

where l.i.m. denotes limit in mean; 1/Ii (x), i = 1,2, .•. ,N+, 
are the orthonormalized eigenfunctions of H with posi­
tive eigenvalue E; = k;2, ki > 0, and 1/Ii-(X), i =:: 1,2, ., " 
N-, are the orthonormalized eigenfunctions of H with nega­
tive eigenvalues Ei = kj2, Imkj> 0, where Ej and Ei 
are repeated according to the respective multiplicities; 
1/I~(x), i = 1,2, .•. ,No, are the orthonormalized eigen­
functions of H with eigenvalue zero if zero is an eigen­
value of H, and 1/I?(x) = ° otherwise; and 1/1 (~; x) are the 
scattering solutions defined by3 

1/I(~;x) = ei(.x + I dx' A (!;(;;X') ei£.x; 

and 

1/1(~ =~oi;x) =1im 1/1(~ =~~;x), A(~o) =0, 
£->£.0 

~o > 0, 
(2.20) 

where ~ is any unit vector. The existence of the above 
(limit) will be shown in the Appendix. 

We shall also show in the Appendix that ~I/I(~ = ~~; x) 
is continuous in ~,/l, X' and x, in ~ ED, 'IT ~ /l >-0 0, 
2'IT >-0 X ~ 0, X E R 3, where D is a sufficiently small 
neighborhood ofAthe interval (0, 00), and J.1. and X are the 
polar angles of ~, is holomorphic in ~ in D, for 
'IT >-O/l >-0O, 2'IT ;;. X >-0 0, X E R3, and satisfies 

11/I(~= ~i;x)kconst [(~+b)/n·erx/2,x=lxl>-oo, b > 0 (2.21) 

for ~ E D and J.1., X, and x in the above region. Here we 
suppose that D is inside I Im~ I < y/2. 

a ~ 
We state, as a corollary, that -{ ~I/I (~ = ~~; x } is con-

a~ 
tinuous in ~,p., X, x in ~ ED, 7T ;;. p. ;;. 0, 27T ;;. X ;;. 0, X E R3, 
with: 

I :~1/I(~=::~f;x)lo:;conS~1[(~+b)I~)2eYX/2,x=lxl;;.0,b>0 (2.22) 

for ~ belonging to a sufficiently small neighborhood of 
the interval (0,00) contained in D, and p., X, and x in the 
above region. These results follow from those of the 
preceding paragraph with the use of the relation: 

~ {~I/I(~ =:: ~f x)} = _1_ P d~' f1/lW =:: ~'f;x) 
a~ '27Ti (f - 0 2 

3. THE T OPERATOR 
The T operator T(k), for Imk > 0, k 2 Et sp(H), is 

defined by 

T(k) = V + VG(k)V. (3.1) 

Since V is a Hilbert-Schmidt operator and G(k} is a 
bounded operator, T(k} is a Hilbert-Schmidt operator. 
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The kernel T(kjx,x') of the operator T(k) is given by 

T(kiX,X') = V(x,x') 

+ J J dx" dx"'V(x, x")G(ki x", x'")V(x"', x'). (3.2) 

This relation enables us to extend the domain of 
definition of the function T(kiX,X') to Imk > - y, 
~(k) '" 0, x and x' inR3 x R3. For k in Imk > - y, 
~(k) '" 0, T(kjx,x') is continuous in x and x' inR3 x R3, 
and satisfies 

J J dxdx'IT(kiX,X')12< 00 (3.3) 

and hence is the kernel of an operator T(k) of Hilbert­
Schmidt class. From the bound 

I ~ C<D(k' x x') I 
ok ' , 

lconst, Imk;;,. 0, 
-s /const ·ellmkl ... ellmkl ... ·, ° ;;,. Imk ;;,. - (y - E), 

y;;,. E> ° (3.4) 

and the holomorphy of ~(k) in Imk > - y, we find that 
T(k) is holomorphic in Imk > - y, perhaps with the ex­
ception of poles at the zeroes of ~(k). We have the 
follOwing results for the kernel T(k i x, x'): 

(i) T(k;x,x') is symmetric: 

T(kiX,X') = T(kjx',x). 

(ii) T(kiX,X') is rotationally invariant: 

T(kiX,X') = T(kiX,X', COS!), 

x = Ixl > 0, 

x'=lx~l>o, l;;,.cos!);;,.-l 

where !) is the angle between x and x'. 

(iii) 

T(k ' , ) - e-Y"'(x + a)m T(kix,X', COS!) 
,x,x ,COS!) - ( 

x a ~ k) 

(3.5) 

(3.6) 

xe-y"'(x'+a)m, (3.7) 
x'a 

where T(k iX, x' , COS!) is continuous in x, x', and COS!) in 
oo>x>O, oo>x'>O, 1 ;;,.cos!);;,.-l,forImk>-y, 
and holomorphic in kin Imk > - y,for 00 > x> 0, 
00 > x' > 0, 1 ;;,. COS!) ;;,. - 1, and satisfies 

I T(kix ,x', COS!) I -s const (3.8) 

for Imk;;,. - (y - E), Y'" E > O,andx,x',and COS!) in the 
above region. 

The kernel of the operator T(k) in momentum space, 
for Imk > - y, ~ (k) '" 0, denoted by «(kj p, p'), satisfies 
the following: 

«(ki p, p') is symmetric: 

«(kiP,P') = «(kjp',p). (3.9) 

(ii) «(k j p, p') is rotationally invariant: 

«(kiP,P') = «(kiP,P', cosw), P = !PI", 0, 

P' = Ip'l '" 0, 1 '" cosw ;;,. - 1, (3.10) 

where w is the angle between p and p'. 

(iii) «(kiP,p', cosw) = <r(k;p,p', cosw)/~(k), (3.11) 
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where <r(kiP,P', cosw) is continuous in p,p', and COSW in 
00 > P ;;,. 0, 00 > P' '" 0, 1 '" cOSw '" 1, for Imk > - y, and 
holomorphic in k,p,andp' in Imk > - y, IImpl < y, 
I Imp' I < y,for 1 ;;,. cOSW ;;,. - 1. Further, we have 

<r(kiP,P', cosw) ~ ° p_oo 

uniformly for ~,p', and cosw in Imk '" - (y - E), 
y '" E > 0, 00 > P' '" 0, 1 '" cosw '" - 1. 

(3.12) 

We now assert that T(k) has simple poles at the zeroes 
of ~(k), i.e., k = ki, i = 1,2,'" ,N-, and k = ± kj, 
i = 1,2,'" ,N+, in Imk '" 0, k '" 0. This follows from 
(3. 1), (2. 17), the continuity of 1/1 (~ = ~ti x) and of 
o ,... 
-I/I(~ = HiX) in ~ E (0,00), 1T;;" jJ.;;" 0, 21T '" X;;" O,X E R3, 
oE. 
and the bounds (2.21) and (2. 22).1 0 Further, T(k) has 
a double pole at k = 0, if zero is an eigenvalue of H. 

We also have 

T(- k*) = T(k)*, Imk> - y, ~(k) '" 0. (3.13) 

We remark that the j>oles of the scattering amplitude 
F(ki cosB): 

F(k; cosB) = «(ki k~, kf), 

P and p' being unit vectors with P'p' = cosB, in the in­
terval k = iK, y > K > 0, are necessarily simple.3 From 
this it follows that the poles of the partial scattering 
amplitude ll Tl(k) in this interval for any 1, are also 
simple. 12 Further,for Vex ,x', COS!) of the following 
form l3 : 

L Nl 

V(x,x', COS!) = ~ PI(cOS!)(XX')1 ~ G
IPq 

e-PAX e-qA'" 
1=0 p,g=O 

x > 0, GIPq real, GIPq = G1qp 

any bound state pole of the scattering amplitude 
F(k; cosB) on the upper imaginery axis must also neces­
sarily be simple, if -(y + PX)2, P = 1,2, ... , max Nl 
are all distinct from the negative energy eigenvalues. 12 

We now turn to a Lippman-Schwinger equation satis­
fied by T(k), for Imk > - y, ~ (k) '" 0. 

We have,from (2.2) and (3.1), the following equation 
for T(k), for Imk> 0, k2 t sp(H): 

T(k) = V + T(k)Go(k)V. (3.14) 

For Imk > - y, ~ (k) '" 0, we have the following equa­
tion for the kernel T(k;x,x') of the operator T(k): 

T(kiX,X') = V(x,x') 

+ J.r dx"dx"'T(k;x,x")Go(kiX",x"')V(x'",x'). (3.15) 

In particular, for E real and o(E) = ~ (,fE) '" 0, we have 
the following equation for t(E; x, x') = T(,fE; x, x'): 

t(EiX,X') = V(x,x') 

+ If dx" dx"'t(E jX, x")go(E ;x", x"') V(x'" , x') (3.16) 

(3.17) 

4. THE INVERSION METHOD 

We study the follOwing problem: Find values of E, 
where E is real and such that the operator t (E) = T(.../E) 
is defined, for which one can determine the potential 
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V(x,x') from t(E),and determine V(x,x') from teE) for 
any such E. We consider the cases E < ° and E '" 0. 

(i) E < 0: In this case we have Im..JE> 0, and we 
have, from (3.14) 

teE) = V + t(E)go(E)V (4.1) 

for any E for which teE) is defined, where 

(4.2) 

We have,from (4.1), 

{1 + t(E)g o(E)}V = t(E). (4.3) 

Hence we have 

V = {1/[1 + t(E)go(E )]}t(E) (4.4) 

if E is not a zero of deE) == det{l + t(E)go(E)}. Here t(E) 
and t(E)go(E) are Hilbert-Schmidt operators, and 
{1/[1 + t(E)go(E)]} - 1 is also a Hilbert-Schmidt operator 
if deE) ~ 0. The kernel of {1/[1 + t(E)go(E)]} - 1, for 
deE) ~ 0, can be given by a Fredholm serieS. (4.4) 
determines the potential uniquely. 

The Fredholm determinant D(k) = det{1 + T(k)Go(k)} 
can be shown to be holomorphic in Imk > 0, k 2 4 sp(H). 
Hence deE) can have at most a countable number of 
zeroes in E < 0, E 4: sp(H). 

(ii) E '" 0: In this case we write (3.16) as 

V(x,x'} == t(E;X,x') + Jdx" h(E;X,x"} V(x",x'}, 

where 
(4.5) 

h(E ;x ,x "} == J dx"'t(E; x, x"')go(E ; x'" ,x"). (4.6) 

We obtain the following equation for V(x,x'): 

V(x x') == t(E;x,x') + Jdx" h(E;x,x")V(x" ,x'), (4.7) 
, 1i(E) 

where 

V(x, x') == vex ,x', cosv), 

t(E;x,x') == T(.JE;x,x', cosv), (4.8) 

x == Ixl > 0, x' == lx' I > 0, 1 '" cos v '" - 1, 

v being the angle between x and x' , and 

Ii(E) == A (..fi), 

t-(E III) 
h(E;x,x") == J dxlll Ii;t~; go(E;x'",x") (4.9) 

with 

XIII == Ix'" I> 0, x" == Ix"l > 0. 
(4.10) 

For each x' in R 3 which is nonzero, (4. 7) has a unique 
continuous bounded solution given by Ref. 7: 

V(x,x") == f(E;x,x") + J dx" d(E;x,x") f(E;x",x') 
Ii(E) d(E) Ii(E) (4.11) 

if E is not a zero of deE), where aCE) and deE; X, x") are 
the Fredholm determinant and the Fredholm minor of 
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the kernel h(E;x, x"). Hence for such values of E, the 
potential is uniquely determined. 

We can show that i5(k) == d(k2 ) can be extended to a 
function holomorphic in Imk > - y, A (k) ~ 0. Hence the 
number of zeroes of deE) in E '" 0, Ii(E) ~ 0, is 
countable. 

APPENDIX 

We now prove our ;tssertions concerning the scatter­
ing solution 1/1(~ == ~~;x). 

First we mention, without goil$ into the details here. 
that we can establish14 that 1/1 (~~;x) is continuous in ~, 
j.L, X, and x, in ~ E D €, ' 11 '" j.L '" 0, 211 '" X '" 0, X E R 3, 
where D € ,p consists & all pOints at a distance less than 
some E, E > 0, from the interval (0,00) and at a distance 
greaterthanpfrom the zeroes of A(~), i.e.,~ ==k/, i = 1,2, 
••• ,N+, and possibly ~ = ° in the interval [0,00), p being 
any positive number less than E. Then V{e establish that 
the limit (2.20) exists and that ~1/1(~ == H; x) is continuous 
in ~,j.L, X, and x,in ~ EDT' 11 '" j.L '" 0,211 '" X '" 0, X E R3, 
where D T consists of open discs of radii T, T > 0, with 
centers at the zeros of A(~) in the interval [0,00), with 
T sufficiently small. To show these, we proceed as 
follows. 

Let ~o be any zero of A(~) in the interval (0,00). 
Then the limit15 

lim J d~ 1(a:/)(~) 12 
€-o + C ~ I € I > go + € 

exists, where c is any positive number such that no zero 
of A(~) lie in the interval (~o' c] and where (a:/)(~) is 
defined by (2.18) for any IE L2(R 3). 

In particular, the above limit exists if I(x) is any of a 
set of measurable functions <!>j(x), i == 1,2, ... ,which 
are zero in Ixl > r and which together form a complete 
orthonormal set in L2(S,.),S,. being the sphere r ",Ixl",o 
and r being an arbitrary positive number. We thus have 
the existence of the limit 

lim fe d~ ~2 J dna) I J dx ~(~ ==/~;x)cpi(x)12 (A1) 
€->()t to +€ s,. A ~) 

for any i, where we have put 

The holomorphy of A(~) in Im~ > - y enables us to 
write 

(A2) 

(A3) 

for ~ ~ ~ 0 and ~ in a sufficiently small neighborhood of 
~ ,where n is the order of the zero of A (~) at ~ 0 and In is holomorphic in the same neighborhood of ~ 0 with 
J(~o) ~ 0. 

The holomorphy of ~ (~ == ~ ~ ; x) in ~ in I.!;O~ > -~ y 
enables us to have a Taylor expansion of 1/1(~ = ~~;x) in 
~ about ~o,for ~ in a sufficiently small neighborhood of 
~o: 

~(~ == ~~;x) = Co(€;x) +Cla;X)(~ - ~o) 

+ C2(~;X)(~ - ~O)2 + "', (A4) 

11 "'j.L",0, 211'" X ",0, XER3, 

(A5) 
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where c/L x), j = 0,1,2, ... ,are continous functions of 
}.l, X, and x. The existence of the limit (A1) for any i and 
arbitrary r > ° then leads to 

(A6) 

for /l, X, and x in the above region. 

Consequently, we have 

1/1(~ = ~~;x) = J(O{Cn(~;x) + Cn+l(~;X)(~ - ~o) + ... } 
(A7) 

for ~ in a sufficiently small neighborhood U of ~o. Hence 
the limit (2.20) exist. Using (A5), we find that the above 
series converges uniformly in ~,}.l, X, and X, ~ E U,1T :;. 
/l:;' 0, 21T :;. X :;. 0, X E R3, and is therefore continuous 
in these variables in this region. 

Similarly, we find that N(~ = ~~; x) is continuous in ~, 
/l, X, and x in ~ E W,1T :;. /l :;. 0,21T :;. X :;. 0, X E R3, where 
W is a sufficiently small neighborhood of zero. 

This analysis also clearly shows that 1/1(~ = ~€;x) is 
holomorphic in ~ in a sufficiently small neighborhood of 
any zero of A(~) which lies in the interval [O,co),and 
consequently is holomorphic in ~ in a sufficiently small 
neighborhood D of the interval (0, c:p), for 1T :;. IJ. :;. 0, 
21T :;. X:;. 0, X E R 3. 

The inequality (2.21) follows from (2.19) and the above 
discussions. 
* Present address: Mathematics Department, Bedford 

College, London, England. 
lThe underlying space for the operators teE), V, H, and the operators 
g(z), Ho, G(k), T(k), introduced below, is U (R'). 

J. Math. Phys., Vol. 15, No.8, August 1974 

2L. D. Faddeev, Mathematical Aspects of the Three-Body Problem in 
Quantum Scattering Theory (Davey, New York, 1965). 

'T. H. Yao, J. Math. Phys. 14, 1141 (1973). 
4T. H. Yao, J. Math. Phys. 15, (1974), preceding article. 
SM. Bertero,G. Talenti, and G. A. Viano, Nuovo Cimento 62,27 
(1969). 

6T. Ikebe, Arch. Ratl. Mech. Anal. 5, I (1960). 
7W. V. Lovitt, Linear Integral Equations (Dover, New York, 1950). 
'We remark here the following asymptotic behavior: 

~(k) ... I, Imk;;' - (-y - e), 1;;' e> O. 
Ikl ... 00 

1231 

From this and the holomorphy of ~(k), we conclude that the number 
of zeroes of ~(k) in Imk;;' - (1 - e), 1;;' e> 0, is finite. 

·Cf. Ref. 5. 
lOThe integral in (2.1 7) approac~es a finite limit as k approaches 

the points ± kt, i = 1,2, ... , N , from the upper k-plane 1m k > O. 
See N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff, 
Groningen, 1953). 

liThe expansion 

F(k; coS8) = t ~ (21 + I) TI(k)P/(cos8) 
/=0 

converges for k > 0, with 

T[(k)=!5 f+ldcos8 F(k;cos8)P/(cos8) 
2 -1 

This is a consequence of a result of M. Bertero, G. Talenti, and G. A. 
Viano, Nuc!. Phys. A 115,395 (1968). 

12We have not proven that F(k; cos 8) has a pole at k = kj- , i = I, 2, ... , 
N-

l'The only singularities of the resulting scattering amplitude F(k; cos 8) 
in Imk;;' 0 are poles on the upper imaginery axis. 

l4We fust establish the relevant continuity property of K(f; x, x'). See 
Ref. 5, Theorem 3.2. 

l'See Ref. 5. 



                                                                                                                                    

Representations of the Jost solutions and the S matrix for 
a class of analytic nonlocal potentials 

Te Hai Yao 
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We derive representations of the Jost solutions, the Jost functions, and the S matrix. for analytic 
nonlocal potentials belonging to a double Laplace transform class. for the s-wave case, in terms of 
the spectral function for the potential. 

I. INTRODUCTION 

We have studied a class of analytic nonlocal 
potentials1 ,2 and we have obtained results including 
forward dispersion relation, the analyticity properties 
of the scattering, the regular, and the Jost solutions, 
and the analyticity property of the S matrix and its 
representations in terms of Fredholm determinants 
and in terms of Jost functions. This class includes 
potentials V(x,x') of a double Laplace transform class 
defined by 

V(x,x') = V(x,x',cosv), x = Ixl > 0, x' = Ix'i > 0, 

1 ;;. cosv ;;. - 1, 

where v is the angle between x and x' , with 

e-Yx(x + a)m - e-Yx'(x' + a)m 
V(x,x', cosv) = V(x,x', cosv)-'---""----'--

x a x'a 

and 
I' > 0, a > 0, m ;;. 0, i > O! ;;. 0, 

vex, x', COS/l) = fooo fooo d{3 d{3'e- Bxe- B'X'a({3, (3', cosv), 

where a({3, (3', cosv) is continuous in {3, {3', and COS/l in 
00 > {3 ;;. 0,00 > {3' ;;. 0,1;;. cosv ;;. -1, and satisfies 

(i) a({3, (3', cosv) is real, a({3, (3', cosv) = a({3', (3, cosv) 
for {3, {3', anq cosv in the above region, and 

(ii) 1. 001 00 d{3 d{3'1 a({3, (3', COS/l) I < const,l ;;. cosv ;;. - 1. 
o 0 

For m = 0, O! = t, and for a({3, (3', cosv) satisfying a 
slightly more detailed condition, we have obtained a 
fixed t dispersion relation,2 for t in ° ;;. t> - 4y2, where 
t is the square of the momentum transfer. 

We also note that there exist potentials belonging to 
this double Laplace transform class which show local 
correlations for x in some finite interval [c 1 , c 2 ], 

c 2 > c 1 > 0. 3 

In this article we derive representations of the Jost 
solutions, the Jost functions, and the S matrix, in the k 
plane, for the s-wave case, for any potential belonging to 
the above double Laplace transform class with m = ° 
and O! = 1, and with a({3,{3', COS/l) satisfying: 

I a({3 (3' cosv) I "" const 
, , ({3 + (30)1 +!,. ({3' + (30)1 +!,. 

00 > {3;;. 0,00> {3';;' 0,1;;. cosv ;;.-1, for some 
{30> 0, A> 0. (1. 1) 
II. THE REPRESENTATIONS (S WAVE) 

We now obtain the above-mentioned representations 
for any potential belonging to the double Laplace trans­
form class with m = 0, O! = 1 and u({3, (3', cosv) satisfying 
condition (1.1), for k in the k plane cut from iy to i<Xl and 
from - iy to - ioo. 

For such a potential, the s-wave partial potential 
Vo(x, x'), defined by 
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+1 
Vo(x,x') = 21f(xx')i V(x,x', cosv)d cosv 

-1 
(2.1) 

has the following representation: 

V (x x') = looJ
oo

d{3 d{3' e- 8xe-/3'x's({3 (3') 
0' Y Y , , (2.2) 

where s({3, (3') satisfies 

(i) s({3, (3') is real, s({3, (3') = s({3', (3); 

(ii) s({3, (3') is continuous in {3 and {3' in 00 > {3 ;;. 1',00 > 
(3' ;;. 1', and in this region: 

We have, for k > 0, and A (IO(k) '" 0,4 and 00 > x ;;. 0: 

j±(kjx) = e±ikx 

+ ~ fxOOdx' sink(x - x')f
o

OO 
dx/l Vo(x'x/l)f±(kjx/l), 

(2.3) 
where A(II)(k) is the Fredholm determinant of the kernel 
K(II)(k; x, x'): 

1 Joo K(II)(k'x x') =- dx/l sink(x-x/l)V (x/l x') 
" k" 0 , 

andf±(kjx) are the Jost solutions. 2 AUI)(k) is holomorphic 
in the doubly cut k plane. 

Since the functions j ± (k; x) are bounded in <Xl > X ;;. 0,2 
we obtain 

j±(k;x) = e±ik" + ~oo d{3 e-8x[~±(k;{3)/(k2 + (32)), (2.4) 

where 

~±(k;{3) = - fyoo d{3' s({3,{3')f
o

oo 
dx' e- 8'x'j±(k;x'), (2.5) 

and 
I ~ ± (kj (3) I "" const/ {3 (1 +>J , (2.6) 

for fixed k. Hence ~±(kj{3) belong to both L1(y, <Xl) and 
L2(y,00). 

From the following radial Schrodinger equation for 
f±(kjx): 

C;:2 + k 2)f±(kj X) = fooo dx'Vo(x,x')j±(kjx') 

and using (2. 4) and the identity theorem in Laplace 
transform theory,S we obtain the follOwing integral 
equations for ~±(k; (3): 

(2.7) 

~±(k;j3) = ~±(O)(k;{3) + ~oo d{3' J(k;{3,{3')~±(k;{3'), (2.8) 

with 

~±(O)(k' (3) = 100 d{3' S({3, (3') (2.9) 
, Y {3'Ofik' 

J(k' {3 (3') = 1 {''' d{3/1 s({3, (3/1) . (2.10) 
" k 2 + {32 Y {3' + (3/1 

Copyright © 1974 by the American Institute of Physics 1232 
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We consider the integral equations of (2.8) for k in 
B(€), where B(€) is the domain in the k plane consisting 
of all points at a distance more than € from the cuts 
from iy to ioo and from - iy to - iOO, where y> € > O. 
Then the inhomogeneous terms and the kernel are square 
integrable in 00 > {3 ? Y and in 00 > {3 ? y, 00 > (3' ? y, 
respectively. Hence we may apply the method of 
Smithies. 7.8 We find that when the Fredholm determinant 
D(k) of the kernel J(kj (3, (3') is not zero, each of the 
equations (2.8) has a unique square integrable solution 
given by 

t ±(k· (3) = ~ ±(O)(k· (3) + 1"" d{3' D(kj {3, (3') ~ ±(O)(k· (3') (2.11) 
.. , '} D(k) " 

with 

D(k) = e-T1(k) o(k), (2.12) 

"" o(k) = L; 0n(k), 0o(k) = 1, <'i 1(k) = 0, 
n~O 

<'i (k) = (- 1)n 
n n! 

o n- 1 
T 2 (k) 0 
T 3 (k) T2 (k) 

o '" 
n- 2 
o 

o 
o 
o 

o 
o 
o 

Tn(k) Tn - 1(k) Tn- 2 (k) ••• T2 (k) 0 

(2.13) 

n ? 2, (2.14) 

(2.15) 

"" 
o(kj {3, (3') = 6 0n(k; (3, (3'), 

n=O (2.16) 

On (k; {3, (3') 

J(kj {3, (3') n a ... a 0 
J2 (k j {3, (3') 0 n-1 0 0 

= (- 1)n 
J3(kj{3,{3') T2 (k) a 0 0 

n! 

In+1(kj (3, (3') T n(k) T n-1(k) ••• T2(k) 0 

n? 2, (2.17) 
where 

T n(k) = TrJn(k), (2.18) 

J(k) being the Hilbert-Schmidt operator in L2(y,OO) with 
kernel J(k; {3, (3'). 

USing the holomorphy of J(k; {3, (3') and the bound 

IJ(k; {3, (3')1 "" const/{3(1+>-)({3' + y), (2.19) 

for k in B(€), we find that <'in(k) is holomorphic in B(E). 
And using the inequality9: 

(2.20) 
and 

IIJ(k)1i "" const, (2.21) 

for k in B(E), we find that o(k) is holomorphic in B(E), for 
each E in y > € > O. Hence o(k) is holomorphic in the 
doubly cut k plane. Consequently D(k) is also holo­
morphic in the doubly cut k plane. 

Similarly, <'i n (kj{3, (3') is holomorphic in k in B(E), for 
00 > {3 ? y, 00 > (3' ? 1', and using (2.19) and 
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(2.22) 

for k in B(E), we have10 

10 (k· {3 (3') I 0< const 
n " '~{3 (1 + >-)«(3' + y) 

e(n-l)/211 J(k)lln-1 
(n) ,n ? 2. 

n -212 (2.23) 

Hence o(kj (3, (3') is holomorphic in k in B(E), and con­
sequently in the doubly cut k plane, for 00 > {3 ? y, 00 > 
{3' ? y. Also, we establish 

1 <'i(kj (3, (3') I"" const/{3(l+>-)({3' + y), (2.24) 

for k in B(E). 

Hence, using 

1 ~±(O)(kj (3) 1 "" const/{3(l+>-), (2.25) 

for k in B(E), w~ find that fr"" d{3'o(kj {3, {3')~±(O)(kj (3') and 
consequently fr. d{3' D(kj {3, (3')~±(O)(k j (3') are holomorphic 
in k in B(E), and hence in the doubly cut k plane, for 
00 > (3 ? y. Hence we have demonstrated that, for k in the 
doubly cut k plane, and for D(k) ;>! 0, the equations of 
(2.8) have unique square integrable solutions ~ ±(k; (3) 
respectively, which are holomorphic in k in the doubly 
cut k plane, perhaps with the exception of poles where 
D(k) = O. And we have 

(2.26) 

for k in B(€). Hence ~±(kj (3) belong to both L1(y,00) and 
L2(y,oo). Further, ~±(kj{3) are continuous in {3 in 
00 > (3 ? y. 

The right side of (2.4) are therefore functions holo­
morphic in k and x in the doubly cut k plane, perhaps 
with the exception of poles where D(k) = 0, and Rex> O. 
These functions, for k in the doubly cut k plane, and for 
tl.(II)(k) '" O,D(k) '" 0, are just the Jost solutionsj±(k;x) 
defined in Ref. 2. Hence we have obtained representations 
for the Jost solutions in terms of the spectral function 
0({3, (3', cos!'). 

We now show 

tl.(lI)(k) = D(k) 

in the doubly cut k plane. 

We first consider k > O. Then the integral operators 
K(II)(k) and J(k) defined on L2(0, 00) and L2(y, 00), respec­
tively, with kernels K (II)(k; x, x') and J(k; (3, (3'), are 
Hilbert-Schmidt operators. We have 

Consequently, we have 

"" 00 n 1 
TrK(Il)n(k) = 1 ... j d{31 ••• d{3n n 

Y y i=l k 2 + {31 
00 00 n 1 n 

x j ... j d{31'" d{3: n -- n S({3i' (3;+1)' 
Y Y i =1 {3i + (3; i ~ 1 

(2.29) 
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with {3~+1 = (31' which is just ,Tn(k),n ;;. 1. 

Hence, we have 

A(II)(k) = D(k), (2.30) 

for k > 0, and consequently as a result of holomorphy, 
in the doubly cut k plane. 

The Jost functions have the following representations 
for k in the doubly cut k plane: 

£±(k) = 1 + Joo d{3 [~±(k;{3)/(k2 + (32)]. 
r 

(2.31) 

The S matrix has the following representation for k in 
the same region: 

1 + Jrood{3[~-(k; (3)/(k 2 + (32)] 

S(k) = 1 + jyOOdf3W(k; (3)/(k2 + (32)] • 
(2.32) 

We remark that the representations (2.4), (2. 31), and 
(2.32) allow us to discuss the analytic continuation in k, 
ofj±(k;x),for fixed x, and £±(k), S(k), across the inter­
vals k = ± iK, K c: (y, 00), for analytic partial spectral 
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functions s({3, (3'), by contour deformation. The possi­
bility of such analytic continuations would, of course, 
convey information on the limiting behaviors of these 
functions as k approaches the above intervals from the 
doubly cut plane. 
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An approximate interior solution of the field equations of Brans-Dicke theory is obtained for a static 
spherically symmetric metric which can be considered to be an analog of Schwarzschild's interior 
solution in Einstein's theory. 

I. INTRODUCTION 

In previous papers1,2 we have obtained approximate 
solution of the static spherically symmetric metric for 
the vacuum case and for a point charged mass in the 
Brans-Dickes theory of gravitation starting from the 
usual variational principle 

of [CPR + I~L - Wcp,;CPd] (_g)1/2tf'X=0, (1) 

where R is the scalar curvature, L the Langrangian, w 
the dimensionless constant, and cP the scalar playing the 
role of G-1, following a technique used first by Weyl4 and 
then by Pauli. 5 A similar solution for the static spheri­
cally symmetric metric for a fluid sphere is well worth 
consideration. 

In this paper we obtain an approximate interior solu­
tion of the field equations of the Brans -Dicke theory of 
gravitation for a static spherically symmetric metric 
follOwing the same technique. The solution is then com­
pared with the interior solution in Einstein's theory. 

II. FIELD EQUATIONS 

We consider the line element for the static spherically 
symmetric metric case in the form5 

ds2 = (dx!)2 + (dr)2 + (dxS)2 + 1(x1dx! + rdr + JCldJCl)2 
+ g44(dx4)2. (2) 

The scalar curvature R has been calculated to be1,5 

R _ __ I_.l.. (y'lg44) +~ A' __ 2_ .l..(rg44)_.!. 
- r2A dr A r -;:;:; g44 r2A dr A r2 , 

(3) 

at Xl = r, r = 0, xS = 0 where dashes denote differentia­
tion with respect to rand 

gll=h2 =I+Zr2, A=(_g)1!2=h(_g44)1!2. (4) 

The energy tensor of a homogeneous incompressible 
fluid is given by 

T/k=(J.J.O+p)u/U,,+Pg/k' (5) 

We set the Lagrangian as4 

(6) 

where the scalar p denotes the pressure, J.J.o is the con­
stant, density and 

(J.J.o +p)uj =vf • (7) 

Also VI = if = VS == 0 for static case. 

Consequently, the variational principle (1) in this case 
can be written as 

oJ {cpR + 16lT[ J.J.o - (vhl A)] - (wlh2)(<<p'1 «P)9- y'lAdr= 0, 
(8) 
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where 

tf'x == d4x4dndrr 2 

(an is an element of solid angle at the origin), 

CPd«Pd =gll(cpt2 /cp) = (1Ih2)(cpf2 /cp). 

R is given by (3) and the velocity of light is taken to be 
unity. 

Now variation with respect to cP, A, and h in (8), 
respectively, leads to the following field equations; 

_.l..(r2g~4) _2rA' _2d(rg44) _2A=_wr 2A cpl2 -2w.l.. 
dr A h2 drA h2 cp2 dr 

(9) 

2rA' wr2A cpl2 +8 2 ",-1 (11) Ji3 = - -;r- -;v lTr V'i' • 

Also, since, in a connected space filled with fluid, v 
has a constant value we have4 

v = (J.J.o +p)(- g(4)1/2 = J.J.olko = (J.J.o + p)Alh. (12) 

Using (4) the above field equations can be written as 

_.l..(r2g44) + 2rg44 A' _2..!!..(rg44) _2A=wr
2
g44 cpt2 

dr A 0.2 dr A A cp2 

+2 .l.. (r 2g44 «P') wdr A cP , 
(9') 

_2rg~ _2g44 +4rg44A' _2A __ wr2g44 «p'2 _16lTr 2 J.J.oA 
A A 0.2 - A cp2 cP , 

2 A' 2 ",'2 _ rg44 = wr g44 _'i'_ + 8lTr2 h",-l 
A2 A cp2 V 'i' • 

III. SOLUTION OF THE FIELD EQUATIONS 

We consider the equation (9') which can be written 
[using (3)] as 

R 20. = wr
2
g44 ~ +2 .l.. (r 2g44 «P') 

r A cp2 W dr A cP . 

Also we have3 

R 2A=wr2g44 ~+8 T",-l 2A(~) r A cp2 IT 'i' r 3 +2w . 

From (13) and (14) we have 

.l..(r2g44 «P')=8lTTCP-1r 2A (3 +2W)-1 
dr A cP , 

Copyright © 1974 American Institute of Physics 

(10') 

(11 ,) 

(13) 

(14) 

(15) 

1235 



                                                                                                                                    

1236 M.N. Mahanta and D.R.K. Reddy: An approximate interior solution in Brans-Dicke theory 1236 

where T=3p - Jlo from (5). 

And so using (12) and (15), the field equations 
(9')-(11') become 

_~(r2g~4\ +2rg44A' -2~ (rg44)_2A=wr2g44 cf>,2 
dr A) A2 dr A A cf>2 

+ 87Tcf>-l(3p - JJ.o)r2A (3 !~w), (9") 

(10") 

(11") 

Equations (9"), (10"), and (11") constitute only two in­
dependent equations which can be taken as 

:r (r~,= - A [1 + 87Tr2cf>-l( P; JJ.o) ] ' 

~(r2g«) =A[4rg44A' +8 2A,-l (~) 87Tr
2
p 

dr A AS 7Tr 'f' JJ.o 3 +2w --cf>-

(
2W - 6 )~ 
3 +2w ~. 

Also we have 

Now the problem reduces to finding A, g44' cf>, and p 
from (16) and (17). 

(16) 

(17) 

Let us consider the field equations (9), (10), (11), and 
(12). When cf> = const = cf>o (which is to be calculated to 
the second order in cf>~l) we get the general relativity 
interior solution 

(18) 

where 

and ho is the value of h on the surface of the sphere. 
Also when cf> = constant = cf>o, JJ.o = 0, and p = 0 we get the 
Schwarzschild's exterior solution. In view of the 
difficulty in finding an exact solution of the equations 
(16) and (17), we find an approximate solution correct 
up to the second order in r/R by using the method of 
successive approximation. l 

Let us consider the equations (16) and (17). Now, 
when cf> = constant = cf>o substituting the values from (18) 
in the right-hand side of Eqs. (16) and integrating with 
respect to r and keeping the terms up to the second 
order in r/R in the expansion of resulting expression 
(since rS/Rs and higher terms contains cf>~s and higher 
terms), we get 
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rg44/A= -r+{ (rr~/R2) + (r s/4R2) +A, A=const, (19) 

r2g'44/A'" - (2r 3 /R2)[(w +3)/(3 +2w)] +B, B=const. (20) 

Since our solution is to be regular as r- 0, the con­
stants of integration in (19) and (20) must be put equal 
to zero. Hence we get 

g44/A'" -1 + ({rVR2) + (r 2/4R2), 

g~4/ A'" - (2r/R2)[(w +3)/(3 + 2w)], 

where 

R2 = ~7T JJ.ocf>~l • 

(21 ) 

Eliminating A in (21), integrating with respect to r 
and keeping the terms upto the second order in r/R in 
the expansion of the resulting expression for g44' we get 

g44"'C{1 + (r2/R2)[(w +3)/(3 +2w)]}, C=const. 

Since our solution should go over to the Brans-Dickes 
exterior solution in this approximation, on the surface 
of the sphere, i.e., at r=ro, viz., 

"'-1 + 2Mcf>r/ (4 +2w\ =-1 +r~ (4 +2W) 
g44 r O 3 +2w) R2 3 +2w ' 

where 

M =47Tr~JJ.o/3 

we must have 

C'" -{1- (r~/R2)[(3w +7)/(3 +2w)]} 

so that 

g44"'-1 +~~(;:;~)-~: (3w+~:). 
Using (22) in (21), we have 

A"'I- d (6W+19) +~(6W+15) 
4R2 3 +2w 4R2 3 +2w . 

Again from (17) we have [using (18)] 

(g44/ A)(cf>' /cf» '" - (r/R2)(3 +2w)-' , 

(JJ.o +P)(-g44)l/2", Jlo[l- (r~/2R2)]. 

Now using (22) and (21) in (24) and making the same 
approximations as the above, we obtain 

(22) 

(23) 

(24) 

cf>"'D[1 + (r 2/2R2)(3 +2W)-l], D=const, (25) 

[ d (W+3) r2 (W+3)] 
P'" JJ.o 2R2 3 +2w -2R2 3 +2w . (26) 

Again to evaluate the integration constant D in (25) we 
invoke the condition that our I?olution should go over to 
the Brans-Dickes exterior solution at r=ro in this 
apprOximation, viz. , 

cf>'" cf>o{1 +[2Mcf>~l/ro(3 +2w)]}, M=47Tr~JJ.o/3 

= cf>o[l + (r~/R2)(3 +2W)-l], 

so that 

D'" cf>o[1 + (r~/2R2)(3 + 2W)-l]. 

So we have 
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Now considering (22), (23), (26), and (27) we can 
write down the approximate interior solution for the 
metric (2) in the Brans-Dicke's theory as 

r5 (6W+19) r2 (6W+15) 
~=1-4R2 3+2w +4R2 3+2w ' 

[ 
r~ ( W + 3) r2 ( W + 3 )~ 

p= lJ.o 2R2 3 +2w -2R2 3 +2w ~, 

cP = CPo[l + (r~/2R2)(3 + 2W)-1 + (r 2/2R2)(3 + 2W)-1]. 

(28) 

Thus, we see that the solution (28) is an analog of the 
Schwarzschild's interior solution in Einstein's theory. 
It is interesting to note that when w- 00 the solution (28) 
exactly agrees with the general relativity interior 
solution in the same approximation. And when r = ro' 
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i. e., on the surface of the sphere the solution goes over 
to the Brans-Dicke exterior solution in the same 
approximation. It can be, also, seen that there are no 
singularities at r = 0, i. e ., at the center of the sphere. 
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Starting from the formal expansion of an arbitrary transport coefficient X in series of the inverse 
range y of a van der Waals potential, we establish the explicit form of the first y correction to X; 
we show that it can be expressed solely in terms of the Fourier transform V~ of the long-range 
interaction and in terms of the equilibrium and transport properties of the short-range reference 
system. A comparison with previous work on related problems is also given. 

I. INTRODUCTION 

In a preceding paper, two of the authors (J. P. and 
P.R.), have performed a formal analysis of the trans­
port coefficients of a three -dimensional van der Waals 
fluidl (this reference is hereafter referred to as I). Such 
a fluid is characterized by an interaction potential Y(r) 
which can be decomposed according to 

Y(r) = ys (r) + y yL(yr), (1.1) 

where yS(r) is the short-range part while yyL(yr) de­
scribes the long-range tail of the total potential: the 
motivation of the splitting (I. 1) is that the inverse range 
y is supposed to be small and furnishes thus an expan­
sion parameter for the calculation of equilibrium and 
transport properties. 

Starting from the Green-Kubo expression for an 
arbitrary transport coefficient X, our main result, ob­
tained through a detailed many-body analysis, is the 
following expansion: 

~ 

X=Xs + ~ynx(n)(y) (1.2) 
":::1 ' 

where X5 denotes the pure hard-core contribution while 
the coefficients x(n)(y), which are still (possibly non­
analytic) functions of y, are such that 

lim x(n)(y) = finite const. 
y-O 

(I. 3) 

More precisely, Eq. (I. 2) is an immediate conse­
quence of a similar property for the various operators2 
lJI~, Clo' Dl and g~ which appear in the microscopic analy­
sis of X. For example, we have shown that the linear­
ized collision operator lJI J, which plays a central role 
in the theory, can be expanded according to 

~ 

lJIJ(vll y) = lJI J' 5 (V1) + ?; y"lJ! ~(n)(vll y) . (I. 4) 

Let us stress the nontrivial nature of the expansion 
(I. 4); indeed, the naive but straightforward perturbation 
expansion of lJIJ, which expresses this operator as a 
functional of the free -particle propagator G~, 

lJIl(vll y) =lJIJ(v1 I y I {G~}), (I. 5) 

(I. 6) 

does not lend itself naturally to an expansion of the type 
(1.4). Rather, we first have to renormalize the one­
particle propagator, taking into account the interaction 
of the propagating particle with the rest of the fluid. 
We write thus first 

(I. 7) 
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(I. 8) 

where G
k 

is the exact propagator while lJI! describes the 
collision of particle 1 with the remaining (N -1) parti­
cles of the fluid. 

A crucial observation in our analysis is that, because 
of the long-range character of the potential yL, the 
dominant contributions to lJI6 due to yL come, in (I. 7), 
from small values of k (k.$ y) and z (z.$ Y). In this limit, 
we are able to get an exact expression for the dominant 
contributions to the operator Gk • We have indeed 

5 

limGk(v1; z) = 6 11!k(y»[z - iA~(y) ]-l<t!k(y) I, (I. 9) 
,. Q=l 

where limy is an abbreviation for the follOwing limiting 
procedure: 

y-O, kly=yfinite, zly=wfinite. (1.10) 

The eigenvalues A~(y) and the corresponding eigen­
functions were already explicitly displayed in I for k 
oriented along the x axis; we give them here for an 
arbitrary orientation of k. We have 

Af,2(Y) =± ic(y)k - r(y)k2, (r.lla) 

I lk (» 1 ["kB Ti l ) I 1) 1 (3kBT) 1/2 
t1,2 y =,f2 c(y) ± 2 k + nc(y)C~ -2-

x (:~): 15)] , (I. llb) 

(J;yy) I = ~ [c(y)~ nx:(y) (11±12lkl 

(
2kBT)1/2 1 (ap)S ~ 

+ -3- c(y)nkB aT n \xs ~ , 

A~,4(y) = _1/5 ~ In, 

It:'~(y»= 131k,41k), 

(1i,k4(y) I =(31k,41kl, 

AHy) = - K 5 k2 InC p(y), 

1 1 [ (3)1/2 T f.ap)S 1 ~ Its k(y» = c2(y) - 2" -;;\aT n 11) + nxT(y) 15)J ' 

- [1 (2)1/2 (ap)S ] <tlk(y) 1= - nC~ "3 aT n (11 +(Xsi • 

(I. llc) 

(1. 12a) 

(1. 12b) 

(I. 12c) 

(I. 13a) 

(I. 13b) 

(I. 13c) 

Here I ilk) (i=2,3,4), respectively, denote the longi­
tudinal and the two orthogonal components of the velocity 
field; they have the following velocity space 
representation: 

(vI21k)=(21k\v)=cpeo.(v)(vr1k +vy1k +v.1k )NkBT, 
r y • 

Copyright © 1974 American Institute of Physics 1238 
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(vI3lk)=(3lkIV)= 'P8CI(v)(-vr1kr1ky +VyH:r + 12e) 

'P0Cl(v)-vg1k 1k )/JkBT(1i +1i), 
~ )I ~:t 

(v 14lk) = (4lk I v) = (v g1kr - Vr1k)/v'kBT(1t + 1i), 

(1. 14) 

where 1k =k/I k I. All other symbols appearing in (I. 12) 
have been defined in I: Let us simply recall here that 
c(y), C p(y), XT(y), respectively, are finite y-generaliza­
tions of the adiabatic sound velocity, specific heat at 
constant pressure, and isothermal compressibility of 
the van der Waals fluid. Equations (1. 11-13) thus give 
the hydrodynamical eigenvalues and eigenfunctions of 
this van der Waals fluid, suitably generalized to finite y. 

We shall not reproduce here the calculations leading 
to these expressions for an arbitrary vector 1k ; let us 
simply remark that for 1k=1r' they exactly reduce to 
Eqs. (1. V. 27 -29); moreover, the vectors I ilk) are 
orthonormal with our definition (LA. 9) of the scalar 
product. 

With this renormalized from (1. 5), we have been able 
not only to establish the expansion (I. 4) but also to ob­
tain the explicit form of the first few corrections lJt6(n) 
(n= 1, 2, 3) in terms of the Prigogine-Balescu diagram 
technique (suitably adapted to the present problem). 
For example, the first correction, lJtJ(l>, is given by the 
graph depicted in Fig. 1. Here again, we refer the 
reader to I for the detailed meaning of this diagram: 
Roughly speaking, it represents, to dominant order in 
y, an arbitrary pure hard -core process (the dashed 
bubble) from which two particles emerge with wave­
numbers k and - k; these particles then propagate hy­
drodynamically in the presence of the van der Waals 
forces (the two heavy lines) and then again interact 
through an arbitrary hard-core process; finally, in 
order to get the correct result, we should subtract from 
this graph the corresponding pure hard-core term, ob­
tained by formally setting VL;: 0 in the hydrodynamical 
lines of this same graph. 

The corresponding corrections for the quantities c,;o' 
m, P; are given in I, Table m. 

The aim of the present paper is to go beyond these 
formal results and to give an explicit evaluation of the 
first correction X(l)(y =0) for the various transport co­
efficients. However, whenever it will be necessary to 
specify the explicit nature of X, we shall perform the 
detailed calculation for the thermal conductivity (X = TK) 
only, in order to avoid undue lengthiness. For the shear 
and bulk viscosities, we shall merely quote the results. 

In Sec. II, we establish a fundamental property of the 
dashed bubble of Fig. 1: Indeed, we show that, in the 
k - 0 limit, this quantity, when acting on a product of 
two hydrodynamical eigenfunctions, can be reduced to 
the pure hard-core linearized collision operator lJt 6' s, 
which also appears as the leading term of (I. 4). 

In Sec. m, this property is explicitly used in order to 
calculate X (1) (y = 0) and leads to the remarkable result 
that this correction can be cast in a form which only in­
volves equilibrium fluctuations and hydrodynamical 
eigenvalues: In particular, the collision operator lJt6' S , 

entirely disappears from our formulas, which can then 
be calculated independently of any specific model of 

J. Math. Phys., Vol. 15. No.8, August 1974 

( 
k 

_ hard core ) 

FIG. 1. The first correction '(16(1) (v1h). 

the hard-core dynamics. We then give an explicit cal­
culation of the above -mentioned equilibrium fluctuations 
and we get an expreSSion for X(l)(y = 0) which has the 
follOwing form: 

X(l)(y=O)= 10"" dyp (VyL , {xS}, {yS}), (I. 15) 

where {XS} and {yS}, respectively, denote the transport 
coefficients and the thermodynamic properties of the 
pure hard-core reference system; moreover, fX is a 
simple algebraic function of the Fourier transform of 
the long-range potential, denoted by V;-. 

The Simplicity of this results makes it a posteriori 
plausible that this result can also be obtained using 
semimacroscopic arguments, similar to those used in 
the mode-mode coupling analYSis. 3 That this is indeed 
the case is shown in Sec. N. 

Finally some remarks of general interest, including 
the connection of our results with the recently dis­
covered long-time behavior of the Green-Kubo inte­
grands,4 are presented in Sec. V. 

Many mathematical developments have been relegated 
in Appendices. 

II. A REDUCTION FORMULA FOR 'Y'I10 '('). 'Y~ ko '('), 

'YqJJ 0,(1 ~ and 'YrJ 1 (, ) 

A straightforward application of the rules given in I 
(see Table I of that paper), leads to the following formal 
expression for the correction ylJtJ (l)(y) depicted in Fig. 
1 [compare also with Eq. (1. m. 8)]: 

ylJtJ(l)(vll y) = (8~3 2~ f dk f dV{lJt {O):kl. -k2. {O),(vv v2;iE) 

x [l!!!,Ii ~t dT Xk(VP)X_k(V2;T~ 
x~ kl. k2. {0)';{0)(v1 , v2;iE) - hard core}) , 

(II. 1) 

where the propagator Xk(Vl;T) is defined by (I. m. 5, 9), 
while lJt{0):kl.-k2.{0)' and ~k .-k2.{0)':{0) are two-particle 
operators, representing tiie bubbles of Fig. 1. More 
precisely lJt{0);k

1
.-k

2
.{0)' is an operator which acts on an 

arbitrary two-particle function <P 2(Vv v 2) in the following 
way: 

lJt {OJ ;kt. -k2• {O),(vv v2; z )<P 2(Vv v2) 

= (.¢~l J dvN-2[~fo);ku._kt.{0)'({V}; z)t.t 

x<P 2(v u' vt)/rpOq(vu)'POCl(V t ») + O(y) , 

where we have 

[~fo) ;ku. -k
t
• {O),({v}; z) lu. t 

(11.2) 
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= t. f({O} 11{( - liLS)[(Lo - Z)-lQ!( -liLS)]n}F ~~t n~l ~ u 

N 
X I ku' - kt , {O}) .II CPOQ(v,) + L; ({0}11{(-liLS) . ,.1 (k')¢O 

k~=k't=O 

X[(Lo -Z)-lQ!(-liLS)]n};~;tlku' - kt,{k'}) 

X({k'}IONpOQI{O}); (II. 3) 

in the following, we shall also need the same operator 
for u = t [see (II. 12)]. It is obtained by setting ku = k t = 0 
and U E t into (11.3). In this equation, we have introduced 
the projector 

(11.4) 

which eliminates not only the "vacuum component" I{O}) 
(as is usual in the definition of a collision operator) but 
also all intermediate states with a single pair of lines 
(a, b) with wave vectors k. = ku = k and kb = k t = - k; this 
supplementary restriction is necessary because such 
states are already included in the propagators Xk(V1 ; or) 
and X_ k(V2; or) of Eq. (11.1). Note, however, that, in the 
k - 0 limit of Eq. (11.3), the projector Q! reduces to 

QE 1 - I {O})({O} I. (11.5) 

Similarly, ~k1,-k2'{O)';{O) acts on anyone-particle func­
tion in such a way that 

,j,~, -k2. {O}'; (O) (v l1 v 2; z)cp (v1) 

N 

= til dvN-2~ ~:, -k2' (O)';{O) ({v}; z)cp(v t)/cpeq(v t), (11.6) 

where now 

N 
x (-liL S)1"};'c I{O}) l!1 cprq(v,) 

+ L; (k1,-k2,{0}'11or2{(-liLS)[(Lo-z)"lQ~ {k')¢O 
k't=O 

Although the most difficult problem in "translating" 
Fig. 1 into these analytical expressions is clearly a 
question of notation (which can be best understood by 
working out explicitly a few simple examples), the fol­
lowing remarks can be helpful in the understanding of 
these equations (II. 1, 4): 

(1) If we had followed strictly the rules given in I, 
Table I, we should have expressed all contributions in 
terms of renormalized vertices. However, to avoid a 
complicated notation, we found it more convenient to 
apply backward the theorem on propagation of equilib­
rium correlations [see I, Eq. (II. 31) and following]; by 
this trick, we can lump together all these equilibrium 
factors at the right of the operator ij!s -the reader will 
easily convince himself that this is indeed a legitimate 
procedure. 
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(2) Both in Eqs. (11.2) and (11.6), we have neglected 
terms of order Y. Indeed, we should take there the com­
plete contributions of type II segments (see I, Sec. m) 
which generally involve long range vertices; the domi­
nant contributions are however of pure Short-range 
nature, as indicated by the superscript S in Eqs. (II. 3) 
and (11.7). 

(3) Let us still point out the factor (2! )-1 in Eq. (II. 1); 
indeed, when we interchange the label of the particles 
respectively carrying wave number k and - k in Fig. 1, 
we do not generate a distinct graph while the two cor­
responding contributions have both been retained in the 
bracketed term of Eq. (11.2): This overcounting is cor­
rected for by dividing by 2!. 

Let us now insert into Eq. (11.1) the expansion 
(I. m. 10) for the propagators; more precisely, we use 
the following representation for the operator Xk(v; or) 
acting on an arbitrary function cp(v): 

5 

Xk(v; or)cp (v) = L; exp[A~(y}or ]f~(v I Y)(J~(Y) I cp) 
,,=1 

(11.8) 

where the subscript "nonhyd" denotes the nonhydro­
dynamical contributions, which generally have a com­
plicated time behavior; moreover, f~(vIY) is the veloc­
ity space representation of the eigenfunction If~(Y» and 
the scalar product <II g) is defined by 

<II g) = J dv[cpeq(v) ]-1f(v)g(v). (II. 9) 

We then assume that the nonhydrodynamical part of 
Xk(v; or) gives a finite contribution to the time integral 
appearing in (II. 1) when Y - 0; taking into account that 
the k-integral in ,(II. 1) is restricted to I kl ::;. Y, we get 
then 

'Y'I'6(1)(V1IY)=(8~3 21! PsI dk f dV2{'l1{O);{O)(Vl1 V2;iE) 

X f~k(V11 y) .ra1k('V21 y)[i(A~(y) + Aak(y» ]-1 

x f dv{dv~[cpeq(vDcpeq(v~)]-1J!k(v{IY) 
x 1;1k(v~ I y~ {OJ ;(O)(v{, V~;iE) - hard core}) 

x[l +O(y"'ln(IJ..l»]. (11.10) 

A word of comment is required here to explain our 
estimate of the terms neglected in going from (II. 1) to 
(11.10). Besides the y1 correction involved in (II. 2) and 
(II.6), we first have dropped the nonhydrodynamical part 
of Xk(v; or): following our remark after (11.8), this cor­
rection is only of order y2 compared to the leading term 
retained in (II. 10). Second, we have replaced 
'l1{O);k1,-k2, (O)' by 'l1{O),{O) which, for k~Y, should lead to 
an error not larger than O(y). Similarly, the replace­
ment of the exact eigenfunctions If~(Y» by their leading 
contribution If~k(y» [see (1.11, 13)] is also expected to 
involve errors of O(y) for k::; Y. Finally, we have re­
placed the exact eigenvalues A~(Y) by their dominant 
part A~(y) [see again (I. 11, 13)]. Here the situation 
seems less favorable; indeed, we have now indications 
that the slow decay of the Green-Kubo integrands for 
long times4 has a counterpart on the k-behavior of 
transport eigenvalues A~, even for a pure short-range 
system. On the basis of semimacroscopic arguments, 
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one expectsS 

A~ = (A~)hYi1 + O(kl!)], (n.11) 

where (A~)bYd denotes the usual hydrodynamical eigen­
values; the exponent J.L is expected to be %. As we are 
interested here in a microscopic theory while we only 
have semimacroscopic arguments to support (n. 11), we 
shall be a little more careful and we shall take min(l, J.L) 
as our estimate of the neglected terms, leaving J.L as an 
unknown parameter. 

As it stands in (n.10), our expression for YW"b(l) is 
still very formal because it involves the two-particle 
operators W" {O); {OJ and iir {O); {OJ which cannot be written in 
a compact form. 

However, a cruicial simplification occurs when we 
realize that these operators, when acting on a product 
of two hydrodynamical modes [see (n.10)] can be re­
duced to the one-particle short-range operator W"b,5 [see 
(1.4)]. We present here a formal proof of this result; 
moreover, due to the key role played by this remark­
able property in the present analysis, we also prove it 
explicitly in Appendix E for the dilute gas; in this latter 
case the same result was already impliCitly used by 
Dorfman and Cohen. 6 

_ We first notice that the operators ~f~;{o)({v}; ie) and 
W"lg); {O)({v}; iE), from which W" {OJ ;{O) and W"{O); {OJ are built 
[see (11.2) and (11.6)], conserve the collision invariants; 
we have, for example, 

N B [[~{O);{O)({v}; iE)t,t, i,,(vt)]=O, (n.12) 

where i,,(v) is any of the five collision normalized in­
variants [i1 = 1;i2, 3,4 = (V1)x, y, JlkB T; is = {273(v2 /2kB T 
- 3/2)]. The commutation relation (II. 12) is trivial to 
prove for i1 (particle conservation) and i2 3 4 (momentum 
conservation); for the kinetic energy invariant is, the 
proof is more involved but has been given previously in 
a different context7

; we shall not reproduce it here. Let 
us also mention another important property of 
[~fo); {OJ ]u, t: It gives zero when acting on a constant 

(11.13) 

This latter property merely reflects the fact the Max­
wellian distribution is a stationary solution of the gen­
eralized Boltzmann equation [see (11.3)]. 

If we now take into account that the eigenfunctions 
t!k(V Iy) are linear combinations of these invariants, we 
can simplify (n.10) in a decisive manner. We have 
indeed 

(11.14) 

where the C';:B are v1 -independent coeffiCients which are 
readily calculated from (I. 11, 1.13). Using twice Eq. 
(11.12) and then Eq. (n.13), we get in succession 

~ [~fo).{o)t /!k(vtly)I;lk(Vuly) 
flu ' , 
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- ~ [~fo);{o)]t, /!k(V t I y)I;lk(Vt I y) 

= ~ I!k(vtl y)I;lk(VuIY)[~fo).{o)t t 1 
all t,u ' I 

- ~ lifo); {O)]t,/!k(Vt I y)I;lk(Vt I y) 

= -~ [~fo); {O)]t,/!k(Vt ly)I;lk(Vt I y). (n.15) 

The remarkable feature of this equation is that in the 
initial form-at the extreme left-hand side of (n.15)­
jj,fo);{o) acts on a function of two variables v t and vu ' 

while at the extreme right-hand side it only operates on 
a function of one variable! 

Inserting this result into (n. 2)-taken at kl = - k2 = 0 and 
z = iE-we obtain after integration over v 2 

J dv2W" {O); {0)(v1, v2 ; iE)t!k(v11 y)t;lk(v2 1 y) 
N 

= -~ J d0-1[~fo); {O) ({v}; iE)]t/!k(Vt I y)I;lk(Vt I y) + O(y) 

(11.16) 

where W"& ,5 (Vl) denotes the purely short range line ariz ed 
collision operator, obtained from (I. 11.24) by setting 
z = i€ and putting everywhere the superscript S; this 
operator is preCisely the leading term of the expansion 
(1. 4). 

Notice that in going from the second to the third 
member of Eq. (11.16). we have made the nontrival 
identification 

N 

W"6,5(Vl)<l>(Vl)=~ J dVN-l[~O)'{O)({v}; iE)]tt<l> (vt)/rp eq(vt), t=l ' 

(n.17) 

which is justified by the remark after (n.3). 

From (11.10), we see that we also have to transform 
the quantity 

A = J dv{ dv;T!k(V{ I y)I;lk(v~ I y)~{O); {O) (v{, v~; iE)<l> (vD. 

(n.18) 

We shall not present this calculation here because, ex­
cept for numerical factors, A is essentially the con­
jugate of the left-hand side of (11.15) and can be handled 
by the same method. 

The result is 

(II. 19) 

Combining (II. 10), (n.16), and (n.18), we get finally 

YW"6(1)(v1IY)<l>(v1) 

=W"6,5 (v1) [a;3n 21! Fa f d3k(I!k(v11 y)I;lk(V11 y)cpeq(v1) 

x i[A~(y) ~ ASk(y)] f dv{l!k(V{ I y)l;lk(v{ I y) 

XW"6,5 (V{)<l>(vD -hard core)] + O(yl+m1n(l,I!». (n.20) 
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Thus, the only operator which appears in this equa­
tion is the hard -core linearized collision operator w 6' 5 ; 

this property is a generalization to arbitrary density 
and interaction of a result previously established by 
Dorfman and Cohen for dilute hard speres,6 in the con­
text of the r3

/
2 decay law for the Green-Kubo integrands. 

As we shall see later, this linearized collision opera­
tor itself will disappear from the final formulas when 
computing the yl correction to the transport coefficient 
X. However, before we can show this, we first have to 
derive the analog of (II. 20) for the other quantities 
which appear in the calculation of XCI), namely for 
fl&Cl)(y), C~~I)(y), P~Cl)(y). As this analysis follows the 
same line as the previous one, we shall be very brief, 
stressing mainly the few points where new features 
appear. 

Consider for example the case offlJ (1 )(y); from I, 
Table m, we obtain, in analogy with (II. 1), 

y 1)6 Cl )(v
1

; ie) 

={8~3 21! f dk[j dv2w(o};k1._k2.{O}.(vUv2;ie) 

X (~~~i it dr X k(V1 ; r)X_k(v2; r») f dvN-2 

X (ku - k21 [J% -(5J% ]ON peq 10) + k~D:l' -k2' {O}'; {k'} 

X ({v};iE)({k'} I [J% - 1>J% ]ON p.q 10») - hard core]}, 

where we have put 

D :1' -k2. {O}'; {k'} ({v}; z) 

'" 

(II. 21) 

= 6 (ku - k21 {[ _1>L5 Q~(Lo - z)-l]nV· C·1 {k'}) + O(y). 
n=l 

(II. 22) 

Inserting the representation (II. 8) into (II. 21) and using 
(II. 15), we get after some straightforward manipulations 

yL)6Cl)(V
1

; ie) 

=wkS (v1)(8-; 2
1,6 fdk(I!k(VlIY)Ii1k(Vlly) 

7T n . "'.S 

x{i[A~(y) + Ait(y)]}-li ::s(lk' y) - hard core») 

+ O( y+mlnC~ .1». 

Here we have introduced the velocity-independent 
quantity i ::S(lk' y): 

~::S(lk,y)=lim N1 t j dVNJ!k(V.ly)J;lk(VbI Y) 
y a1b=1 

X~k., - kb I (J% _(5J%)ON p.q 1 0) 

(II. 23) 

+ 6 D~ -k (O}'o(k'}({V}; ie)({k'}I (J% - tlJ%) 
{It} 10 a' b· • 

X ON p.q 10») + O(y) (II. 24) 

and we have used the definition (I. 10) taken for w = O. 

Let us stress that, in this latter formula, the limit 
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k - 0, Y = k/y finite, has to be taken with great care and 
is not obtained by merely setting k. = - kb = O. Indeed 
(as was pointed out in Ref. 1 Sec. IV), the flow term 
({k'}1 (J% -lir)ON pO<l I 0) involves long-range contributions 
which remain finite when y - 0: In other words, Eq. 
(II. 24) is not purely short range (although the operator 
D5 is!) and we thus have to keep y finite when going to 
the k - 0 limit. 

The bracket of (II. 24) involves equilibrium correla­
tions which have a nonanalytical behavior at k - 0 in the 
canonical esemble used here; for example, we have 

lim(k., - kb I (J% - tlJ%)ON pO<l I 0) "* (0 I (J% - tlJ%)ON p.q I 0), 
k-O 

(II. 25) 

even for purely short-range terms! The situation here 
is completely analogous to the well-known case of the 
pair correlation function g2(k), where 

limNjdvNp:q -k (O},({v})=limn-1g2(k)= kBT(~pn) -1 
k"O 1, 2' k- 0 U T 

"*N f dvNpgq({v}]=N! (II. 26) 

Due to these difficulties, we shall provisionally main­
tain i::s as it is defined in (II. 24), leaving for later the 
proof that it can be reduced to purely equilibrium fluc­
tuations, which can then be computed according to 
standard methods. 

The so-called creation operator C ~~I)(Vll y) can be 
similarly transformed; we get 

y 6 (OI(J{-/iJi) I {k'})C I:Noo (v1 I yhl>(v1) 
(k'}10 • 

+ o(yl+rlnCI'.1». 

Here the function <I> ::s(lk' y) is defined by 

<I>;:s(lk,y) = lim 6 J dvN[(OI (J{ -IiJt) I(k., - kb) 
y .1b 

N _ 

x IT cp·q(v.) + 6 (0 I (J{ - IiJ{) I {k'}) 
i=1 'k'10 

(II. 27) 

X ({k'} Ie S ({v}; ie) I k., - kb)]I!k(v.1 y)I;lk (Vb I y), 

(II. 28) 

with 

({k'} les ({v}; z) I ka' - kb) 

= i; r(.{k'} I {[(Lo - Z)-1Q2( - 1>L S)]nY·C·1 k - k ) ~ cpO<l(v ) 
n=1 L k. or b.' b i=1 I 

+ :0 ({k'} I {[(Lo - Z)-IQ2( - 1>LS)]"V· C ·I{k"}, k , - k )1 
(k'1*0 k • b J 

k~'=kb=O 

(II. 29) 
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= (81T3n)-1(21)-1 :0.J dk(<p ::8(1k, y){i[A~(y) + At(y)]}-l 
,a8 

x~ ::8(1
k

, y) - hard core) + O( Y+mln(,. ,1». (11.30) 

III. EXPLICIT CALCULATION OF THE FIRST 
CORRECTION X(I) 

With the important formulas (11.20), (11.23), (11.27), 
and (11.30), we have all the basic elements required for 
the calculation of the y1 correction to any transport co­
efficient X. Rather than giving immediately the detailed 
calculations for the general Situation, we prefer to 
discuss first the simpler problem of the purely kinetic 
contributions to X. Indeed, in this case, the result can 
be obtained in a few lines and the salient features of the 
calculation are not obscured by technical aspects. In 
particular, we will see very clearly the way in which 
the linearized collision operator entirely disappears 
from the final equations. The general case, involving 
the potential part, will be considered later on. 

From Eq. (I. II. 38) and (I. II. 39), it is obvious that we 
can split X into a kinetic part X(K) and a potential part 
XIV): 

XIX) = - ,Bnlim J dv1(0 I (J{(K) - olt(X» I 0) ,-0 
X{i[lIt~(V1;iE)+iE]}-1 J dVN-1(01(Jt<X)_OJt(K» 

x peqnN I 0), (III. 1) 

XIV) =X' +X" _X(K), (III. 2) 

where Jt<K) , oJ{(K), and oJ{(K) denote the kinetic parts 
of the corresponding flow operators. For example, in 
the case of thermal conductivity, we have 

J1TK(X) = V1xV2 /2, 

oJr(K) = oJ1TK(K) = t(5k
B 

T)v1x' (III. 3) 

The simplicity of (III. 1) comes of course from the fact 
that it only involves the linearized collision operator 
lit 6; the other basic quantities of the theory, namely 
C :.0, D 6, PkJ all appear in the potential part XIV) only. 

From the expansions (1.2) and (I. 4), we get 
immediately 

yX(K) (l)(y) = -,Bnl,i~ J dv1[JtK)(V1) - oJt(K)(v1)] 

x{i[ lIt6' 5 (V1) + iE ]}-1[ - iYlJt6(l)(V1 I y)] 

x {i[lIt6' 5 (V1) + iE]}-l[JtK ) (V1) - OJl(K)(v1) ]cpeq(V1), 

(III. 4) 

where we have used the fact that the kinetic flow opera­
tors only depend on the velocity of one particle. 

Inserting now (II. 20) into this equation, we obtain 

X{[A~(y) + A8k(y)]}-1 -hard core) 

+ o(y1+rln(,.,l», 

where we have introduced 

f!8(1 k ly):::: J dv1[J{(K)(V1) - oJ{(K)(V1)] 

XI!k(v1Iy)l;lk(v1!y)cpeq(v1) 
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(III. 5) 

(III.6a) 

and 

h,,(1k I y) = J dv1[Jt<K)(V1) - OJt(K)(V1)] 

xl!k(v11 y)l;lk(V11 y)cpeq(v1). (III.6b) 

In the derivation of (III. 5), a crucial role is played by 
the identities 

(III.7a) 

and 

lim {i[lItJ'S(v1 ) +iE]}-lilltJ,S(v1)1<p)= I<p) 
,-0 

(III.7b) 

which are valid for any vector I <p) (and <~ I ) which is 
orthogonal to the null-space of lItJ' s. As discussed in 
Ref. I, the choice of oJ1x, and o3{, is precisely such 
that this orthogonality property is satisfied. 

Equation (III. 5) essentially gives us the answer to our 
problem for X<K): Indeed, from (III. 6) and (II. 14), we can 
easily get an explicit form for f!8(lk1y) (in terms of the 
equilibrium properties of the reference system and of 
V;-) by performing the trivial velocity integration in­
dicated in (III. 6); notice that, in this operation, most of 
the f!8 will vanish for symmetry reasons: For example, 
in the case of thermal conductivity [see (III. 3)] we will 
get a nonvanishing fJ; only if one of the l!~ has a vector 
component along the x axis and if, simultaneously, the 
second one is a scalar quantity. The next steps are then 
to insert the eigenvalues (I.lla), (1.12a), (I. 13a), into 
(III.5), to perform the integral over the angles of k and 
to make the change of variable I kl =/'y. We are then 
left with an expreSSion which is precisely of the type 
(1.15). We shall, however, not perform these calcula­
tions explicitly here because X(K) is of little significance 
in a dense system; furthermore, a similar analYSis will 
be performed later in the general case, including the 
potential part, which we consider presently. 

We now have to start from the complete expression 
for X, given by Eq. (1. II38HII. 39). USing again (I. 4) 
and the analogous expansions for C:.o, D 6, and P ~, a 
straightforward calculation, based on (II. 20), (11.23), 
(11.27), (11.30), and (III.7), readily leads to 

x ([A~(y) + Ask(y)]} -1 - hard core) 

+ O( yl+mln(,. ,1». (III. 8) 

Comparing with (III. 5), we see that the structure of 
this y1-correction is similar to the one obtained in the 
kinetic case except that the simple factors f~8 and 1!8 
are now replaced by the more elaborate expreSSions 
<P~8 and .j,~8' They are defined by the following 
formulas: 

iJ>~8(1kIY)=iJ>::8(1k!Y)+ J dV1(0I(J{-oJ{)!0) 

+ :0 (O! (J{ - oJ{) I {k'})C!;,~ ;o(v1 ; iE)) 
{k'}~O 

xcpeq(v1)I!k(v11 y)l ;lk(V1! y) (III. 9) 

and 

4>~8(lk!y)=.j,;:8(1k!Y)+ J dv1{1!k(V1!y)1;lk(V1!y) 
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xU dvN-1(0 I (J{ - 6J1")O,Npeq l 0) + m·S(v1; if)]}. 

(m.10) 

Here the quantities <I>~8 and ~::8 are given by Eqs. 
(II. 24), (11.28) while CI;.~;o and m· s are the pure hard­
core analogs of the quantities introduced in Eq. 
(I. II. 38). 

We can expect, from ou~ previous discus~ion of the 
kinetic case, that <I>~8 and <I>~8' like f~8 and f;8' can be 
reduced to purely equilibrium properties and that most 
of them will vanish for symmetry reasons. As we 
shall now indicate, this is indeed the case; yet, this 
proof is far from trivial and, in order not to interrupt 
our analysis by too many technical details, most of the 
calculations are relegated in Appendices. 

First of all, let us notice that, because of (II. 14), the 
<I> " (and~" 8) are bilinear functionals of the invariants a8 a . 
i,,(v1 ) (y = 1. .. 5). In order to get rid of awkward numerI-
cal factors, we write 

where we have put 

da8.,,6(lk I y) = C~(y)c~k(y), 
and a similar formula for ~~8' 

5 

<l>~a<lkIY)= 6 daB,Y6(lkly)m;6(lkly), 
"',6=1 

with 

(m.ll) 

(m.12) 

(m.13) 

da8.Y6(lkly)=c~(Ylc~k(y). (m.14) 

The definitions of m~8(lkIY) and m~8(lkly) are readily 
obtained from (m.9) and (m.10) by replacing I!k(v1Iy) 
- ia(v1) etc. They are explicitly evaluated in Appendix A 
and (B), respectively, where the follOwing results are 
shown to hold in the particular case of thermal 
conductivity: 

m{;K(lk I y) =mftK(lk Iy) 

=n,lkBT[e~~n): +V:+~l~"yo:!J, 
(m.15a) 

m[:(lk Iy) =mJt(lk Iy) =n,lkBT (lk:rlkeY O~L), (m.15c) 

( Ohln)
5 

m[:f(lkl y )=mfsK(lkI Y)="1 ,lkBTT --aT n' (m.15d) 

while all the other m~B vanish for symmetry reasons. 
Similarly, we have 

mft(lkly) =mr,.K(lk Iy) 

= m[t[nkBTXT(y)] + O(y) (i=2, 3, 4), 

(m.16a) 
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x[(~:): _3ki T -nVoS]+O(Y); (m.l6b) 

all other coefficients ffl~8 vanish for symmetry reasons. 
For the other transport coefficients, the corresponding 
m~8 and m~8 are listed respectively in Appendices A and 
B. 

From these formulas, it is now a straightforward 
though tedious matter to express the first correction to 
X in the form suggested in (I. 15): In a first step, we use 
(m.ll) and (m.13) to calculate the functions <I>~8(lkIY) 
and ~~8(lk I y); in doing this, we also need (m. 12), 
(m.14), and (11.14) where the coefficients C~8(Y) are ob­
tained by comparison with (1.11-14). We get, after 
considerable algebraic Simplifications, 

<I> [:f(lk I y) = <I>ftK(lk Iy) = (kB T)3/ 21k:r9"1;K(y), (m.17a) 

<I>fsK(lk IY)=<I>[:(lk Iy) = (kBT)3/2((1:~ ~~;)./i) 9"fs"(Y), 

(m.17b) 

where we have introduced the dimensionless constants 

T 1 [ (Ohln)S + (oploT)~ T(Ohln)S 
9"12K(y) = C(y),lkB T n a;;- T nC~ aT n 

(m.18a) 

and 

T T {l (Ohln)
5 

9"3S
K

(y)=v1" c2(y) nkBTxT(y) --aT n 

_ ....!..,(OP)S[(Ohln)S +nv;l}. 
kBT aT n an T J (m.18b) 

Similarly, we find 

(m.19a) 

<l>fsK(lk I y) = <l>[:(lk I y) = (kB T)3/2[ -lk"lk/O:,. + 1:')1/2] 

xmnkBTXT(y)][c2(y)/kBT]}9"3~K(y), (m.19b) 

~rs"(lkIY)= -<l>~K(lkIY) 

= (kB T)3 /2[ -lk/( 1:" + 1:/ /2] 

XH[nkB TXT(y)][c2(y)/kB T]}q3~K(y). (m.19c) 

The quantities <I>~a(lkly) and <l>~B(lkly) which we have 
not written down explicitly here either vanish for sym­
metry reasons [as for example <I>[s"(lk1y)] or only con­
tribute to (m. 8) to higher order in y {for example, the 
combination of one sound mode with any other mode, as 
in <I> [sK(lk I y), gives a contribution of order y2 to (m.8) 
[see (I. 11 a) and (1.13a)]. The corresponding formulas 
for shear and bulk viscosity are displayed in Appendix 
C. 

The next step is simply to introduce these results into 
(m.8) and to perform the angular integration over k; in 
terms of the variable y= I kl Iy, we get then, after some 
elementary thermodynamic manipulations, 
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K(I)(y)= 6~ i W 

dY{[(l + 2c~(y) Y o:tr ir¥;) -;;:] 
+2T( CI>(Y) 

1]s /n +Ks /nCI>(Y) 

_ C: )}+ o( yntn(1,l'» . (m.20) 
rf In + KS InC: 

The two terms in the integrand with the negative sign 
correspond to the purely hard-core part in Eq. (m.8) 
and, as is readily checked, they are obtainable from the 
two terms with the positive sign by putting formally 
Vy

L = O. As we have assumed from the very beginning 
that V;- 0 for Y» 1, we see thus that the integral in­
volved in Eq. (m. 20) is improper but convergent. 

Equation (ill. 20) is our final result for thermal con~ 
ductivity; without making an explicit assumption ab0ut 
the long-range potential V;, the y integral cannot be 
performed in closed form. Yet, even in this form, we 
see the remarkable property of the van der Waals trans­
port coefficients: The first correction can be computed 
by a Simple quadrature provided we know the equilibrium 
and transport properties of the the short-range refer­
ence system, plus of course the Fourier transform V; 
of the long-range potential. 

Using the formulas of Appendix C, we have Similarly 
shown that the first correction to the shear viSCOSity is 

Tj(I)(y)= kBT [00 dy r[nx (y)]2(Y(Y) _1)2 (ny OVl)2 
601TZ Jo ~ T y(y) ~ oy 

nCp(y) (1 n OVl)2 1 1 ] 
X 2Ks + + 2c2(y)Yay r(y) - rS 

(m.21) 

where we have used the notation 

y(y)=CI>(y)/C~ • (m.22) 

For the bulk viscosity, we have found 

(1)() kBT[OO [f ( ) 1 ) t y = 41T2 0 dy ,b1 Y 2Ks InCI>(Y) - hard core 

+ (b 2(y) 2:(Y) -hard core)] + o(yntn(1,l'», 

(m.23) 

where 

and 

b ( ) = n
2 (0 T(Y») 

2 
[ (y) _1]2 [2-. (OCI>(Y») 

1 y ~ on r y C p(Y) oT I> 

2(OCP(Y») (OT(Y») + 1 T 
-n ---ap T a;;- I> c2(y) n[oT(y)/onJI> 

av.L]2 xtny-y-
oy 

b2(y) = [~ + } e~27») n [oP(~/oTJn [1 -lJY(y)] 

(ITI. 24a) 

_(op(y») +(~) oc(y) + _l_n aVfJ2 
ae n \c(y) an T 6c2(y) y ay . 

(m.24b) 

In these formulas, we have used the notation 
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(~) =(og{a,{3IY») 
aa B oa B 

(m.25) 

and the "van der Waals" thermodynamic function 
g{a, 131 y) is obtainable from the "free-energy denSity" 

f(n, T I y) = fS (n, T) + tn2V; (m.26) 

by the same standard thermodynamic formulas that 
allow to obtain the thermodynamic function g(a, (3) from 
the usual free-energy density f(n, T). This point is ex­
plained in detail in Appendix B. 

IV. A MACROSCOPIC FORMULATION OF 
THE PROBLEM 

The fact that our final expression for X(!) only in­
volves the macroscopic properties of the hard-core fluid 
and the Fourier transform of the long-range potential 
is a strong indication that these results can also be es­
tablished on a purely macroscopic basis. As a matter of 
fact, attempts in this direction were made previously by 
Zwanzig and co-workers8 and by Kawasaki9 in their dis­
cussion of critical properties of transport coefficients. 

We shall show here that this type of macroscopic 
argument can indeed be used to reproduce our results; 
we shall also point out the difference between the pres­
ent calculation and the above-mentioned papers. 

To be as simple as pOSSible, we limit ourselves to the 
case of shear viscOSity. The Green-Kubo formula reads 
thus 

Tj=lim1im~ (T dt<J~(t)J~(O», 
T~ 00 Cl •• 10 (IV. 1) 

where the momentum flow J~ is given by 

N 1 N OV(t) 
J~(t)= ~ Vi ~(t)Vi )t) - -2 .~ -a - riJ y(t). 

i=1" 11J=1 riJ,x ' 
(IV. 2) 

Before analyzing (IV. 1), let us first recall that, ac­
cording to macroscopic fluctuation theory, the long­
wavelength fluctuations are Gaussian. 10 Defining thus 
the Fourier transform of the density and velocity fluc­
tuations by 

N 

link=n-l/2~ exp(ikr j ), 

i=l 

N 

Uk = (nr1
/

2n-1 ~ Vi exp(ikrj ), 
1=1 

(IV. 3) 

(IV. 4) 

these fluctuations are characterized, for a wavenumber 
k smaller than any inverse length of the problem, by 
the statistical weight 

(IV. 5) 

As shown by Van Kampen, 11 such Gaussian fluctuations 
persist in the range k-y provided that, in (IV. 5), we 
replace XT by the wavenumber-dependent suceptibility 

XT - XT(kY-1) =[ nG~): + n2V;_1] -1. (IV. 6) 

Due to this difference in weight, we see that the equilib­
rium fluctuations of the van der Waals fluid will differ 
from those of the hard -core system in the range kY-1 ;:; 1. 

Moreover, in this long-wavelength regime, we shall 
assume that the motion of these fluctuations are 
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governed by the equations of linearized hydrodynamics, 
suitably modified by an average field term due to the 
long-range van der Waals potential. 8,9 The linearized 
Stokes-Navier equation becomes thus 

0tU,,(t) + ik~ (~): %(t) + ikV,,~-ll>n,,(t) + ik~(~): oT,,(t) 

(IV. 7) 

while the continuity equation for liu,,(t) and the tempera­
ture equation for oT~.(t) keep their classical form. We 
find here a second reason for a different behavior of the 
van der Waals fluid compared to the reference one. 

To lowest order in 'Y, we assume that these two effects 
are entirely responsible for the correction to the trans­
port coefficient due to the long-range potential. To per­
form the calculation, we then replace in (IV. 1) the 
equilibrium ensemble by a restricted ensemble where 
the only fluctuating quantities are the long-wavelength 
components of % and Uk with k < ko, ko being a small 
cutoff wavenumber such that ko» 'Y. In this ensemble, 
we can replace the flow J~ by J~,L defined byl2 

JTI,L(t}= ?fo (nuk,:r(t)U_k,y(t)+b~~Y o~L Ou,,(t}liu_k(t}). 
k<"o 

(IV.8) 

In order to obtain the time dependence of liuk(t} and 
uk(t), we can use the well-known decompositions 

Onk(t) = exp - tk2r(y>t'Y~Y) on,,(O} coskc(y)t 

+ :(;) (k .~(O»)sinkc(y)tJ + Y~lY) 1 
XexptA~(y)liuk(O} (IV. 9) 

and 

uk,n(t) =exp - t~r(y)[ k:r(k. ~2(O») coskc(y)t 

+ ikrc(y) liuk(O) . k ( )tJ 
kY(y) n sm c y 

+eXPt~Gk,n(O) - kr(k'~(O»)]. (IV .10) 

Note that, as a consequence of the mean field term in 
(IV.7), we have to introduce here y-dependent transport 
coefficients, as defined in the previous sections [see 
(1. 11) and (m.22)]. 

Inserting these expressions into (m.8) and integrating 
over time, we obtain for the dominant contribution 

f .. dtJ",L(t) = 1. L; n (c2
(y) 1 On" (0) 12 

o 2 1#0 2~r(y) n2 y(y)2 
k<ko 

+ Ik.U,,(OW) krk y (1 + 1. ~ OVf ) 
k2 k2 2 c2(y)Y oy . 

+ !. 2:; _n_ krk, OVf 
2 1#0 2Ak(y) k2 Y oy 

k<ko 5 

Xlo (0)12(y(y)-1)2 
nIl y(y) 

+ (transverse velocity field contributions). (IV.ll) 
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The transverse velocity field terms [a (A~)-l J have not 
been written down explicitly because they take the same 
form in the van der Waals fluid and in the reference 
fluid, and so they do not contribute to the final result 
(at least to lowest order in y). 

From (IV. 1), (IV. 8), and (IV. 11), we obtain for the 
long-wavelength contribution to 7) 

1 f'" 1jL= _ dt<JTI,L(t}JTI,L(O» 
o,kT 

o 

__ 1_ L; n knky (1 + !. ...!!!... 0 Vf ) 
- 2o,kT 1$0 2~r(y) ~ 2 c2(y) oy 

,,<ko 

(
I. Ik'Uk I

2
)+lOVfk:rky /C

Z
(y») 

x ntk,nU-k,> ~ 2Yay- "'""k2\~ 

x<loukI2[1 ouk l 2 -<I OU" 1 2)]») 

1 1 _(y(y) _1)2 k~k~ I OV~)2 
+ 20kT ?fo 2~(y) y(y) ~ \(ay 

k<kO 

X ( Il>n" 12[ 1 % 12 - ( Il>n" 1 ~ D 
+ (transverse velocity field contribUtions). 

(IV .12) 

In deriving this last expreSSion, we have used the fact 
that fluctuations with different wavenumbers are un­
correlated. From the statistical weight given in (IV. 5), 
we have 

/, Ik'U,,1 2
) k..k .. (kB T)2 

\U".nU_k,y k2 = kt' -;- , 
( Il>n" 12[ \ On" \2 - ( \ %\ ~ ]) = [n2 kB TXT (y ) ]2. 

(IV. 13) 

(IV .14) 

Inserting these fluctuation formulas into (IV .12), we 
then take the difference between the values of ~ for the 
van der Waals fluid and for the reference fluid [formally 
obtained from (IV. 12) by setting V;=O]. We then replace 
the sum over k by an integral over y = kY-l and perform 
the angular integration. We then recover (1lI. 21) if we 
let ko/Y - 00. 

Although, strictly speaking, these authors only con­
Sidered the critical region, the considerations of 
Zwanzig et al. and of Kawasaki are very similar to ours. 
However, they assumed from the start that the kinetic 
part (more generally, the short-range part) of the flow 
JTI is rapidly decaying and they thus only retained the 
long-range potential part of this flow. This kind of con­
tribution, proportional to (oV; /oy)2, is identical to ours. 
Yet, in agreement with our microscopic calculation, we 
find supplementary terms connected to the short-range 
part of the flow. These terms should, however, be of no 
surprise: Indeed, it is now well-known that purely short­
range flows have a slow decay for long times, due to the 
propagation of coupled hydrodynamical modes in the 
fluid. 4,5 As this propagation is different in the van der 
Waals fluid and in the reference fluid -due to the mean 
field term in Eq. (IV. 7)-we expect indeed such sup­
plementary corrections. 

As a matter of fact, the reader can easily check that 
(IV .12) is nothing else than the time integral of the dif­
ference between the asymptotic behavior of the Green­
Kubo integrand for, respectively, the van del' Waals 
fluid and the reference fluid. If, in this latter case, an 
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explicit r3 / 2 power law decay is easily obtained, it 
should however be pointed out that, with long range 
forces (and for times of the order H _y-l), no such 
simple analytical expression exists because of the com­
plicated wavenumber dependence introduced by Vk~-l. 

A similar argument can be developed for the other 
transport coefficients but we will not present it here. 

V. DISCUSSION 

The present calculation essentially brings the van der 
Waals model to the same status as the other existing 
soluble models for fluids. Indeed, in much the same way 
as for the dilute gas (virial expansion, Boltzmann equa­
tion and its generalization to higher densities13

), for the 
hot plasma (Debye-Hiickel theory Balescu-Lenard­
Gurnsey kinetic equation) or for the Brownian motion of 
a heavy particle (trivial Maxwell-Boltzmann distribu­
tion, Fokker-Planck equation), we now have available 

both the equilibrium and the transport properties. From 
this point of view, the weakness of the present work is 
that we do not have a complete kinetic description but 
only the transport coefficients. 

Moreover, we have here the first example of a fully 
microscopic treatment of a mode mode coupling de­
scription in a dense fluid. 3 

It should be stressed that, although few calculations 
may pretend to be less mathematically rigorous than 
the one presented here, we nevertheless believe that 
our final results are exact. Indeed, no assumptions 
were made in the course of our proof except the validity 
of a series a formal manipulations (for example, in­
finite perturbation calculus, small wavenumber expen­
sions, etc.) from which our final results, expressed in 
a compact form, appear to be completely independent. 
In this context, it is also worthwhile to point out once 
more the unusual character of the expansion (I. 2): While 
each coefficient X(n)(y) has a finite limit when y - 0, it 
is nevertheless highly probable that x(n)(y) is a non­
analytic function of y; this is a consequence of a Similar 
property for the small wavenumber expansion of the 
hydrodynamical modes. Moreover, we should also again 
stress that (I. 2) is not an expansion in power of VL; as 
a matter of fact, it is amusing to notice that if one tries 
to perform such a naive expanSion, the low-order terms 
converge but lead to corrections which are of higher 
order (y4) than the dominant contribution (y2) retained 
here; as explained in I, when such an expansion is 
systematically pursued, divergence difficulties appear 
which have been resolved here by the formal resumma­
tion presented in the first paper of this series. 

In Sec. IV, we have already compared our results 
with previous work on the subject and we shall not com­
ment on this question any further here. We just want to 
stress again the close connection between this van der 
Waals problem and the long-time behavior of the Green­
Kubo integrands. In fact, using techniques very similar 
to the one followed here, it is possible to develop a 
kinetic theory, valid at arbitrary density, for this 
asymptotic time behavior. This point will be the object 
of forthcoming publications. In the same respect, it is 
also interesting to note that we have refrained from ex-
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tending our calculation to two dimensions. Indeed, the 
present calculation is based on the very existence of 
transport coefficients (in particular for the reference 
system) and this property is presently very doubtful in 
two dimensions. 

Finally, let us point out that, although we have not 
discussed this question in detail here, it is very simple 
to verify that, to order, y, the first correction to the 
self -diffusion coefficient identically vanishes: 

(V.1) 

This can be obtained either by a slight extension of our 
microscopic method (by introducing the self -diffusive 
mode of a given particle) or by the macroscopic method 
of Sec. IV; in both cases, the physical reason for (V. 1) 
is that the dominant mode-mode term involves the 
combination 

~s + Ats, 

where 

~s = -TJSk 2/n, 
Ats =-IYk2

, 

(V. 2) 

(V. 3) 

(V. 4) 

which are both y-independent. Thus their contribution is 
the same for the van der Waals fluid and for the refer­
ence system and it disappears in the final result. In this 
case, we have, however, the hope of being able to cal­
culate the first nonvanishing correction which should be 
due (a) to more complicated mode-mode couplings, 
leading to y2 corrections and (b) to the fact that, to high­
er order in y, we should replace ~s - ~(y) where TJ(Y) 
is given by an expansion of the type (I. 2). The consis­
tency of this procedure is, however, not easy to estab­
lish and will be discussed in a future publication. 

APPENDIX A: CALCULATION OF m~{j(1k I Vol 

A. General discussion 

From (III. 11), (III. 9), (II. 28), and (II. 14), we get the 
following expression for m~a (lk I y): 

+ 6 (0 I (Jt - o"t) I {k'}({k'}1 CS({v}; iE) 
{k')~O 

x Ika,-k b») ia,(V.>i a<v b)' (At) 

(For a = b, the quantities in the integral are obtained by 
formally setting ka=kb=O.) 

Let us stress that we have here complete sums over 
all a and b, including the terms a = b. As a matter of 
fact, these terms can be shown to give a finite contribu­
tion to (At), as also do the contributions a '* b. 

In the second term of the bracket in (Al), we can take 
immediately the limit k = 0 because none of the difficul­
ties mentioned after (II. 24) occur here; in particular, 
there is no long-range contribution, as can be shown by 
using the method presented in I, Sec. m. In the first 
part of this bracket, there is, however, such a yD con­
tribution involving the long-range force, as was illu­
strated in I, Eq. (IV. 3); there, we have thus to split 
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(Jt - iM X
), according to 

(01 (Jl
x 

- oJl') Ika' -k b)= (0 1 (Jl' - oit)S Ika' - kb ) 

+ (01 (Jl
x 

- oJnL 1 ka' - kb )· (A2) 

For example, in the case of thermal conductivity, we 
find 

lim(O 1 (Jt" - oit")S Ika' - kb ) 
r 

= VI)~~ - (h/n)]o!rb + n-Ivl,xV; (1 - O:;b) 

x (o!; + 0:';) (A3) 

and 

lirm(O 1 (J/" - oit")L Ika' - kb ) 

= (20)-1 Iv V. L_I + ok v,.~-I v \ (1 _ 0 Kr) (oKr + oKr ) 
\ I,x kr okx I) a,b a,l b,l' 

In order to further simplify (A1), we also use in 
(II. 29) the property (11.5) as well as the identity 

(A4) 

({k} I (oNpeQ)S I O)=C{kHO({v}; iE) i~l cpeQ(v i ), (A5) 

with 

C{k};O({V}; z)=:0 ({k}I[(Lo-Z)-IQ(- oLS)]n 10); (A6) 
no! 

this important result was established in Ref. 7. 

Putting all these remarks together we can split m~a 
into two parts: 

m~a(lkIY)= [m~a(lkly)JL + [m~a]s. (A7) 

Here the long-range term [m~a]L is defined by 

(A8) 

while the short-range contribution [m;"a]S can be written 

(A9) 

In this latter equation, we have introduced the operator 
AiG) defined by 

AiG) = (01 (J1
x - oJt)S 10) + :0 (01 (J{ - o~X)S 1 {kG}) 

{kG~OI 

XCfk I; o ({v}; iE)\ , (A10) 
G J (G) 

where the subscript (G) means that in the right-hand 
side of (A10) we only retain those contributions which 
explicitly involve G particles, including particle 1; in 
Eq. (A9), [m~a]S is thus given as a sum over all possi­
ble grouping of particles: This seemingly artificial 
decomposition will turn out to be very useful in the 
following. 

B. Calculation of the long-range part [m~il(1kl y)] L 

From (A4) and similar formulas for the other trans­
port coefficients, it is easy to get an explicit expression 
for (A8) by performing the trivial velocity integration. 
Taking again the example of thermal conductivity, we 
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get 

(All) 

(A12) 

(A13) 

and all other coefficients [m~8]L vanish for symmetry 
reasons. 

C. Calculation of the short-range part [m~il]S 

The explicit evaluation of (A9) is rather tricky but it 
can be done by the method developed in Ref. 14 in a 
similar context: we shall thus be rather brief. 

Consider first in (A9) the case Cl = 1, thus i '" (v) = 1. 
If we notice that the sum of all the graphs involving G 
particles is of order nG-

I in the density, we can write 
formally 

X ex: nG-1G ex: l.. n _ n G-I 
on 

= ~o) nA(G) IT cpeQ(v j )(:0 ia(Vb»). 
un T IE(G) bE(G) 

(A14) 

Similarly by a simple differentiation, we get for Cl = 5 

= (_32)1/2 T "oT) AWl n cpeK(v i ) (:0 ia(Vc )\, 
U n iE(Gl CE(G) j 

(A15) 
while for Cl = 2,3,4, momentum conservation implies 

Note that in (A14) and (A15), the thermodynamic co­
efficients which appear in A W ) [through o~": see (AI0) 
or in i/vb )], have to be kept constant when taking the 
derivative with respect to n or T. 

Applying then again the same type of formulas to 
eliminate ia(v b ), we can easily reduce (A9) to simple 
equilibrium properties of the hard-core system. Let us 
illustrate this point by discussing in detail the coeffi­
cient [m;;"]s. 

From (A9) we have 

[mm S = f dv N ~ (01 (Jt" - oir) 10) 

+:0 (01 (Jt" - oir) 1 {k'})Crlt\;o) 
{~ W) 

(A17) 
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We use (AI4) and (A16) to get 

[mf2«]S = ~) n f dvN 6 ( 6 ~) (0 I (Jr - Mt«) 10) 
on T (G) bECG) ..jkBT 

+66 (0 I (Jt" -IiJr)lkl1-kJ)C~ ,-k ;0) 
J MO 1 J (G) 

x IT cpOq(v). 
lEW) I 

(AlB) 

Now, with the help of (I. n, 7), a simple symmetry 
argument shows that the only nonvanishing contribution 
in (AlB) corresponds to b = 1. Then using (A5), we get 

[mT"]S = (~) nf dvN ~~(V~ + 1. t v.S IT cp·q(v ) 
12 Cln T vk B T LI 2 0 J.1 o! I 

+ 1. t 6 (~V:s + ~ Clkxvt) oq,S _(liS) 
OJal k 20 k 20 ak Pk,-k n 

x 

(A19) 

where the tilde on the factor (h S In) indicates that it 
should not be differentiated with respect to n. The in­
tegral in the left -hand side of (A19) is directly related 
to the enthalpy per particle; we get 

[m[{]S =..jk BT (a:t n[h; - (~) ] 
= ..jkBTn(ahln)S. 

on T 

A similar calculation leads to 

[mft]s=[m[{]S, 

[mf;]s = [m~nS = f% ..jkBT T(Cl~~n):, 

(A20) 

(A21) 

(A22) 

while, for symmetry reasons, all other [m~~]S vanish. 

If we now combine (A11)-(AI3) and (A20)-(A22), we 
recover Eqs. (m. 15a-d) of the text. 

Similar calculations can be performed for the other 
transport coefficients; for completeness, we give here 
the final formulas. For the shear viscosity, the only 
nonvanishing coefficients are 

mi1(l k ly)=l k 1knyav"L , 
x y ay 

m~3(lk Iy) = m~2(lk Iy) = k BT , 

r. (~) S (ap)S( a2e) SJ 
= "1 LT onoT - oe n ClnaT ' 
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(A23a) 

(A23b) 

(A24a) 

(A24b) 

(A24c) 

(A24d) 

(A24e) 

APPENDIX B: CALCULATION OF m~13 (1 k ly) 
A. General discussion 

From Eqs. (n.13), (m.l0), (n.24), and (n.l4), we 
get the following expression for m7.a(l k ly): 

m~a(lkIY)=limN-1fdvN 6 iOl.(V.)ia(vb)f(k.,-kbl(Jx 
,. all arb \1 

_MX)ONpeqIO)+ 615: -k (O}"{k'j({v};iE) 
{k'};tO a' b, , 

X({k'}I(Jx - 6Jx)ONp eql 0»). (BI) 

Here again the terms a = b are obtained by formally 
putting k. = - kb = 0. 

This expression can be reduced to purely equilibrium 
fluctuations. Indeed, consider first the case where O! 

and fJE 1,2" • 4. It is then an easy matter to prove that 

f dvN 6 iOl.(va)ia(Vb)~ -k (O}"{k'j.({v};iE)' ··=0. 
all 4, b af b' , 

(B2) 

This is an immediate consequence of both particle and 
momentum conservation. Analytically, (B2) is proved 
by first taking notice of the Liouville operator 6L IJO! 0 I 
oV!J [see (n. 22)]; an integration by parts on the right­
hand side of (B2) then immediately leads to the required 
result. 

USing the definition of the matrix elements given in 
(I. II. 9), we get thus for O!, fJ E 1 0.04 

m';.a(1k ly)=limN-1 J dvN dr N 6 i",(v.)ia(vb) 
'Y all a, b 

or 

X exp[ik(r. - rb)](J" - 5JX )pOQ (a, fJ E 1· ··4) 

(B3) 

m~B(1k I y) = lim N-1 f dr dr'(dOl.(r)dB(r')(J" - 5J"» 
y 

Xexp[ik(r-r')] (a,fJEl···4). (B4) 

In this latter equation, we have used the traditional 
notation ( ... ) to represent the canonical average and we 
have introduced the density operators 

N 

dOl.(r) = 6 iOl.(va)li(r - raj, 
a=l 

(B5) 

which, up to a trivial constant, respectively represent 
the number density nCr) and the momentum densities 
v/(r) (i=x,y,z); indeed we have 

N 

d1 (r) = ~ 6(r-ra)=n(r), (B6) 
a=l 

dj(r)= (1/..jkB T) 6 Va., i6(r - r i ) = Vi (r)/VkB T. (B7) 
a 

Note that if we use the definition (B5) for O! = 5, we 
get a quantity related to the kinetic energy density EK(r): 

N 

ds(r) = ~ v1[(v;/2kB T) - !]Ii(r - raj, 
a::l 

= v1 {[EK(r)lkB T] - 3n(r)/2}. (BB) 

However, in the case a or (and) {3 = 5, Eq. (B2) is no 
longer valid because the kinetic energy alone is not 
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conserved by the Liouville operator and Eq. (B3) is thus 
not correct either. 

A similar problem was already encoun!ered in Ref. 
15 where it was shown that the effect of f)s was essen­
tially to replace the kinetic energy density in (B8) by the 
total energy density [e(r) -nVn. More preCisely, let 
us consider the quantity 

:B f d~ 6 i,,(va}iB(vb)D~ -k {O)"{k')({V}; ie). .. (B9) 
{,..)~O all a,b a' b' • 

and let us use the fact that f)s has the following form 
[see (n.22)]: 

DS ex6 (6£lJ)S (Lo - Z}"l(l + 6 (6LU)S ••• ) . (B10) 
i~ Ul 

We then perform in (B9) successive integrations by 
parts over (6£li)S exolavlJ and (6Lk/)S exalovw consider­
ing separately the various cases i= or *- from a, b, j= 
or *- a, b etc. The result of this straightforward but 
tedious calculation is that, even for 0: or (and) f3 = 5, an 
equation similar to (B3) still holds, namely 

m~8(lk I y) =limN-l f drdr'(a,,(r)d8(r')(Jx - 6JX}) 
r 

xexp[ik(r-r')], (B11) 

where 

d,,(r) == d,,(r) (0: E 1· . ,'4), 

as(r) == If {[eS(r)/kB T] - [% + (nVl IkBT)]n(r)}. (B12) 

Note that only the hard-core energy density enters 
into Eq. (B12): 

eS(r)==I: tv;+t( I: VS(rab )\6(r-r). (B13) 
a:l b~a:l J 

As was announced in Sec. ill, m~8 is thus indeed re­
duced to purely equilibrium quantities, from which we 
have to properly extract the leading yO-contribution. 

B. Calculation of the equilibrium correlations 

As is well-known, 16 for a purely hard-core system, 
the average appearing in (Bll) can be reduced to purely 
thermodynamic fluctuations by going to the grand 
canonical ensemble (denoted by G. C.) and computing 

(t..d"t..d8(Jx - 6Jx})G.c. (B14) 

in terms of the grand canonical variables T and /J.; here 

(B15) 

Although this formula will turn out to be useful later 
on, it is not sufficient for our purpose: Indeed, we have 
to extract the limy in (B 11) by letting k - 0 but keeping 
y finite [see (1. 10)]. This will be achieved by using the 
method developed by Hemmer. 17 

Let us again consider the case of thermal conductivity: 

m;B(l"ly)==I~m f drdr'(da (r)d/l(r')[2? Vb(~~ + i ~ V(r/j) 

- ;)- ~ ?t/l o~~J (Vii)"])' (B16) 

where we have followed the notation (1.1). 

Simple invariance arguments show that the only non­
vanishing coefficients in (B16) are mi; ==mft and m[t 
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=mft (i==2, 3,4). Let us take the example of mft; we 
have 

mf:(l"ly) = lim N.! v1 v'k
1 

T 6 f drHdtJI exp(ikrab ) 
'Y B all arb 

We write this as 

m;;K(l"ly)==(mmS + [mf:(l"ly)]L, (B18) 

where the first term corresponds to the pure hard-core 
contribution (which is obviously y-independent) and the 
second term is the long-range correction. 

For evaluating (mf:)S, we can use (B14) by going to 
the grand canonical ensemble; we have [see I, Eq. 
(n.8)] 

(mm
S == ~ If (k

B
:)3 /2 ([t..E -Ck;T +nvl) t..N] 

x t V (JTK.S _ (iJTK.S)\ S • 
b.1 r,b b b 'Io.c. (B19) 

Using the well-known equivalence relations 

t..E - kB T2 oOT) 
JJ I"T 

(B20) 

and 

t..N - kBT o°/J.) / 

we get 

(B21) 

(- TK)S 1 r.- 1 r 2 0 ) (3kB T V.s) 
m S2 ==}jvt'lkBT LkBT oT JJ/kT - -2-+ no kBT 

x o°/J.) J [Oh(/J., T) - (;)N(/J., T)], (B22) 

Where, as in (A19), the notation (kin) indicates that this 
quantity should not be differentiated. By simple thermo­
dynamic transformations, Eq. (B22) can still be cast in­
to the following form: 

(mmS==4v'kBT[T(o~~nr +[(~:Y _(3k;T +nVaS)] 

x (ohln) S nf.on)SJ. 
on T \op T 

(B23) 

The calculation of (m~n1k I y»)L is much more 
elaborate; first, it is readily checked that, to order yO, 

only the terms a*-b and S *-a, b contribute in (B18); we 
have thus 

(m~n1k ly»)L == liym'( N v'T k: T f dYi dvN exp(ikr12) 

x (_ nYo
s +! ~ VS(r1'»){v2 r~~ 

kT 2 S*1,2 kBT x,2l2 

+ -2
1 6 V(r2t) - -2

1 ~ (.,oV) (r2t)x 
t~2 #2 ur2t ~ 

-~J}peqr. (B24) 
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After a trivial velocity integration, we find in (B24) 
three type of configurational averages: 

(a) Those independent of the potential; they involve 

11 = (l~m N f dr N exp(ikr12)p;..qY, (B25) 

where 

(B26) 

11 is simply related to the Fourier transform of the 
long-range part of the pair correlation fuilction; it is 
known that17 

I -!-L(k)=!-L _ -kBTn[(on/op)~]2Vf 
1- n g2 -n g2

,y- l+n(onlop)~V; 

(b) Those linear in the potential V(r). Putting 

av 
CTj (l, 3) = V(r13) or -~-- r 13 ,% (i = 1 or 2), 

Vr13t X' 

CTt(l, 3) = CTjL(I, 3) + CT j
S (1, 3), 

we find in (B23) a series of terms involving 

I2(T,S)=lim [N'l f dr N CT.(T, S )(1, 3) exp(ikr12)p;..q 
y , 

+N f drN CT/T,s )(1, 2) exp(ikr12)p~]L 

(we always work in the thermodynamic limit). 

(c) Those quadratic in the potential V(r): 

13 = l\m {~ f dr N CT 1 (1, 3)crt(2, 4) exp(ikr12)p;..q 

+ N2 f dr N CT1 (1, 3)[CTt(2, 1) + CTt(2, 3)] 

(B27) 

(B28) 

(B29) 

x exp(ikr12)p;..q}L • (B30) 

Let us first learn how to deal with Il; we have 

Il = Ii, 1 +12:2, 

where 

(B31) 

I{1 = li
y
m[N-1 f dr1 dr2 dr3CTt(l, 3) exp(ikr12 )n3(1, 2, 3)]L, 

(B32) 

(B33) 

Here we have introduced the three -particle distribution 
function n3 (1, 2, 3), 

(B34) 

With the cluster decomposition 

n3(1, 2, 3) = n3 + ng2(1, 2) + ng2(1, 3) + ng2(2, 3) + g(1, 2, 3), 

(B35) 

we immediately get 

Il,1 = liym{ g2(k)[at(O) + ol(k)] + N-1 J dr1 dr2 dr3 

x CT/(13) exp(ikr12)g3(1, 2, 3)} L, (B36) 

where have put 

g2(k) = f drexp(ikr)g2(2), 

at(k) = J drexp(ikr) CTt(2). (B37) 

The long-range part of the first term in Eq. (B36) is 
readily evaluated: 
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(a) 

FIG. 2. A typical graph contributing to (B43) and its 
decomposition. 

" I , 
I , 

I , 

e----- -'0 
2 

(b) 

lim{g2(k)[ujT(0) + ujT(k)]}L = g2L(k)[2a:S (0) + u!-(k) y , , 

+ ujL(O)] + g2S (O)ujL(k). 

Here gf(k) is the long-range part (B27) of the pair 
correlation function, while of course 

(B38) 

(B39) 

In order to deal with the second term of (B36), we 
follow the calculation of Hemmer17 and we use his 
composite Mayer graph technique. 

If we remember that 

g3(1, 2, 3)= sum of all composite irreducible 3-graphs, 

we see immediately that we may neglect 

lim N-1 J dr1 dr2 dr3CTl(l, 3)g3(1, 2, 3) 
y 

(B40) 

(B41) 

because, already in the absence of CT j
L (I, 3), we have a 

connected graph; it follows17 that (B41) does not con­
tribute in the limy. We are thus left with 

(B42) 

Denoting by a wiggly line the bond CTjS(a, b) and following 
otherwise Hemmer's notation, a typical graph contribut­
ing to the long-range part of (B43) is shown in Fig. 2. 

It can be divided into two disconnected parts: part (A) 
is a contribution to CTj

S (1, 3)gf (1,3) while part (B) con­
tributes to g2L (k). Noticing that part (B) can be attached 
to part A at any vertex of the latter, these vertices 
being in number equal to the order in the density, we 
arrive at 

l\mN-1 f dr1dr2dr3CTjS(I, 3)g3(1, 2, 3) 

=! g- (k)~ f drCT.S(r)gS(r). 
n 2 an ' 2 

Finally, we find simply 

T -L) I2,2=nCTj (k • 

Collecting these results, we obtain 

Il =gl(k)[ul(k) + ujL(O)] + [n + g2S (O)]uL(k) 

+ ! gL(k) ~ {f drCT S(r)[n2 + gs(r)]}. n 2 an j 2 

(B43) 

(B44) 

(B45) 

The modifications required to compute If are obvious, 
yielding 

IS = ! g-L(k)~ {f drCT.S(r}[n2 +gS (r)]}. (B46) 
2 n 2 an ' 2 
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It is interesting to point out that the difference be­
tween 11 and I 2s, namely the introduction of 4. u j

S (1, a) in 
the canonical average, leads in the final result to the 
following multiplicative factor [see (B27)]: 

(B47) 

The calculation of Is proceeds along the same way, 
but it is of course much more involved. To make a long 
story short, let us simply point out that we have proved 
a formula similar to (B47), namely, 

Is/I2T= a~f dru,S(r)[gl(r)+n2], (B48) 

where It is given by (B40). 

Combining all these results, together with the ob­
vious formulas, 

e S - (3kB T /2)n=t J drVS(r)[g~(r) +n2], (B49) 

5k T 1 f ( aV
S

) hS - -:- n="2 dr VS(r) -r" or" W(r) +n2
], (B50) 

it is a matter of simple algebra to obtain the explicit 
form for (m;;(lk I y»L. We get 

(m~:(lk!y»L=vf .jkBT [e:): -3k;T -nvtJ{(gt/kBT) 

x [v; + t 1:~ Wi + (a h/n)S J + n(an)S 
ay an T ap T 

X(V;+tl:~a;!)}. (B51) 

When (B51) is added to (B23), we obtain the compact 
expression quoted in Eq. (III. 16b) for m;;. The other 
coefficients m';.~ are obtained by similar calculations as 
well as the m~B and m!B which are listed below. 

C. List of the matrix elemeritsmfll (1 k I y) 

For completeness, let us list here the m~B(lk I y) 
corresponding to the other transport coefficients. For 
the shear viscosity, the nonvanishing coefficients are 

mMlk !y)=mMlk !y)[nkBTXT(y)]2 + O(y), 

mis(lk!y)=mi1(lk ly)[nkBTx T(y»)2v'I kIT 
B 

(B52a) 

x [e:): -3k;T -n¥osJ +O(y)=mMlk !y), (B52b) 

m~s(lk! y) = mil (lk ly)[nkBTx T(y)]2 ~ (k: T)2 

X[(~:): _ 3k;T -n¥osr +O(y), 

m~s(lk Iy) =m~2(lk !y) = kB T, 

where we have used (A23); for B =111 + 1:, we find 

mMlk I y) = mf1 (lk !y)[nkBTXT(y)]2 + O(y), 

mfs(lk !y)= m:1(l k Iy) 

= mfs(lk! y)[nkBTxT(y)] + mf1 (lk! y) 

(B52c) 

(B52d) 

(B53a) 

X [nkTXT(y)]2 ..fi. _1_ r(,ae)S _ 3kBT 
3 kBT L an T 2 

- nVos J + O(y) , (B53b) 
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m:s(lk! y) = m:s(lk! y) + 2mfs(lk! y)[nkB TxT(y)] 

X -n_l_ rlae)S _ 3kBT -nv,sJ 
3 kBTL\an T 2 0 

+mMnkBTXT(y)]2~ (k:T)2[(~:): 
3k T J2 -T -n¥os +O(y), 

mMlkly)=m~2(lk! y) + O(y), 

m~s(lk !y) =m~4(lk !y) =m~s(lk! y) + O(y), 

where we have used (A24). 

APPENDIX C. THE FUNCTIONS <I>~13 AND I/Y!.I3 

(B53c) 

(B53d) 

(B53e) 

For completeness, we list here the relevant functions 
4>~B and 4>~B for the cases of shear viscosity and of bulk 
viscosity. 

We have 

4>i2(lk!Y)=4>~1(lkly)=kBTlk lk gl~(y)' 
" Y 

4>~s(lk! y) = - 2kB Tlk lk , 
" Y 

4>~4(lk I y) = - 4> ~s(lk I y) = kB Tlk , 
~ 

4>~s(lkly)=kBTlk lk gs~(Y), 
" . 

where 

r.~( ) 1 Wi' ~12 y =1 + 2c2(y) ny ay , 

and 

4>i2(lk I y) = 4>~1 (l k I y) = 4>i2(lk I y), 

4>~s(lk I y) = 4>js(lk I y), 

<l>Mlk I y) = - <I>~3(lk! y) =4>~4(lk! y), 

Similarly, we have for B={11+ I: 

(CIa) 

(Clb) 

(Clc) 

(Cld) 

(C2a) 

(C2b) 

(C3a) 

(C3b) 

(C3c) 

4>f2(lk I y) = 4>~l(lk I y) = kB T[ (1:" -t)g i2(y) + g i2(Y)]' 

(C4a) 

4>~s(lk 1 y) = kB T[( It - t)gs~(Y) + gscs(Y)], 

where 

(C4d) 

(C4e) 
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1 ilVyL 2c2
(y) } (C5a) 

+3"Yay-+3;- , 

1 2 T (r{OP)S]2{ (02p)S L 
q;s(Y) = c4(y) "3 n2kB L,aT n n an2 T +nVy 

and 

(ap)S [(a2e)S L]1. aVf}_ (ap)S - n 2 + V + 3 ny il 2 aT iJe n an T Y Y n 

1 [( a2p ) s (ap)S (a
2
e) S] 1 

x XT(Y) anaT - ae n anaT " + nXT(y)2 

[( a2p)S _ (ap)S (a
2
e)S]) x aT2 ae aT2' (C5b) 

n n n 

.r.M1k I y) =.r.~1 (1k I y) = <l>f2(1k I y), 

iH3(1k I y) =<I>~3(1k I y), 

(C6a) 

(C6b) 

~~4(1k I y) = - ~~3(1k I y) = <I>~4(1k I y), (C6c) 

H4(1kly)=<I>~4(1kIY), (C6d) 

<I>:s(1
k 
I y) =H [C4(y)/(C~ T)2](nkB TXT (y»2} kB Tqfs(y). 

(C6e) 

Note that in these equations, we have separated <I>!s and 
~!s into two parts: 

<I>!S<1kly)=~~S<1k Iy) +~~S<1kIY), (C7) 

which, respectively, correspond to the shear part, ~1), 
and the bulk part, t, of the coefficient B =~1) + t. When 
the decomposition (C7) is inserted into (III.8), the inte­
gration over the angular part of k makes them mutually 
orthogonal. 

APPENDIX D: CALCULATION OF ~ (,) 

If we introduce (C4), (C6) into Eq. (III. 8) and per­
form the integral over the angles, we obtain for B (1) 

B (1) = 41)(1) + t(l), (D1) 

where 1) (1) is precisely given by (III. 21), while t(l), 

which corresponds to bulk viscosity, is given by the 
following formula: 

t(l) = :~ i~ dY[(b 1(y)2K
s

/!C,.{y) -hard core) 
I 

+ (b2(Y)2r~y) -hard core)]. (D2) 

Here b1 and b 2 are, respectively, defined by 

with 
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and 

K(y)=)(a2p(?») _(ap)S(a2e(~») ] L an T ile n an T 

(11!.)S L [(.f:.L\ S _ (ilP)S(~\ S] 
+2 aT nCs anaT} ae n anaT} 

" v 

[( ap)SJ2 ~ ~(~)S _(ap)S(il2e)S] + aT (nC S)2 aT2 ae aT2 , 
n v n n n 

where we have introduced 

p(y) = pS(n, T) + tn2V;, 

(D5) 

(D6) 

(D7) 

e(y)=eS(n, T)+tn2VyL. (D8) 

In order to bring b1(Y) and b2(Y) into the form given in 
Eq. (III.24), we use the following trick: Let us define 
formally a free energy density, function of y, 

fin, T I y) = fS (n, T) + tn2V;. (D9) 

It can be interpreted as the free -energy density, 
taken in the van der Waals limit y - 0, of a fictitious 
fluid which has an attractive potential VL(r) such that16 

(D10) 

Now, it is easy to check that all the thermodynamic 
quantities which appear in Eqs. (D5)-(D6) are related 
tof(n, Tly) by the usual thermodynamic formulas, 
whether they are denoted with the superscript S or not. 

For example, the pressure associated with (D9) is 

(af(Y») p(n, Tly)=-f(n, Tly) +n\Tn"" T (Dll) 

=pS(n,T)+tn2V;, (D12) 

which is precisely (D7). Similarly, we get from (D12) 

(ap(y») = (~)S, 
aT n aT n 

which gives an example of the redundancy of the 
superscript S, etc. 

We can thus rewrite (D5) as 

(D13) 

L(y) = [(a~~») J [ne~~~»)T - ne~~»)ne2:~~»)T] 
_ 2 (ap(y») _1 ~(a2p(y») _ (ap(y») (a2e(y»)] 

aT nXT(y)LanaT ile" anaT 

+ 1 [(a 2p(y») _ (ap(y») (iJ2
e(y») ] 

n[xT(y)]2 aT2 
n ae n aT2 n 

(D14) 

and a similar formula for K(y); here p(n, Tly), p(n, ely), 
e(n, T I y), etc. are thus all defined by the standard 
thermodynamic relations from the free energy fin, Tly). 

Having established (D14), where y appears as a pa­
rameter, we can now transform this equation by stan­
dard manipulations, involving a judicious use of the 
classical relations of thermodynamics. 17 We then ob­
tain Eq. (III. 24) of the text, after considerable but 
elementary algebra, which will not be reproduced here. 
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APPENDIX E: THE REDUCTION FORMULA 
(11.15) IN THE DILUTE GAS CASE 

Let us first recall that the linearized Boltzmann 
operator can be written 

C IB(Vll!l (vl» = J dv2[CB (vu V2 l!l (v1)CPO<l(V2» 
+CB(VU v2!cpeq(vl )fl(V2»], (E1) 

where the two-body operator CB(VUV21 ) is defined by 

CB(vu v2!fl(Vl )JI(V2» = n J dno-(n! V12)! V12 ! 
x [jl (vf )JI (v;) - fl (vl)f:( vz) ], 

(E2) 

for two arbitrary functions fl and ff. Here o-(n I V12) is 
the scattering cross section for angular deflection n and 
relative velocity V12 = VI - v2• Moreover, v{ and v~ de­
note the velocities of particle 1 and 2 after the collision 
process. 

It is readily verified that, in the dilute gas limit, the 
operator 'l'{O):{O)(vu v2; iE) precisely reduces to 
CB(Vl' v21 ••• ) while 'l'J'S(vl) becomes CIB(V11 ••• ).7 Let 
us prove explicitly Eq. (II. 16) in this case. 

As a consequence of particle, momentum, and energy 
conservation, we have obviously 

CB(vu v2 I (ia(vl ) + i a(v2»fl (vl )f{(v2» 
= (ia(vl ) + i a(V2»CB(vu v2 If 1 (Vl )JI(V2», 

where ia(v) is any of the five quantities 

ia(v) EO 1, v, v2 /2. 

(E3) 

(E4) 

We consider then [see (II. 15)] the quantity defined by 

J = J dV2CB (VI' v2 I (ia(vl )is(v2) + i a(V2)iS(Vl»cpeq(Vl)cpeq(V2» 

(E5) 

and we transform it by adding and substracting the same 
term 

J = J dV2CB(V1, v2 I (ia(vl ) + i a(v2»(is(vl ) + iB(V2»cpeq(Vl)cpeQ(V2) 

- J dV2CB(Vl' v2 I (ia(Vl)is(Vl ) + ia(V2)is(V2»cpeq(Vl)cpO<l(V2)' 

(E6) 

USing (E3) twice, together with the obvious property 
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(E7) 

we see that the first term on the right-hand side of (E6) 
vanishes. From (E1), we get then 

J = C IB(VI I ia(vl)iB(vl)cpeq(Vl». (E8) 

Using the linear relationshio (II. 14) between the I!~ 
and the i a , one readily verifies that (E8) is equivalent 
to (II. 16) in the dilute gas limit. 
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The present work completes the algorithm which Bhabha had prescribed so as to set up the 
commutation relations of spin algebras but could implement it only for spin one algebra using a 
third order permutation identity. Generally this work is concerned with the setting up of the 
commutation relations of derived polynomial algebras which are obtained by addition operation from 
a basic polynomial algebra. To obtain these commutation relations, a set of identities called Josthna 
identities are introduced among the permutations of a finite set of elements. With the help of these 
identities it is established that commutation relations for derived algebras can be set up directly. 
Applications to spin and parafield algebras are considered to obtain their commutation relations 
which make their deduction trivial. 

1. INTRODUCTION 

In a previous contributionl bearing the same title, 
hereafter referred to as I, a class of associative alge­
bras called polynomial algebras A[al, a 2 , ••• , am] with 
{alli= 1,2, ... m} as generating elements, have been 
introduced and important properties studied. The 
bearing of the subject on theoretical physics was indi­
cated by showing that through them a unified mathemati­
cal treatment of the class of algebras such as Clifford 
and Grassman algebras (ordinary and generalized) and 
spin and parafield algebras can be given. The possibil­
ity of this unified treatment strengthened our belief in 
the existance of a general procedure of obtaining the 
commutation relations of the derived algebras which are 
obtained by the addition process from a basic poly­
nomial algebra. 

In fact there exist a class of identities called here 
Josthna2 identities, among the permutations on a finite 
set of elements, making use of commutator and anti­
commutator operations on permutations. We establish 
that these identities give us all the information required 
to set up the commutation relations of the derived poly­
nomial algebras. In fact by making use of them one can 
trivially set up, for example, the commutation relations 
of spin and parafield algebras of arbitrary order and 
their generalizations. 

In the second, third, and fourth sections, we intro­
duce Josthna identities by setting them up through an 
inductive procedure. In the fifth section we establish the 
relevance of them in obtaining the commutation rela­
tions of polynomial algebras and in particular the nth 
order derived polynomial algebras obtained by an ad­
ditive procedure from a basic polynomial algebra. We 
conclude this section and the paper by setting up the 
commutation relations of spin and parafield algebras. 

2. NOTATION AND ELEMENTARY LEMMAS 

As indicated in I the polynomial algebras are a parti­
cular case of simplicial algebras which are defined in 
terms of il and 0, the face (restriction) and degeneracy 
(substitution) operations. But, as is trivially seen, 
these operations coincide when applied to elements of 
sets. Hence, in what follows we shall be interested in 
face operations on sets of finite number of integers and 
in particular the set N of first n natural number and the 
permutations defined in these sets. 
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Generally, let 61J ... N =NIJ ... = {1, 2, ... , i, .. . ,j, ... } 
be the derived set obtained from N by deleting the ele­
ments i,j, .. •. Note tpa(N12 ... n = 0, the null set. We also 
write NIJ ... as N I2 .. ·j·"'''·n whenever it is convenient. 

Let 

be a permutation on N. In what follows we fix the natural 
order 1 .. • n and write the permutation as P = (iI' i2 , ••• , 

in) or simply as i I i 2,,·in• Further a permutation on NIJ ... 
is written as Pi' .... In particular, {P}, {Pi}' {Pij}' ... 
stand for the set of all permutations on N, Np Ni" etc., 
respectively. 

Now, let m and n be two positive integers such that 
n~m. Let P=(il , ... , i m ) be a permutation on (1,2, ... , 
m) and Q=(im+I' .•. , in)' a permutation on (m + 1, m + 2, 
... , n). Then by PQ and QP we mean the permutations 
il i2 ... in and i m+1 ... in il '" in of N respectively. In gener­
al, if N is partitioned, then the products of permutations 
on these partitions of N have meaning as permutations 
onN. 

Now, consider a sum L: of permutations from {P} over 
N with natural integral coefficients N. In fact all such 
sums define a group module of the nth order symmetric 
group over N. Similar sums on {.P ii'" } are written as 
L: iJ ... • In particular let S stand for the symmetric sum 
of all the n! permutations of N with unit coefficients. 
Extending this notation, we write Si}'" for a similar 
sum of all the (Card No''')! permutations on No .... 
Hence, 

and 

S=~ 12 .. ·n 
(p) 

Sii'" =:6 12 .. · t· .. J ... n. 
[Pjj ... ) 

In quantum mechanics the commutator and anticom­
mutator operations on observables are of central im­
portance. Now, let us define the following operations on 
permutations in analogy with these commutator and 
anticommutator operations: 

(2.1) 

and 

(2.2) 

Copyright © 1974 American Institute of Physics 1255 
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where 6i is a sum of permutations over Nj. 

From the definitions we have the following useful, 
though trivial, lemmas. 

Lemma 1: 

L; 6 =(n-r)! 6 (2.3) 
(Pjll (Pi l i2"'i

T
>11 (Pjll 

Proof: This follows directly from the definitions of 
{Pili2".} by a simple enumeration'. 

Lemma 2: 

Proof: Obviously, S = L: iSi = L: SJ. Hence, the 
result by using (2). Hence, 

2S={i,Sj}+ 6 {j,Sj} 
JENj 

Lemma 3: 

Proof: Obviously, 

6{j,Sj}=(n-2)! 6 {j,Sj}, 
(Pil JEN; 

(2.4) 

(2.5) 

(2.6) 

which follows by a simple direct enumeration. Hence, 
(6) is obtained from (5). 

Now let K~(n - 2) be the set of all permutations of N 
which do not contain i either in first or the last place. 
We shall introduce in the fourth section K~(m) for nand 
m which are either both even or both odd. Now in terms 
of this notation we have 

Lemma 4: 

S={i,S;}+K~(n- 2) (2.7) 

Proof: Obviously, K!(n - 2) is the sum of all the (n 
- 2) (n -I)! permutations of N which do not contain i 
either in the first or the last place. And {i,Sj} contains 
from (2) all these permutations of N which contain i in 
the first or the last place. Hence, the result. 

Now, let us introduce inductively on the order of 
permutations certain sums of permutations of the same 
order which playa central role in setting up the com­
mutation relations of the derived algebras. For that let 

C(il i2 i3) = il i2 i3 + i3 i2 il (2.8) 

and inductively 

C(il i 2 '" in) = {iI' C(i2 i 3 '" in}} (2.9) 

A few typical C sums of permutations are n(3, 6), 
dropping i, 

C(123) = 123 + 321, 

C(1234) = 1234 + 1432 + 4321 + 2341, 

C(12345) = 12345 + 12543 + 15432 + 13452 

+ 54321 + 34521 + 23451 + 25431, 

C(123456) = 123456 + 123654 + 126543 + 124563 

+ 165432 + 145632 + 134562 + 136542 

+ 654321 + 456321 + 345621 + 365431 
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+ 234561 + 236541 + 265431 + 245631. 
(2. 10) 

Lemma 5: C(iI'" in) has minimal symmetry. 

Proof: With respect to i n-2 , in' the C(il'" in) remain 
invariant when the two elements are interchanged. 
Further, C(il ". in) contains 2n-2 permutations and the 
element i n_l never occurs at the end of the permutations 
in C(il ". in)' In fact we can enumerate very easily all the 
permutations in C(il'" in) which contain i n- l in the pth 
place. Hence, we have the following: 

Lemma 6: There occur 2n-3 Cp_2 permutations in 
C(il ·" in) which contain in-I in the pth place. (Note that 
nCT=O either if r=O or n=O). 

Proof: Note that the lemma is true when n = 3. Fur­
ther from (9) we note that permutations in C(iI'" in) with 
i n_1 in the pth position come from permutations in 
C(i2 i 3 ". in) which contain i n_1 in (pO - l)th and pth posi­
tions only. Hence, assuming the result to be true for 
(n - 1)th order C permutation sums and making use of 
the additive property of binomial coefficients, i. e., the 
structure of the Pascal triangle the result follows. 

Now consider the number of permutations in C of 
order 3, 4, 5, and 6 in which 2, 3, 4, and 5 occur in 
different places. By the Lemma 6 we see that they can 
be arranged in the form of the Pascal triangle 

2 
22 

242 
26 6 2 

2 8 12 82 
(2.11) 

which is nothing but the ordinary Pascal triangle in 
which each element is multiplyed by 2. Finally, we have 

Lemma 7: 

(i) 6 C(iI i 2 i 3)=2K!2(1) 
{Pj21 

(ii) 6 C(il i2 i3 i4 ) = 2K!3(2) 
(Pj31 

Proof: This follows directly by the definition of C of 
order 3 and 4 and K 3(1) and K4(2) and making use of the 
minimal symmetry of the C symbols. 

3. JOSTHNA IDENTITIES OF SMALL ORDERS 

To set up the identities, let us introduce a Lie type of 
permutation sums by making use of (2. 2), namely 

[i I i 2 ]= i1i2 - i 2i I 

and inductively 

[il i 2 '" in] = [il [i2,"" in]]' 

(3.1) 

(3.2) 

Josthna identity oj third order: From the definitions 
(2.8) and (3.2) it follows that 

[jik] = C(jik) - C(ikj). (3.3) 

ConSidering the sum over {Pi}' we have 

6[jik]= 6C(jik) - C(ikj) 
(Pil (Pjl 

= 2 C(jik) - C(ikj) - C(kji), 

by making use of the minimal symmetry property of., 
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C(jik). Hence, we have 

3C(jik)= ~(jik]+S, (3.4) 
(Pi) 

where S is the sum of all permutations of {1, 2, 3}. (3.4) 
is the required identity. 

In general we shall find an identity expressing some 
integral multiple of C(il i2 '" in) in terms of 

~ i l ,·· .,[i,...a i n_! in] 

and 

~ iI'" .,i(m_n)/2 C(jI··· jm)i~,··· ,1~m-n)/2 
(Pin-I) 

and an integral multiple of S. This identity is called the 
Josthna identity of nth order. It is not obvious that such 
identities exist. However, we shall establish by the 
inductive procedure that not only Josthna identities exist 
but shall give also a procedure to set them up quickly. 

To carry out the inductive procedure and to motivate 
the theory developed in the next section, we shall, in 
this section, set up Josthna identities of fourth and fifth 
orders which are quite typical, as a consequence of 
simple lemmas developed in the previous section. 

Josthna identity of fourth order: Consider 

3 {j, C(kil)}= :0 {j, [kil ]}+ {j, S J, 
(Pij! 

(3.5) 

which follows from the third order identity by a trivial 
rearrangement of symbols. Now, sum over {PI} the 
above expression in analogy with what is done in the 
third order case. Hence, 

3 L:{j,C(kil)}=:0 :0 {j,[kil]}+:0 {j,S,}. (3.6) 
{Pll (PI) (PlJ) 

Simplifying by using Lemmas 1 and 7, we get 

6 K! (2) = 2 ~{j, [kil]}+ :0 {j, S j}. 
(Pi) (Pi) 

Now, using Lemmas 3 and 4, we have 

3(S - {i, Si}) = ~ {j, [kli]}+ 2S - {i, S t}, 
[Pi l 

Le., 

2{i,Si} == :0{j, [klil}+S. 
(Pi) 

Using the third order Josthna identity in the form 

S i = 3 C(jkl) - L: (jkl], 
[Pk l 

we obtain, 

6{i, C(jkl)} = 2 :0 {i (jkl]} + :0 {j, [kliJ} + S, 
[Ptkl (Pi) 

or 

6C(ijkl)=2 L {i, (jkl]}+ :0 {j, [kli]}+S, (3.7) 
(Plk) (Pi) 

which is the fourth order identity. 

It is interesting to note that all the known commuta­
tion relations of spin and parafield algebras of orders 
t, I, 1, and 2, 3, 4 respectively can be set up trivially 
with the help of the two identities (3.4) and (3.7). 

Josthna identity of fifth order: Apart from the third 
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and fourth order identities which are required for 
starting an inductive procedure, we want to set up the 
next identity also as it is typical and suggests a general 
method to obtain Josthna identities of all orders. To 
observe the new features that arise, we first refer to 
the Pascal triangle (2.11). It is obvious from it that the 
number of permutations in C(12345) with 4 in different 
places are not the same. Hence, when we sum over dif­
ferent permutations as in (3.3) and (3.6), we get an 
unbalanced sum of permutations which can be put in the 
form (3.4) and (3. 7) if only we make use of the third 
order identity. To establish this, consider 

6{j,C(klim)}= :0 {j{k[lim]}}- :0 {j{i[lkml}} 
(P 1Jk! PjN 

+{j,Sj} 

which is obtained by finding the anticommutator of (3.7) 
by j after suitably relabelling the permutations. Fur­
ther, note the preferred position for i when used in the 
above expression. Summing over {pi}, we have 

6 ~{j,C(klim)}= L {j, ~4}+ ~ {j, Sj}' (3.8) 
(Pi) (Pi) 

where A4 stands for all the mixed permutations in (3.7). 

Now, we divide the permutations in {j, C(klim)} into 
two classes 02220 + 00200 where OCtpyO stands for a 
number of Ct, (3, and y permutations with i being in the 
second, third, and fourth, places respectively, such 
that each class has the minimal symmetry with respect 
to I and m. Considering now the pair lC(jik)m of 
permutations that belong to 00200, their sum over {Pi} 
gives 

3 L lC(jik)m= 6 :0 l(jik]m+:0 lSlmm (3.9) 
(Pi) {Pj)(l>i 1m } {Pi} 

by the third order identity. Carrying out the summation, 
using Lemma 1 and the minimal symmetry of C's, we 
have 

3K~(I)= :01(jik]m+K;(3), (3.10) 
{Pi} 

where K~( 1) is the sum of all the fifth order permuta­
tions P with i in the middle position. 

We also have, from the division 2(01210) = 2(01110) 
+ 2(00100) of the third row in the Pascal triangle (2. 11) 

:0 {j,C(kUm)}= 2K;(3) + 2K~(1). (3.11) 
{Pi} 

Now, using (3. 10) and (3.11), we obtain 

3 ~ {j, C(klim)}= 8K~ (3) + 2 ~ l(jik]m. (3.12) 
(Pi) (Pi) 

Finally, eliminating ~ Ip.) {j, C(klim)} from (3.8) and 
(3. 12), we have • 

16K;(3)= ~ {j,A4}-4 :0 1 [jik]m + ~ {j,Sj} (3.13) 
{Pill (Pi) {Pil} 

or 

8(S - {i, siD = - t As + 3 (2S - {i, S i} ) 

by using Lemmas 3 and 4 and As for the mixed terms in 
(3. 13). Note that by Lemma 1, each permutation in As 
is duplicated. Hence, 

(3. 14) 
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Now, using the fourth order permutation identity in the 
form 

6C(i i··· i )-.:l.i2isi4i5+S 
2 S 5 - 4 11 

and substituting in (3. 14), we get 

30C(ili2isi4i5)=-i L: {j,.:l.4}+26 Z(jik]m 
{Pill {Pll' 

(3.15) 

which is the fifth order Josthna identity. 

4. JOSTHNA IDENTITIES OF ARBITRARY ORDER 

A few more lemmas: First we generalize K~(n - 2), 
K!(2) and K~(3), K~(1) by considering K~(n - 2), K!(n - 4), 
"', etc. Note that K!(m) are such that either both nand 
m are even or both odd and n> m. Hence, n - m is al­
ways even. Now let K!(m) stand for the sum of all those 
permutations which have i in the Wn-m)+ 1, t(n-m) 
+ 2, ... i(n + m)]th places. When i is in these positions, 
it is said to be symmetrically situated. Note that K!(m) 
is not defined otherwise. 

The simplest way to set up K!(m) is by considering 
the sum of all permutations of order m over a subset of 
integers from {12 ... n} containing i and then pre- and 
postmultiplying them by t(n - m) remaining integers in 
all possible ways. Hence, designating by Sl(m) the sum 
of all permutations of m elements from N which contain 
i, we have the following: 

Lemma 8: 

(m -I)! K!(m) = ); i l i 2 '" i(n_m)/2Si(m) i~i~'" i(n-m)/2' 
tpj' 

(4.1) 

where i's and i" s are the distinct elements from N. 

Proof: Obviously, all permutations on the right side 
are contained in the expression on the left and vice 
versa. Further, the order of K!(m) is (n-l)! m and of 
the permutations on the right, (n-l)!(m -1)!m. Hence 
the result. 

In Lemma 7, we established the relations between 
suitable sum's of C and K symbols which are of basic 
importance in setting up Josthna identities of orders 
3, 4, and 5. We obtain generalizations of them that are 
used to set up all Josthna identities. To consider them, 
we introduce first of all what we call odd and even 
Pascal triangles. Let them be given by the figure shown 
below. 

1 

121 

1 4 6 4 1 

1 6 15 20 15 6 1 

Odd Pascal triangle 

1 1 

1 3 3 1 

15101051 

1 7 21 35 35 21 7 1 

Even Pascal triangle 

Now, consider characteristic vectors A~, Q = n, 
n - 2, n - 4, ''', of order n with units in the place of 
entries in Pascal triangle as shown in the following 
figure for n = 7 and 8 respectively, and zeros else­
where, i. e., the units lie in the symmetrical places. 

OOOxOOO OOOxxOOO 
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OOxxxOO OOxxxxOO 

OxxxxxO OxxxxxxO 

xxxxxxx xxxxxxxx 

n==7 n==8 

Note that nand Q are either even or odd together. Simi­
larly, we write 8~ for the vectors of order n with bi­
nominal coefficients as entries from a Pascal triangle 
which is either even or odd. In what follows, when con­
venient we shall drop the n's and assume that the Pascal 
triangle is bounded by an infinite sea of zeros. Now we 
have the important expansion of 8~ in the basis of An 
given by 

Lemma 9: 

B m =6Am + (mCl - mCo)A"'-2 + (mC2 - mCl)Am-4+ ... 

+ (m C [( mol) /2J - m C [( m-ll /2 J.- 1) A m-2[ (",-ll /2J , 
(4.2) 

where mCr's are the usual binomial coefficients and [x] 
stands for the largest integral part of x. 

Proof: Follows by a simple induction on binomial 
vectors B. 

Note that n - 2 [(n - 1)/2] is 1 or 2 according as n is 
odd or even. We note a few consequences of Lemma 9. 

Examples: 

(01210) = (01110) + (00100), 

(14641) == (11111) + 3(01110) + 2(00100), 

(013310) == (011110) + 2(001100), 

(15101051) = (111111) + 4(011110) + 5(001100), 

We further also have 

Lemma 10: 

(m - 2) + (m-s Cl - m-S Co) (m - 4) + ("'-3 C2 - ",-3 Cl ) (m 

- 6)+·.· 

+ ("..3 C(m_1l /2 - m-3 C [( ",-ll /2J- t> (m - 2 [(m - 1)/2]) 

(4.3) 

Proof: This follows by rearranging the terms as 

2(m_3 Co + m-3 Cl + .•. + ",-3 C[(m_ll /2J-l + m-3 C[ ("..0 /2J 

X(m - 2 [(m - 2)/2]), (4.4) 

the last term being multiplied by 1 or 2 according as n 
is odd or even. Now making use of the symmetry", Cr 

= mC",_r of the binomial coefficients, and 

the result follows. 

Now, to generalize Lemma 7, let C~(ili2'" i"'_l im ) 

stand for a set of 2(m_3Ca - m-3Ca-l) permutations of 
C(ili 2 '" i m ) which have the minimal symmetry with 
respect to i"'_2 and im and are such that i m_l = i (say) is in 
the [(m - a)/2 + 1, (m - a)/2 + 2, "', (m + a)/2]th place 
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when m and a are both odd or both even. Hence, by 
construction, we have 

Lemma 11: 

(4.5) 

where L: indicates that a should be increased or de­
creased by 2 in writing the terms of the summation. 

Further, consider i l i 2 '" im_l im as a subset of N con­
taining i = in-l in the (m - l)th place, i. e., i m_l = in-l = i 
(say) and pre- and postmultiplying (4. 5) by (n-m)/2 of 
the remaining indices from N and taking the sum over 
{p /} of the identity (4. 5), we have 

Lemma 12: 

where 

m-sD 01= m_3C" - m_3C a-I' (4.7) 

Proof: The left side Lemma 11 is given to be 

As C's have minimal symmetry, each term in the above 
summation is duplicated, and further as there is permu­
tation over all symbols expecting i, there exists by 
Lemma 9 a further multiplicity of the permutations 
given by n-3C a - n-3C 01-1 as C ~ contains permutations with 
i lying in a central places. Hence, the contribution for 
(4.8) is 2n-sDa K~(a), establishing the lemma. Further 
we have, similar to the above result, 

Lemma 13: 

(4.9) 

Proof: This follows on the same lines as the previous 
lemma. However, note that the order of permutations on 
the left-hand side is n + 1. 

Induction hypothesis: We assume from the structure 
of Jasthna identities of order 3, 4 and 5, that it is pos­
sible to write the first n - 2 identities as 

(4. 10) 

where An are the terms which are contributed from 
commutation and anti-commutation operations of the 
form {jlj2'" [jn-2j n-lj n]} and {jl ... [ijk] j,'" }; S is the 
sum of all n! permutations on N; the constants an and b n 
are functions of n only and a3 = 1 and a4 = 6 and b 4 == 1. 
Immediately we have the central 

Lemma 14: 

(4.11) 

Proof: To prove this, we introduce an arithmetic 
function M on the set {fI} of the sums of permutations of 
N with integral coefficients. Let II = L: aj(il i2 '" in)' 
where i == il i2 '" in and II = II' if al == at. for all the n! 
permutations i. Now, let 
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M(E)==6 a\. 

It follows directly that 

M<El +~)=M(El)+M(~). 

Further, M(An) == 0 as each term of An contains a triple 
commutator of the form [ijk] according to the induction 
hypothesis. Now, to establish the lemma, evaluate the 
arithmetic function M on both sides of (4. 11) and use 
the fact M (C(i1 i 2 .. • in)) = 2n-2 and M(S) = n! 

Another simple induction hypothesis and its proof: 
Consider integers m and n such that n - m is an even 
positive integer. Let then 

(4.10') 

As C and S have minimal symmetry, Am has also the 
same symmetry. Now pre- and postmultiply (4.10') by 
(n - m )/2 elements from N n {i l .. • i m}, and summing 
over {p /} where i == i m_l , we obtain 

2 am[K~(m - 2) + m_sD1K!(m - 4) + ... + m_3D[(m_ll /21 K~(m 

- 2 [(m - 1)/2])] 

Using Lemmas 8 and 12, we obtain 

am[K!(m-2)+"'+m_sD((m_ll/21_l K!(l or 2)] 

==tA!(m)+bmt(m-l)! K!(m). (4. 12) 

Because of the minimal symmetry A!(m) contains pairs 
of identical permutations. Hence, multiplication by a 
factor t is meaningful. 

The first few examples of (4.12) are 

3K!(I) == t A!(3) + K! (3), 

3.4 K!(2) = t A~(4) + 3. 2K!(4), (4. 13) 

which follow from third and fourth order Josthna identi­
ties respectively. 

Theorem 1: 

A n_2 (n - 2)K!(n - 2a)= A n_2a .n-2 + A n_2(n - 2a)K!(n - 2) 

(4.14) 

for a == 2,3, ... , [(n - 1)/2] with the constant A n_2 which is 
independent of a; and An-2a.n-2 is a sum of mixed permu­
tations consisting of commutator and anticommutator 
operators on permutations. 

Proof: By induction. First by using the arithmetic 
function M we obtain 

(n-l)M(K!(n- 2a + 1))= (n - 2a +l)M(K!(n- 1)). 

As M(K!(m)) = (n - I)! m the above equation is consis­
tant. Now obviously the theorem is true for n = 3 or 4 
from the examples (4.13). On the basis of induction 
hypothesis we assume that the theorem is true for 
(n - 4) such that we have 

A n_4(n - 4)K!(n - 2 a) = An-2a .""4 + (n - 2a)An_4K~(n - 4) 

(4.15) 

where Q' = 2,3,4, ... , [(n - 1)/2] and A n_4 is independent 
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of a and n ~ 5. Note that a .... 4•n-4 = O. From m =n - 2, 
we have from (4. 12) that 

an_2[K! (n - 4) + n-sDl K! (n - 6) 

+ ... + n-SD[(n-3) /2)-1 K~(n - 2 - 2[(n - 3)/2])] 

=ia!(n-2)+b .... 2i(n-3)! K!(n-2). 

Substituting for K!(n - 2a) from (4.15), we have 

A""4 an_2 [(n - 4) + n-sDl (n - 6) + ... + .... sD[(n-3) /2)-1 K!(n - 4) 

= tA""4 a!(n - 2) + An-4bn_2 i(n - 3)! K!(n - 2) 
[(n-1)/2)-1 

X 6 n-sD", a n-2",.n_",· 
",=2 

Using Lemma 10 for n - 4, we have 

A n_4 [an-2/(n- 4)] 2n
-

S K!(n - 4) = '6.n(n - 2) + bn_2An-4 

x i(n - 3)! K!(n - 2) 

with obvious substitutions. Multiplying by (n - 2a) and 
using again (4. 15), we have 

A n_4an_2 2n-5 K n(n-2a)=(n-2a)'6.n(n-2) 

+ [an_2/(n- 4)] 2n
-

S an-2.n-4 

+(n-2a)bn-2 A n_4 t(n-3)! K~(n-2). 

This can be written as 

(n - 2)A""2 K~(n - 2a) = a n_2",.n_2+ (n - 2a)A~2Kn(n - 2) 

for a = 2, 3, ... , [(n - 1)/2], where 

A n_2 = an_2 [An-4/(n - 2)] 2n- s, 

A~_2=bn_2 A n_4 i(n- 3)! 

and 

a n_2", .n-2 = (n - 2a) An(n - 2) + [an_2/(n - 4)] 2 .... 5 a n_2", ..... 4' 

(4.15') 

Now using Lemma 14, we have A~_2 =A",,2' By induction 
hypothesis A""2 is also independent of a, since by as­
sumption an_2 and bn_2 are functions of n only. As the 
hypothesis is true for both n = 3 and n = 4 from (4. 13), 
we have established the theorem. 

Finally, we prove the main theorem of this paper by 
induction which establishes Josthna identities of all 
orders. 

Theorem 2: In the above notation by induction it 
follows that 

and 

an+1 = (n+ l)!(n - 2)! ... 2! 1l/2n-1, 

bn+1 = (n - 2)! .. ·2! 1!, 

Proof: Consider the following sum of anticom­
mutators: 
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(4.16) 

(4. 17) 

(4.18) 

which is obtained from (4. 10) after carrying out suitable 
changes in the indices and {PI } is the set of all permuta­
tions of {I, 2, ... , iI' ••. , n + i}. Using Lemmas 4 and 
11 and the minimal symmetry of C's, we have 

2 an {K n+1 (n - 1) + n-zV1Kn+1 (n - 3) + ... 

+ n-zV[n/2) Kn+1(1 or 2)} 

= L: {i2' a n}+ bn(n - I)! (2 S - {iI' Si1 }). 
{Pl1} 

Since an itself has the minimal symmetry a pair of 
permutations with identical coefficients are contributed 
from each term in 2: {PI } {i2' an}' Hence the above ex­
pression can be writteri as 

an {Kn+1(n - 1) + n-zVl K n+1(n - 3) + ... + .... zVn/2Kn+1 (lor 2)} 

(4.19) 

Now, making use of (2.14) after changing n-n+ 1 which 
depends only on the first n - 2 Josthna identities, we 
obtain 

[an/(n - 1)] {(n - 1) + n-zV1 (n - 3) + ... + n-zV[n/2) (lor 2)} 

XKn+1 (n-1) 

=An+1+tbn(n-1)! (2S-{i1'SI}' 
1 

by using the obvious substitution. 

Now, by Lemma 10, we obtain 

[a j (n - 1)] 2 n-2 K n+l (n - 1) = a n+1 + ibn (n - I)! (2S - { ii' si I}) 

and then by Lemma 4 we have 

[aj(n - 1)] 2n-2 (S - {iI' SI)'= An+1 +t bn(n - 1) !1(2S - {iI' SI) ) 

or 

{[aj(n_1)]2 n-2 - bn(n-1)!}S='6.n+1 +{[aj(n-l)] 2n-2 

-tbn(n-1)!} {iI'S/}, 
1 

Now, substituting (4. 10), we have finally 

where 

and 

an+1={[an/(n-1)] 2n-2-Hn(n-1)!} ajb n, 

bn+1 = {[an /(n - 1)] 2n-2 - bn(n - 1)l}, 

which is equal to (4.18). 

(4.20) 

(4.21) 

Note that an+!, bn+1 are purely functions of n only by 
induction hypothesis. 

Now, using Lemma 14, we have 

an+1=i(n-2)!(n+1)an and bn+1=bn(n-2)!. 

Making use of the initial condition obtained from third 
and fourth order Josthna identities, we obtain (4.16) 
and (4. 17) respectively. This establishes Theorem 2 
and the fact that Josthna identities of all orders n ~ 3 
exist. Finally we note that if C(i1 i2'" in) and C(i~i~ .. • i~) 
are the C terms with two distinct permutations of i's 
and i's of N, then 

an C(i1i 2'" in) - a n(i1 ... in) = anC(i~ ... i~) - an(i~ ... i~), (4.22) 
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which follows directly from the nth order Josthna 
identity. 

5. COMMUTATION RELATIONS OF 
POLYNOMIAL ALGEBRAS 

Commutation relations of simplicial algebras 

Suppose A[a', ... , am] is an algebra not necessarily 
associative with a finite basis over an infinite field F. 
Let 

(5.1) 

be a general element of A in the linear space Lm over 
F. L(x) satisfies a minimal equation 

(5.2) 

which holds for every general element L(X)E Lm' If A is 
a simpliCial algebra, then P t' s are symmetric homo­
geneous polynomials (SHP's) in x and are given by1 

P T = L a[ J L [a1." aT] al'~"" ,ar • < i < ••• < i 
1 2 r 

for r= 1, ... ,n, where ijE [1,2, ... , m] and [a1 , a2 , ••• , 

aT] is a composition of r, i. e., integers a; > 0 are such 
that L: a; = r. In particular, if A is a polynomial algebra, 
the degree of Eq. (5.2) is independent of the number of 
the basis elements [a; I i = 1, ... , m]. Substituting (5. 1) 
in (5.2) and making use of (5.3) to find the coefficient of 
the general expression X 1X 2 '" xn where n <sm, we obtain 

La1· .. an+a~ L a 1··• a""10n+a~12lLa1 .. ·an_20n_10n 

+a~2lLa1· .. an_20n_1.n+·"+ L ala1 "'al 
[a1 ... arl r 

xL:; a l ••• 0!n--r 5n_r+l, ••• ,n-T + a10n-r+a +1, ••• ,n-T+al+a2 

X 0n-aT+1.x-aT+2 ..... n= 0, (5.4) 

where 

011 12"';T=1 ifi1 =i2 = .. ·=ir (5.5) 
= 0 otherwise. 

Note that in (5.4) L is over all the n! permutations of 
{I, ... ,n} and 01 is introduced to keep track of all the 
symbols permuted. Further note that the general term 
in (5.4) can also be written as 

(5.6) 

where now L' is over distinct terms only and nC [a1 ... arl 
is the generalized combination symbol defined by 

nC[a1.a2 ..... aTl=n!/a1!a2! .. • aT! (n-r)!. 

Now, multiplying (5.4) by bn and making use of (4.10) 
which is true for a set of n symbols for which as­
sociative law multiplication holds to eliminate 
bnL:p Q 1 ... an' we obtain the general polynomial com­
mutation relation given by 

where 

(5.8) 

In general it so happens that one knows [a i Q ja k] in 
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terms of at's. Then substituting for .In+1 in the above 
expreSSion, we get the required commutation relations. 

Commutation relations of spin and parafield algebras 

Now let us consider the special case of derived poly­
nomial algebras for which the value of raj a, a k ] in 
terms of Q j are known. To consider them, let A[a] be 
a Simplicial algebra (polynomial algebra) and let 
L4lA[Q]= A[a]+ ..• +A[a] be the 8th derived algebras by 
the additive process. As noted earlier1 these are also 
simplicial algebras for all values of 8 ~ 1. Further, the 
roots of the minimal polynomial equations of L:~A[a] 
are sums of the roots of the minimal polynomial equa­
tions ~1Ara] andA[Q]. The commutation relations of 
these algebras that are independent of 8 are postulated 
to be 

[ak,Ilj]= oik a i _ Oik a', (5.9) 

where Ii} = a j a i - a j a l for the spin algebra and 

[a k , ajai _ ai ai]=O (5. 10) 

for the parafield algebras associated with the ordinary 
Clifford algebras. Now the minimal polynomial equa­
tions satisfied by spin L:~ Ac and parafield I4 Aac alge­
bras are easily obtained as 

(L2 - t82 
[) (L2 - i(8 _1)2 [) ... (L - t[)=O 

if 8 is half-integral and 

if 8 is integral where 

for spin algebras; and 

(5. 11) 

(5.12) 

(5.13) 

L=(Zlal+Zlai+) and L=(Z1Z1+Z.Zz+·"+) 

(5. 14) 

for the parafield algebras respectively. By the general 
methods developed in I, these considerations can be 
extended to the associative algebras of the generalized 
Clifford algebras too. Now, in the half-integral spin 
case expanding (5. 11), we obtain 

L2& - P1 L
2&-2 L + P2 L

2&-4 C + ... + (- I)T L 2s -2T L T + ... + 

(-I)P& L &=0, (5.15) 

where P T is the sum of the products of the rth roots of 
(5.11). Now, the polynomial commutation relation re­
duces to 

& 

~ (- I)T P ~ Q ... a 0 ... " -0 f;6 r L.J 1 n-2r n-2r+l, n-2r+2 v "-1, PI - , 

(5.16) 

where n= 28. Now the sum L: over all the n! permuta­
tions of the indices can be written as 

where L:' is over distinct terms of the summation. Now, 
proceeding in the same way as is done in the case of 
(5.7), we obtain 
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n n! 
an C(al '" an) - An+ bnJ;tPr 21>(n_ 2r)! 

X LJ" aI'" an-2rOr=0, (5. 17) 

where 

6 r = <5 n-2r+l t n-2r+2 ••• 0 n-1, n' (5.18) 

Now, using (5.9) the mixed permutations An containing 
the triple commutators [aj el j ak]can be simplified. 
Similar procedure can be applied in the integral spin 
case also. 

However, in the case of parafield algebras an inter­
esting complication arises as the index set over which 
the algebras are set up are given by 10 I, For example, 
when we consider parafield algebras of order 2s + 1, 
when s is half-integral, we have to take in Eq. (5.15) 
Land L given by Eq. (5.14). Now, enumerating the 
integers in 101 by unbarred and barred integers in 
each I and introducing 5" symbols which are given by 

61>,.= 1 if q=p 
= 0 otherwise, (5.19) 

let us consider the coefficient of ~1~2'" ~n' where n 
= 2s with the auxiliary variables ZI which are equal 
either to Zp ZI' in terms of the auxiliary operators a l 

if ~I=ZI and aj if ~1=ZI and obtain -
n 

anC(~~2'" ~n) - An + bnlj P r 6~1~'" ~""2r or = 0 (5.20) 

where 

(5.21) 

The ° symbols involving Z are simplified according to 
the rule that Zj is replaced by i and Zj is replaced by 
no reduce to the 5" given by (5.19). 
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Making use of Eq. (5.20) and considering systemati­
cally commutation relations which contain 0, 1, 2, ... , 
[(2s + 1)/2]+ 1 bared symbols we obtain [(2s + 1)/2] + 1 
commutation relations for a parafield algebra of order 
2s + 1. All the other commutation relations can be ob­
tained from these either by simple complex conjugation 
or by using the general commutation relations given by 
(5.10) as this is equal to using the Eq. (4.22). 

As an example, by choosing in Eq. (5.20) al=a j for 
all i, and noting by Eq. (5.10) that [ajajak]=O, we 
obtain 

C(a1a2 ", an) = 0 (5.22) 

for the case of the nth order parafield algebra. 
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Winternitz and coworkers have shown that the eigenfunction equation for the Laplacian on the 
hyperboloid x~ -x?-x~ = I separates in nine orthogonal coordinate systems, associated with nine 
symmetric quadratic operators L in the enveloping algebra of SO(2,1). Corresponding to each of the 
operators L, we employ the standard one-variable model for the principal series of representations of 
SO(2,1) and compute explicitly an L basis for the Hilbert space as well as the unitary 
transformations relating different bases. We also compute the associated results for realizations of 
these representations on the hyperboloid. Three of our bases are related to well-known subgroup 
reductions of SO(2,1). Of the remaining six, one is related to Bessel functions, two to Legendre 
functions, and three to Lame functions. We show that there is virtually a perfect correspondence 
between the known theory of the Lame functions and the representation theory of SO(2,1) and 
SO (3). 

1. INTRODUCTION 

As is well known, the group SO(2, 1) acts on the 
hyperboloid ~ - xi - ~ = 1, Xo > 0, with induced Lie 
derivatives K 1 , K2 , Ms given by 

M S =X10X2 - X20Xl 

(1. 1) 

and commutation relations (2.3). Consider the eigen­
value equation 

(1. 2) 

where Q=IG+~-M~ is the Casimir operator of the 
Lie algebra so(2, 1) expressed in terms of (1. 1) andf 
is a function on the hyperboloid. Olevskyl has shown 
that Eq. (1. 2) separates in nine orthogonal coordinate 
systems and Winternitz and coworkers2 ,3 have shown 
that these coordinate systems correspond to nine 
quadratic symmetric operators L in the enveloping 
algebra U of SO(2, 1). Indeed, let S be the space of all 
symmetric second order elements in U, let C be the 
center of U and form the factor space T =S/S n c. (In 
this case S n C = {a Q}, a any constant). Then SO(2, 1) 
acts on T via the adjoint representation and splits it 
into nine types of orbits. Choosing an operator L from 
each orbit, we find that for each such L the pair of 
equations 

Qf=l(l + l)f, Lf=A/, (1. 3) 

corresponds to one of the nine coordinate systems in 
which (1. 2) separates. In fact, A corresponds to a 
separation constant. 

We choose our nine operators Las M;, ~, (K1 + MS)2, 

LE,LH,LsH,LEP,LHP,Lcp, where the last six are given 
by (3.1). For the explicit derivation of these operators 
and the orthogonal coordinates to which they correspond 
see Ref. 2. 

In the present paper, rather than study (1. 2) directly, 
we employ the standard one-variable model (2. 6) for the 
principal series representations of SO(2, 1) and 
explicitly compute an L basis for the Hilbert space 
corresponding to each of our nine L operators. We also 
compute unitary transformations relating different 
bases. Our results on the spectral resolutions of the 
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L operators, though determined for the simple one­
variable model, are obviously valid for any model of 
the principal series. The spectral resolutions for the 
"subgroup operators" M;, ~, and (Kl + Ms)2 are well 
known, e. g., Refs. 4-6 and partial results for LE and 
LH can be found in Ref. 3. However, the remaining four 
cases are treated here for the first time. The operators 
L E, L H, LSH lead to expansions in Lame functions, Lcp 
to Bessel functions and the Hankel transform, and 
L EP' L HP to expansions in Legendre functions. 

In Sec. 4 of this paper we construct models of the 
principal series in terms of solutions of (1. 2), thus 
making explicit the relationship between the above 
results and separation of variables. This is accom­
plished via the Gel'fand-Graev transform which maps 
functions on the unit circle to functions on the 
hyperboloid and is an intertwining operator for the 
group action. We obtain a number of new results 
relating solutions of (1. 2) in various bases. 

Recently Patera and Winternitz7 have introduced a 
new basis for the representations of the rotation group 
SO(3). Their basis consists of the eigenfunctions of the 
symmetric operator E = - 4(L~ + rL~), where 0 < r < 1 
and rL i' L j] = E/ikL k' In the two-variable model of the 
irreducible representations of SO(3), functions on a 
sphere, the eigenfunctions are products of Lame poly­
nomials. However, the only one-variable model com­
puted in Ref. 7 was one in which the basis functions -ap­
peared as complicated Heun polynomials. In Sec. 5 we 
show that, in fact, by a suitable change of variable and 
phase, one can construct a one-variable model in which 
the basis functions are exactly the Lame polynomials. 
We show that there is a one-to-one relationship between 
the results of Ref. 7 and the standard theory of Lame 
polynomials as presented in Ref. 8 or Ref. 9. This 
permits the use of tabulated properties of Lame poly­
nomials to implement the theory of Ref. 7. In general 
our results show an intimate relationship between the 
representation theory of SO(2, 1) and SO(3) on the one 
hand and the theory of Lame functions on the other. 

We have not attempted to compute the matrix elements 
for the principal series representations of SO(2, 1) in 
any of the nonsubgroup bases. The practical computation 
of such results awaits the introduction of appropriate 

Copyright © 1974 American Institute of Physics 1263 
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coordinates on the group manifold such that variables 
separate in the differential equations for the matrix 
elements. Work is in progress on this problem. 

This paper is one of a series analyzing the relation­
ship between Lie theory and separation of variables in 
the partial differential equations of mathematical 
physics. 10-12 

2. SUBGROUP BASES 

In this section we establish notation and review those 
properties of SO(2, 1) that we will need in the sequel. 

The group SO(2, 1) consists of those proper linear 
transformations acting on a three-dimensional vector 
X= (xo, xl> x2) which preserve the infinitesimal distance 

ds2 = dx~ - dxi - dx~. (2.1) 

(These are the Lorentz transformations in the plane. ) 
The group SO(2, 1) is 2-1 homomorphic to the group 
SU(I, 1) of quasiunitary unimodular matrices 

g=(; (2.2) 

The generators of the Lie algebra of SO(2, 1) are de­
noted by Kl' K 2 , and Mg. Here K 1 , K2 are the generators 
of the pure Lorentz transformations along the 1 and 2 
axes, respectively, and Mg is the generator of rotations 
in the 1, 2 plane. The defining commutation relations 
of this algebra are 

[Kl'K2 ]=-Mg, [K2 ,Mg ]=K1 , [Mg,K1 ]=K2• (2.3) 

All unitary faithful irreducible representations are 
labeled by the eigenvalue of the Casimir operator Q, 
where 

Q =IG +~ -M~ =l(l + 1). (2.4) 

All such irreducible representations are infinite dimen­
sional. We now give the spectrum of l corresponding to 
the unitary irreducible representations and the eigen­
val ues m of the operator iM g in each such 
representation. 

(i) Principal series: l = - i + ip, 0 < P < 00, 

m=O, ±1, ±2, ... or ±i, ±%, .... 

(ii) Complementary series: Iml = 0, - 1 < l < 0, 
m=O, ±1, ±2, .... 

(iii) Positive discrete series: 2l = integer, 
m = l + 1, l + 2, .... 

(iv) Negative discrete series: 2l = integer, 
m = -l- 1, -l- 2, .... 

For the purposes of this paper we only consider the 
single valued representations of the principal series. 
For a more detailed treatment of SO(2, 1) we refer to 
the standard references, 4, 13. The principal series 
of SU(1, 1) can be realized on the Hilbert space H of 
square integrable functions f on the unit circle with the 
scalar product 

The action of a group element g on a function f is 
specified by 
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(2.5) 

and the generators of the Lie algebra have the form 

K1 = lcosO - sinO d~ , 

K2 = -lsinO - cosO d~ , (2.7) 

d 
M g = dO' 

Of the nine possible bases for SO(2, 1) as given by 
Winternitz et al. 2, three are of the subgroup type and 
have been treated in some detail in the literature. 4-6 

We now give the explicit form of each of these subgroup 
bases for the prinCipal series. In the section on the 
two variable model we also give the expansions in the 
subgroup bases. These results are not new, 6 but we 
present them here in summarized form in the interest 
of completeness. 

1. Spherical system: The explicit form of the prinCi­
pal series in this basis has already been presented in 
our definition of the principal series. The basis func­
tions of the spherical system are just the eigenfunctions 
exp(imO)/,;27T of the operator Mg. This is the canonical 
or standard basis to which we will relate all subsequent 
bases. 

2. Equidistant system: The basis defining operator 
for this system is K 2 • 

The representation space of the principal series 
splits into two spaces. The basis vectors in each space 
are 

f!,=(coshq)lexp(i1"q)C" _00<1"<00, (2.8) 

where E = + 1 is a reflection label which distinguishes 
the two spaces and C +1 = (~), C -1 = (~). The variable q is 
related to e by 

(2.9) 
e- q = tani( 0 - 1T), 1T ,,:; 0 ,,:; 21T. 

On each of the spaces K2 is essentially the momentum 
operator with a unitary continuous spectrum, the real 
line. For further details concerning this basis see 
Refs. 5, 6. 

3. Horocyclic system: The basis defining operator 
for this system is Kl + Mg. The representation space 
of the prinCipal series is then spanned by a single set 
of basis vectors given by 

f~ = [i(1 + Z2)]1 exp(isz), - 00 < S < 00, 

where the variable z is related to e by 

z=taniO. 

(2.10) 

(2.11) 

This basis has been considered to a limited extent in 
Ref. 13. The choice of basis operator is more con­
venient but still equivalent to that used in Ref. 13. 
(Similar remarks apply to the equidistant system. ) 

3. NONSUBGROUP BASES 

Now we enumerate the six types of orbits in T which 
do not correspond to subgroup bases. Choosing a 
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standard element on each of the orbits, we obtain the 
following list of six operators. 

(1) Elliptic system: LE==M;+k2K~, k E.R, 

(2) Hyperbolic system: LH ==!G - rM;, 0 < r< 1, 

(3) Semihyperbolic system: LSIi==M.fi1 +K1M 3+r!G, 

O<r<oo, (3.1) 

(4) Elliptic-parabolic system: LEP==Y~+IG+M; 

+K1M 3 +M.fi1' 

y>O, 

(5) Hyperbolic-parabolic system: 
L HP == -Y!G +K~ +M; +K1M3 +M.fi1' y > 0, 

(6) Semicircular-parabolic system: 
Lcp ==K1K 2 +KzK1 +KzM3 +M.fi2· 

We will show that each of these operators corresponds 
naturally to a symmetric operator on the Hilbert space 
H == L 2 [0, 2rr] corresponding to the principal series 
representations of SO(2, 1). Furthermore, we will show 
that each such symmetric operator has equal deficiency 
indices and can be extended to one or more self-adjoint 
operators on H. Finally we will compute the spectral 
resolutions of these self-adjoint extensions and relate 
them to the spectral resolution of Ls ==M;. 

Recall that for the principal series the Lie algebra 
generators are given by (1. 7) and 1 == - t + ip, p > O. 

~:IEP== ,r ~(e)F~P(e)de 
== ~ (- i)" t' exp( - in¢) (sintcp)lp:1 (costct» d¢ 

J2:i 0 

A. Elliptic parabolic system 

For our first example we conSider the operator LEP 

normalized so that y == 1: 

LEP == 2( 1 - Sine) :::2 + (21- 1) cose d~ + [1(l + 1) 
(3.2) 

-1 sine). 

This operator can be defined on the domain of all C~ 
functions on the circle which vanish near e == rr /2. It is 
straightforward to show that L EP is essentially self­
adjoint on this domain and that the self-adjoint exten­
sion, which we also call L EP' has continuous spectrum 
only, covering the negative real axis. The normalized 
generalized eigenfunctions are 

(3.3) 

( 
4rr~ sinh rr~ )1/2 

Ql I == coshrr~ + coshrrp , 

and the orthogonality relations are 

(3.4) 

Here, LEPF~P(e)==-eF~p(e), O<~<oo, andPr<z)isa 
Legendre function. 8 A tedious computation for the over­
lap functions between the Sand EP bases yields 

== Q! (lrr)1/2 (_ i)" 2i1 (- 1)"22
("+0 r(n + t)r«l + i~ + 1)/2)r({- 2n + 1- i~ + 1)/2) 

I 2 r(-n+l+1)r{(l-i~+2)/2)r«-2n-i~-1+1)/2) 
(3.5) 

( n-l,n+t,n,n+t 

X4

F

3 \(1+2n+i~-1)/2, (1+2n-i~-1)/2, 1+2n 

1 ( n-l-t, n+t, n+1, n 
X~4F3 

~Inl}! (1+2n-l+i~)/2, (1+2n-1-iO/2, 

where the plus sign applies to the case n .;0 and the 
minus sign to n> O. The 4F 3 is a generalized 
hypergeometric function. 8 

B. Elliptic system 

Corresponding to the elliptic system we have 

d2 d 
LE == (1 + k2 cos2e) dB2 + k2(21 - 1) sine cose dB 

+ k2(l2 sin2e + 1 cos2e). 
(3.6) 

Initially we define this operator on the domain of Coo 
functions on the circle. However, it is easy to see that 
LE has a unique self-adjoint extension. Indeed, it cor-
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) 

irr 22
" r«i~ -1 + 1)/2) r«l- 2n + i~ + 1)/2) 

± r«21 - 2n + 3)/2) r« -1- in/2) r«1 + 2n -1 + iO/2) 

2n ~ 
responds to a regular Sturm-Liouville operator on the 
interval [0, 2rr 1 with periodic boundary conditions. Thus 
the spectrum is discrete. To solve the eigenvalue 
equation LE f~ == Af~, we set 

f~ (B) == (1 + k2 cos2B)l!2 g~(w), 

B==¢-rr/2 and sin¢==sn(w, ik), where sn(z,k) is a 
Jacobi elliptic function (Ref. 8, Chap. 13). Then the 
eigenvalue equation becomes 

C~2 -r1(1+1) sn2(z,r)+1(1+1)r- 1~k2) gA(Z) ==0, 

(3.7) 

-K(y).;z ';3K(y), 
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with periodic boundary conditions g,(z)I~~=O, 
~ (z) I ~~ = O. This is the Lame equation and the required 
eigenfunctions are the periodic Lame functions with 
period 4K. We can divide the eigenfunctions into sym­
metry classes by noting that LE commutes with the 
unitary commuting idempotent operators R I , R 2 , where 

(RJ) (CP)=f(- CP), (R 2 f)(CP)=f(1T- CP) 

with cP as in (3. 3) and f( CP) a function on the unit circle. 

Since the eigenvalues of RI and R2 are ± 1 the eigen­
functions of LE fall into four classes labeled by these 
eigenvalues. In terms of the notation given in Ref. 8, 
Sec. 15.5.1, the results are 

A(l + k2rl ga(z) period [1, ~ 
a~m(r2) Ec~m(z, r) 2K 1 1 

a~m+l(-?) Ec~m+l(z, r) 4K -1 1 
(3.8) 

b~m+2(-?) Es~m+2(z, r2) 2K 1 -1 

b~m+l( r2) Es~m+l(z, r) 4K -1 -1 

for m = 0, 1, 2, . ". Here the multiplicity of each eigen­
value is one, and the superscripts m are related to the 
number of zeros of the corresponding eigenfunctions in 
a period. We normalize each eigenfunction f~ to have 
unit length in H, leaving a phase factor undetermined. 

Note that the action of RI and R2 on the spherical 
basis functions f!( B) = exp(im B)/ Y2iT =:: (- i)m exp(imcp )/& 
is 

(3.9) 

The overlap functions relating the f~ basis to the f~ 
basis are the coefficients U~:! in the expansion 

m 

fa
E = 6 U~~f~. 

m=-oo 
(3.10) 

We can obtain recurrence relations for these coef­
ficients by substituting (3. 10) into the eigenvalue equa­
tion LEf~= xn and equating coefficients of f~ on both 
sides of the resulting identity. For example, the basis 
function hm(CP)=(1 + k2 sin2cp)I/2 Ec~m(z,?) satisfies 
Rlhm=R2hm=hm so that the expansion (3.10) takes the 
form 

m 

hm(CP)=tco + ld C2ncos(2ncp). 

Substituting this expression into the eigenvalue equation, 
we find 

[k21(l + 1) - 2X]Co - k2W - 51- 2)C 2 =0, 

~Wn - 1) (3 - 21) + tl(l -l)] C2n-2 (3.11) 
+ Hk2 [l(l + 1) - 4n] - (X + 4n2)}C2n 

+ k2Wn+ 1)(1 + 21) + tl (1-1)]C2n+2 =0. 

These expressions are closely related (but not identical) 
to recurrence formulas derived in Section 15.5.1 of 
Ref. 8. There are similar formulas for the other three 
types of periodic Lame functions. 

C. Semicircular parabolic system 

The basis defining operator Lcp has the form 
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Lcp = 2cosB(I- sinB) d~ + (21- 1)(1 - sinB) 
(3. 12) 

x (1 + 2 sinB) d~ + lcosB[l + 2(1- l)sinO]. 

Before discussing the self-adjoint extension of Lcp it is 
convenient to use instead of the functions f defined on 
the unit circle, the functions g'( v), 

f(B) = [2v/(1 + v4 »)i lev), (3.13) 

where E= + 1, v= v'coticp (0 < ¢ < 1T), and E=- 1, 
V= v'- coti!f> (1T< cP< 27T). The space of functions f(B) is 
then replaced by the pair of functions (g+, g-), and so 
we need to consider L cp acting on the direct sum of two 
Hilbert spaces which we callH+ and H- (H=H+~H-). 
On each of these spaces Lcp has the form 

L _ !(L _ l(l + 1) , 
CP - 4 dv2 v2 /. 

This operator has deficiency indices (1,1) on each of the 
two Hilbert spaces H+ and H-. There is thus a two­
parameter family of possible self-adjoint extensions of 
Lcp acting on the space of functions defined on H. We 
choose one of these which immediately suggests itself 
and relate it to the standard S basis. The normalized 
generalized eigenfunctions we choose are 

(3.14) 

with C, as in (2.8). This choice of basis corresponds to 
the choice of eigenvalue EX2 (0 < X < 00) for the basis 
vector f ~,P( B), i. e. , 

Lcpf~,P =EX2 fft. 

The orthogonality relations are 

fo2'f~~'!( 0) f~,P( 0) de = o(X' - X) 0" " (3. 15) 

The relation of this basis to the spherical basis can be 
readily computed: 

[j'd'CP=2 1+1 .../X 1m 

V I +3 / 2 J (J2xv) -n,X+ 0 1+1/2 

= [2.fi(~)-1-1 ~ i2n- rc(2n) 
2 r=O r 

I'( - I - n) (1 a) r (1 a) n-r 

X r(-I-r)r(r+1+1) ~ ax 16z3 az 

x (8:: Y+I/2-r J-l-l/2+r (XZ)K-l-l/2+r (XZ)1=1, (3.16) 

where n> 0 and Kl(z) is a MacDonald function. 8 

For n < 0 it is only necessary to make the substitution 
I - - I-I. The only modification of these results for 
the overlap function US .. :S' .. l is the replacement of the 
i 2n .... term in the above expression by (_ i)2n-r. 

D. Hyperbolic system 

The basis defining operator LH has the form 

LH =:: (r
2 

- cos2 0) d~2 + (1- 21) sine cosB :e 
(3. 17) 
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~ 
__ i-o---- 21<----..ool.le--"',~"-'" 
~r-----~--, 
iK' 

lr-----------~--

e-l<-O< 

FIG. 1. The 9 coordinate in the v plane for the hyperbolic sys­
tem. 

This operator is defined in the domain of all Coo func­
tions which vanish near those four points for which 
I cos e I = r (r > 0). It is convenient at this point to split 

the space H into a direct sum of four spaces which we 
label by a discrete index i (i = 1, 2, 3 or 4). The splitting 
is achieved according to the prescriptions 
Hl- (- a < e< 01), H2- (a < e< 'If- a), 
H3 - ('If - 01 < e <'If + 01), H4- ('If + Q! < e< 2'1f - 01) so that 

(3. 18) 

(note: we assume r=cosa-, 0< 0I<'If/2). The functions 
fie) are then replaced by functions hi(v), given by 

fj(e)= [ir' /cn(v, r)]1 hi (v), (3.19) 

where r'=(I_r2
)l/2 and cose=dn(v,r)/cn(v,r). 

The ranges of the parameters are shown in Fig. 1, 
and it can be seen that as e runs from - Q! - 2'1f - 01, the 
parameter v describes a closed path as indicated in 
Fig. 1. 

On each of the Hilbert spaces Hi the operator LH has 
the form 

LH = d:2 - r
2

Z (l + 1) sn2(v, r). (3.20) 

We are then concerned with four eigenvalue problems 
each of which is such that the operator LH is singular 
at each of the two corresponding end points. Let us first 
consider the choice of basis for Hl. For this space 
v<==: (iK' ,iK' + 2K). Following Erdelyi, B Chap. 15, we 
choose the boundary conditions for a basis as 

(i) [sn(v, r)]l/2 A(v) bounded at v = iK', 
(3.21) 

A'(K + iK') =0. 

The corresponding solution is denoted by A = F~m( v, r) 
and has 2m zeros in the interval (iK', iK' + 2K) 

(ii) [sn(v, r)]l/2 A(v) bounded at v=iK', 
(3.22) 

A(K + iK') = o. 
The corresponding solutions are denoted by F~m+l(v, r). 
In the above A(v) is the corresponding solution of the 
equation LHA = AmA. Here m is the number of zeros of 
the eigenfunction A in the interval (iK', iK' + 2K). These 
are the finite Lame or Lame Wangerin functions. The 
solution of the corresponding boundary value problem 
gives these functions as expansion functions with the 
discrete spectrum of LH labeled by the upper index. 
[This index is also the number of zeros of the solution 
in the interval (iK', iK' + 2K). ] The problem for the basis 
of H3 is exactly similar so that we then have the basis 
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(3.23) 

The Ai are 4 x 1 column vectors having 1 in the ith row 
and zero elements elsewhere. For the choice of basis 
in the spaces H2 and H4 the corresponding eigenfunction 
expansion problem is similar to that considered already 
but the variable v is now in the range (iK', - iK') or 
(2K + iK', 2K - iK'). The corresponding boundary value 
problem of interest is now given by the requirement that 
(snv)l/2 A(v) be bounded at the end points v = ± iK' and 
that A'(O)=O or A(O)=O according as A is even or odd 
about v=O. The complete set of eigenfunctions are the 
Lame Wangerin functions F~(v, r). The corresponding 
basis functions are then given as in (3.23) with i = 2,4. 
In particular we have for each eigenfunction fH . (i 
= 1,2,3,4) as e varies from - Q! to 2'1f- Q!, that'; varies 
continuously around the rectangle drawn in Fig. 1. The 
corresponding eigenfunction [ir' /cn(v, r)]1 f~,; cor­
responds to a continuous differentiable function of e and 
is therefore an element of the original representation 
space. This requirement picks out this solution and 
does not require us to consider the deficiency indices 
in each subspace. (We have essentially periodic bound­
ary conditions). The latter procedure in general leads 
to sectionally continuous eigenfunctions on H. The 
orthogonality of the basis functions is written 

(3.24) 

with N~ a normalization factor. The eigenfunctions f~.i 
defined as above are nonzero only in the corresponding 
Hibert space Hi. 

We now proceed to calculate a recurrence relation 
for the overlap functions between hyperbolic and 
spherical bases. 

We consider in detail overlaps associated with the 
spaces Hl and H3. As with the elliptic system it is 
convenient to consider a number of discrete trans­
formations. The first of these is reflection R about the 
line Rev = K. This corresponds to the transformation 
e - - e. We have accordingly 

(3.25) 

In addition, if we consider the reflection R : e -'If - e, 
then we have 

(3.26) 

From these equations we can form the linear com­
binations F~·=f~.i(V)±f~.j(v) [with i,j as in (3.23)] 
having eigenvalues (- l)m, ±(_I)m respectively, of the 
operators Rand R. 

It is these functions for which we can form the over­
lap functions, i. e., instead of relating the normal basis 
f~,i(V) to the spherical basis f~ via f~.j = 2;';:-00 U~;~f~ 
we write each F~' as a Fourier series in e and find 
recurrence relations for the coefficients. This involves 
extending the domain of the functions F~' to be defined 
on the unit Circle, 0 < e ,,; 2'1f. 

The symmetrized basis function Crt = (r2 
- cos2 e) 1/2 X 

F~' ~as eigenvalues + 1 for the both the reflections R 
and R and so can be represented by the series 

.. c:p+( e) = tco + 6 c 2n cos(2ne) 
n=l 

(3.27) 
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for a < B < IT /2 - a. Applying the operator L H to both 
sides, we obtain the recurrence relations 

- [1(1 + 1) + 2Am] Co + [2 + 1(31- 1)] C2 = 0, 

[t(P -1)(21- 2p -1)+ i(l-1)]C2P_2 

+ [2p2(1 - 2r2) - t1(1 + 1) - Am ]C2P 

+ [t(P + 1)(21 + 2p + 1) + t1(l- 1)] C2P+2 = 0 

for p ~ 1. 

(3.28) 

Similar recurrence relations can be derived for the 
other symmetrized basis functions. Identical arguments 
can be applied to overlap functions associated with the 
Hilbert spaces H2 and H4. In this case it is convenient 
to introduce the same discrete transformations as 
previously but with B replaced by <{>(9= IT/2 + <{». With 
this change the analysis goes through as before. 

E. Semihyperbolic system 

The basis defining operator LSH has the form 
2 

LSH=(rcos2B- 2sin9) d~2 + (21-1)cos9(1 +rsin9) d~ 
(3.29) 

This operator is defined on the domain of all Coo func­
tions which vanish near the two points at which sine 
=1/r[(1+r2)1/2_1]. It is convenient to split the space 
H into the direct sum of two spaces HI and H 2 defined 
according to the prescription HI - (a < 9 < IT - a), 
H2 - (IT - a < B < 2lT + a) so that 

The functions f (9) are then replaced by the pair of 
functions hi (i = 1, 2), where 

f ( 9) - ( N sn(v, s) dn(v, s) ) I h (v) 
- [_(1+r)1!2+r+1Jsn2(v,s)-2r l' 

a<9<lT-a, 

( 
N sn(u, q) dn(u, q) ) I 

= [(1 + r 2)1!2 + r - 1J sn2(u, q) _ 2r h2(u), 

IT - a < 9 < 2lT + a, (3.30) 

where 

2 (1+r 2)1/2_ r 
s = 2(1 + r2)1!2 

and 

sin9- 2[1- (1 + r2)1/2] + [(1 +r2)1/2 -1- r] sn2(v, s) 
- (1+r-(1+r2)i/2Jsn2(v,s)-2r 

a<B<lT-a, 

[(1 + r4)1/2 -1 + r2] sn2(u, q) _ 2[(1 + r 4)1/2 - 1] 
= ((1+r4)1!2_1+r2]sn2(u,q)_2r2 ' 

IT - a < 9 < 2lT + a. (3.31) 
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The corresponding ranges of the variables are 
0< v < 2K(s), 0 < u < 2K(q). In terms of the new 
variables the operator LSH assumes the forms 

2)-1/2 _ (L 1(1 1) cn2(v, s) 
(1 + r L SH - - d 2 + + 2( ) d 2( ) V sn v, s n v,S 

r1(1 + 1) 
- (1 + r2)1!2 (3. 32) 

It is possible to make further transformations and write 
LSH in the form of the standard Lame operator as for 
instance in (3.20). The resulting elliptic functions then 
have a complex molulus k = exp(il/J) (l/J real) and the range 
of variation of the new variables is not parallel to either 
of the directions of periodicity. It is more convenient 
to consider the operator LSH in one of the forms (3.30). 
The problem of the self-adjoint extension of LSH on each 
of the spaces Hi is exactly analogous to that considered 
in each of the spaces Hi of the hyperbolic system. In 
particular we choose the boundary conditions which re­
quire that [sn(v, S)]-1/2 A(v, s) be bounded in the interval 
(O,2K(s». Here A(v, s) is a solution of LSHA=~mA. 
More precisely the boundary conditions are: 

(i) [sn(v, S)]-1/2 A(v, s) bounded at v=O, 2K(s) and 
1I!(K, s) = O. The corresponding solution is denoted by 
~m(v, s) and has 2m zeros in the interval (0, 2K(s». 

(ii) [sn(v, S)]-1/2 A(v, s) bounded at v=O, 2K(s) and 
A(K, s) = O. The corresponding solution is denoted by 
~m+l(v, s) and has 2m + 1 zeros in the interval [0, 2K(s)]. 
Similar remarks apply to the related problem on H2' 
The corresponding solutions are denoted by M'{'(u, q). 
The spectrum in each case is discrete. A complete set 
of eigenfunctions for the Hilbert space H is then 

f!~l(V)=K'{'(v, s)C., 

f~~(v)=M':'(v, q)C_. 

Satisfying the normalization conditions, we have 

(f!~, f;:!,"') = 0mm' 0""" 1),1)' = 1, 2. 

(3.33) 

The functions K':'(v, s) and M':'(u, q) that we have in­
troduced are closely related to the Lame Wangerin func­
tions which appear in the hyperbolic basis. In fact if we 
take the operator LSH in the standard Lame form we 
have in the space HI 

i r1(1+1) 
= dw2 -k21(l+1)sn2(w,k)+ [r+(r2+1)1/2J1/ 2 (3.34) 

where k = [q - i(1 - q2? /2]/[q + i( 1 _ q2)1/2] and 
w = [q + i(1- q2)1/2]V - iK'(k). 

The corresponding eigenfunctions of this operator are 
then Lame Wangerin functions. These solutions can be 
represented in a series as Erdeyli has done for the 
case of complex k, e. g. , 
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., 
p;m(w, k)= L; Arexp[- i(l + 1 + 2r) t"], 

r=O 
(3.35) 

where cost = sn(w, k) and the coefficients A~ satisfy the 
recurrence relations 

[H - (l + 1)2 (2 - k2)]Ao + (2l + 3) k2Al = 0, 

(2r - 1) (l + r) k2A r_1 + [H - (l + 1 + 2r)2 (2 - k2 )]Ar 

+ (r+ 1) (2l + 2r+ 3) k2Ar+l =0, 

r?-l and H=2X2m -l(l+ 1)k2
• (3.36) 

In this way we can write a series expansion for each of 
our basis functions K'[' and M'['. It is again straight­
forward to calculate recurrence relations for the over­
lap functions between the semihyperbolic system and 
the spherical or canonical basis. This again depends on 
the fact that a given basis function consisting of two 
components represents a continuous function of 0 for 
o E [0, 27T]. We merely note here that this can be done 
and omit the calculation which leads to rather lengthy 
recurrence relations. 

F. The hyperbolic parabolic system 

The operator L HP has the form 
2 

L HP = 2 sinO(sinB - 1) dd
B2 

+ (2l- 1) cosB(l - 2 sinO) :e 
(3.37) 

We consider this operator to be defined initial!y on the 
C~ functions of e which vanish near the pOints O=7T/2, 
7T, 37T/2, where L HP is singular. It is convenient to con­
sider the space H divided into four subspaces Hi as with 
the hyperbolic system, i. e., H='ii=lff1H/. Each of these 
subspaces corresponding to functions of B defined over 
an interval of length 7T/2, e. g., Hl- (0 < 0 < 7T/2) etc. 
It is then convenient to consider the operator LHP_acting 
on new functions hi in each of these spaces where 

f /( 0) = [-12 sinhb/( 1 + cosh2b)]1 h/(b), i= 1,2, 

= [-12 sin~/(1 + COS2~»)i hM), 
(3. 38) 

i=3,4. 

The variables band 1j! are given by 

[(1+sinO)/2sinOll /2=cothb if O<O<7T 

=icot~ if 7T< B<27T. 
(3.39) 

For i = 1, 2, L HP acting on the functions h/(b) has the 
form 

i l(l + 1) 
L HP = db2 - sinh2b 

and for i = 3,4 it is just required to make the sub­
stitution b - i~. For i = 1,2 the solutions of the eigen­
value equation L HP h= tJ. 2h are the functions (sinhb)1/2 
.P.:lil-! (coshb). From this observation it is immediately 
seen that a complete set of basis functions does exist if 
we take tJ. = - ip (p real and positive). The corres­
ponding completeness properties follow from the prop­
erties of the generalized Mehler transform. A complete 
set of orthonormal basis functions is then 

f:.~ (b) = [(p sinh7Tp/7T) r(l + l + ip) r(1 + l- ip»)1 /2 

x (sinhb)l /2 p::i12~~P (coshb), 

i= 1, 2, satisfying the orthogonality relations 
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(3.40) 

(fp~r, f~'~I) = 6(p -p'). 

The spaces H 3 and H 4 can be combined by defining the 
variable ~ as in (3.37) with 0 < ~ < 7T but now taking into 
account the sign of the square root. The corresponding 
eigenvalue problem is singular at both ends of the 
interval ~ E (0, 7T). There is a two-parameter family of 
self-adjoint extensions of L HP since the deficiency in­
dices are (2, 2). 

Each linearly independant solution is square integrable 
so that the spectrum is discrete for each self-adjoint 
extension. The computation of an orthonormal basis of 
eigenfunctions is straightforward but complicated and 
unenlightening and so we omit it. Also, the integrals 
relating these bases to the standard spherical basis 
appear intractable. 

4. THE TWO VARIABLE MODEL 

The group SO(2, 1) acts on 3-space according to 
x- L(g)x, where x = (xo, Xl' X 2 ) is a column 3-vector and 
L(g) is the 3 x 3 matrix representation of SU(l, 1) defined 
as in Ref. 13, p. 289. This action induces a representa­
tion of SU(1, 1) on the space 1 of Coo functions in 
3-space, defined by operators T(g): 

[T(g)Fl (x) = F(L(g-l )x), FE}. (4.1) 

To be precise, we choose the action so that the cor­
responding Lie derivatives are as in (1. 1). Clearly the 
quadratic form ~ - x~ - ~ is preserved by this action. 
In this section we will construct models of the principal 
series representations of SO(2, 1) in which the Hilbert 
space consists of functions F(x) defined on the hy­
perboloid ~ - x~ - ~ = 1, Xo > 0, and the group acts via 
(4. 1). In particular we will explicitly construct in this 
space the various basis functions listed above. Further­
more, we will use the Gel'fand-Graev transform to 
expand an arbitrary function, square integrable on the 
hyperboloid, in terms of each type of basis. We note 
that the basis functions are exactly those which appear 
when one uses separation of variable methods to find 
solutions of the wave equation 

(4.2) 

which are homogeneous in Yo, Yl ' Y2 • 

We use the Gel'fand-Graev transform14 to map func­
tions on the unit circle corresponding to a prinCipal 
series representation of 50(2, 1) to functions on the 
hyperboloid. Thus, corresponding to fE H and the 
representation l = - t + ip, we define a function F(x) on 
the hyperboloid by the integral 

F(x) = .e (xo + Xl sinO - x 2 COSO)-l-l f( e)dO =I (f]. (4.3) 
° 

It is easy to check that the operator T(g), (2.6), acting 
on f induces the operator T(g), (4. 1), acting on F: 

T(g)F=I[T(g)fl. 

It follows that the Lie derivatives (2. 7) acting on f in­
duce the Lie derivatives (1. 1) acting on F. 

If {f~} is a basis for H corresponding to the operator 
L c ' then 
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(Ki + IG -M~)/~ = l(l + 1)/~, 
(4.4) 

Ld~=>"n/~. 

It follows that the functions F~=l(f~) satisfy the equa­
tions 

(Ki +IG -~)F~= l(l + I)F~, 

LGF~=>"nF~, 
(4.5) 

where now the operators K l , K 2 , Ma are given by (1. 1) 
and L G is expressed in terms of these operators by one 
of the Eqs. (3.1). We shall see that each choice of LG 
in (3.1) corresponds to a separation of variables in the 
first equation (4.5). 

We can now employ anyone of our bases {F~} to ex­
pand functions on the hyperboloid. Thus, if H(x) is 
square integrable on the hyperboloid xg - xi - ~ = 1, 
xo> 0, with respect to the measure dx1dxg/xo' then the 
Gel'fand-Graev integral transform yields the expansion 

1 f-1/2+i~ 
H(x)= 87T2 i 1[t,]lcot7Tldl, (4.6) 

-1/2-f~ 

where 1/( e) is a function on the circle defined by 

fr( e) = LI~~(x) (Xo + Xl sine - X2 cose)' dX~~X2 • (4. 7) 

Since I,(e) can be expanded in a {f~} basis, we obtain 

1,(e)=6A?,nf~, A?·n=(f~,I,), 
n 

or 

i
-l/2+100 

H(x) = 8 !. l cot7Tl dl ~ A¥,n F~(X), 
7T l -1/2-1~ n (4.8) 

Formulas (4.8) apply directly in the case LG has dis­
crete spectrum. When LG has continuous spectrum, it 
is necessary to replace the sum over n by an integral. 

Note: In the usual treatments of the Gel'fand-Graev 
integral transforms, our l[tl] is replaced by an integral 
over an arbitrary contour r on the cone x~ - xi - ~ = 0, 
which intersects every generator once. In this paper 
that contour is always chosen to be the circle (xo' xl' x2 ) 

=(1, - sine, cose). 

We can view the transform (4.4) in another way: 
namely as the inner product of the functions h;r.(e), 
l(e)<='H, 

F(x) = (h;r., t>, (4. 9) 

h;r.( e) = (xo + Xl sine - x2 cose)' <=. H. 
Then the formula F~ = (h;r.' I;) yields immediately the 
expansion 

hx(e) = L: F;(x)f;(e) (4.10) 
n 

for the kernel function hx(e). Furthermore, a direct 
computation yields the result 

(h;r., h.) = 27T P ,(xoYo - XlYl - X 2Y2 ), (4. 11) 

where P ,(z) is a Legendre function. Substituting (4. 10) 
into (4.11), we find 
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(4. 12) 

Finally, if twoH bases {t~}, {f!} are related by over­
lap functions U~::" 

InG=~U~.: I:, 
m 

it follows immediately that 

F~ =6 U~:!F!. (4. 13) 
m 

We now list the functions F~ for each choice of C. In 
several cases the integral l[t~] appears not to be known, 
and we have to make explicit use of the fact that, in 
each of the appropriate coordinates tabulated in Ref. 2, 
l[t~] satisfies a simple second order ordinary dif­
ferential equation. Thus F; can be expressed as pro­
ducts of solutions of such equations with coefficients 
determined by evaluating the integral for special values 
of the parameters x. We now give explicit expressions 
for seven of the nine bases discussed. 

A. Spherical system 

Ji'S",(a, I/J) 

= J2~ [cosha - sinha sine simP - sinha cose cOS1p]-l-1 
o 

x exp{ime) de (4.14) 

-1 r(l+l-m) m • 
=2V2iT r(l+I) P,(cosha)exp(tmcp) 

with (xo, Xl' X2) = (cosha, - sinha sinl/J, sinha cosw), 
o <s a < 00, 0 <s l/! <s 27T. 

B. Equidistant system 

F~.q(a, b) 

= i: [cosha coshb coshq - cosha sinhb sinhq 

- € sinha]-I-l exp(iTq) dq 

4 [_. (l 1/2)/4] r(l + 1 + iT) r(l + 1 - iT) 
(cosha)'f2 exp t7T + r{l + 1) 

(4.15) 

with (xo,xl,x2 )=(coshacoshb, -sinha, coshasinhb), 
- 00 < a < 00, _ 00 < b < 00. 

C. Horicyclic system 

~(a, r)= 12~ [Hexp(- a) + (? + 1)exp(a»- re 4 cose 
s 0 

- t(exp( - a) + (r2 - 1) exp(a» sine]-'-' 

x (2 cos2 te)' 

x exp(is tan~e) de 

2..fiT 1 s 1'+1/2 1 1 
= r(l+l) 12"1 exp(-a/2)K,+1/2(e-

a 
s )exp(isr) 

(4.16) 

with 

(Xo, X l ,x2)=(Uexp(- a) + (r2 + l)ea], 

- t[exp(- a) + (r2 -1) e4 ], re4 ) , 

O<r< 00, -oo<a<oo. 
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D. Elliptic-parabolic system 

F~P(a, B) == a t [2 cosha cOSB]'·1 

x;:r [cosh2a + cos2e - coset> (cosh2a + cos2B - 2) 

- 2 sinet> sinha sinB]-1-1 (sintet»' 

Here, 

x ==.! (cosh2a + cos2 e) , 
° 2 \ cosha cosB 

1 (sin2 B - Sinh2 a) x -- , 
1 - 2 cosha cosB 

sinhasinB 
x2 == - cosha cosB . 

Using Ref. 2 and symmetry in a and ie, we have 

F~P(a, 9) ==A p:t(tanha) p:l(itan9) 

+ B (p;I(tanha) Q;I(itan9) + Q~ I(tanha) 

Xp;l(itan9)) + C Q;t (tanha) Q;t(itane). 

(4. 17) 

(4.18) 

Setting Po=P,(O), P~== [dP,(x)/dx]._o, etc., (these 
values are listed explicitly in 8, Vol. 1), and com­
puting F~P(O, 0), aaF~p(O, 0), and aQa9F~p(0, 0) directly 
from (4.17) and from (4.18), we obtain the equations 

(

PoPo PoQo+QoPo QOQXO) (El) 
P~o P~Qo+QbPo ~Qo B == 0 , 

P' oP~ P'oQ~ + Q~P~ Q~Q~ C E3 

(4.19) 

where 

a 1 22i l+l1T r«l + 1 + 2i~)/2) r(l + 1- 2i~)/2) 
EI == r(l + 1) rm r(l- 2i~ + 2)/2) r(-l- 2i~ + 1)/2)' 

E _ - a/ 2'+3+21( 1T r«l + 2 - 2i~)/2) r((l + 2 + 2i~)/2) 
2 - r(l + 1) rm r((l- 2i~ + 1)/2) r« -l - 2i~)/2) 

Equations (4.19) can be solved via Cramer's rule to 
give explicit values for the constants A, B, C. 

E. Elliptic system 

1
2. 

F~,m(a!,I3)= 0 [dnadntl-cna cntlsin9 

+ (i/..f2') sna sntl cos9]-1-l 

x (1+cos29)'/2EP';'(z)d9. 
(4.20) 

Here for Simplicity the moduli of all elliptic and Lam~ 
functions are chosen to be r, where r== r' = 1/v'2, and 
we have introduced coordinates a, tl on the hyperboloid 
via the expressions 

Xo = v'2 dna dn{3, Xl = - cna cn{3, x 2 = - (i/12) sna sntl, 

(see Ref. 3). The letter P in EP';'(z) stands for either c 
or s from expressions (3.8). Finally, 
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1 
r= -, k==1. 

v'2 

Making use of the facts that F~,m(a, 13) is symmetric 
in a and {3, that it satisfies the Lam~ equation in Ct, 

and that F~.m(a, 13) ==F~,m(a + 4K, 13), we easily obtain 

F~,m(a,f3)==Cp,mEP';'(a)EP';'({3), (4.21) 

where the constant C P,m can be determined by evaluating 
the integral for a fixed choice of a! and f3. 

Substituting this result into (4.12) and using the 
orthogonality relations for the elliptic baSiS, we ootain 
the integral 

Ap,mEP';'(a') EP';'(I3) EP';'({3' ) = 21T J:K P,(2 dna dna' dn{3 dn{3' 

- cna cna' cntl cn{3' 

- t sna sna' sn/3 sn{3') 

where Ap,m is a constant. 

F. Semicircular parabolic system 

~.P(~,1) 

x EP';'(a)du , 

2-2 'A '+1 (21T ~1)1 /2 
= r(l + 1) J,.1/2 (7t OK'+1/2(7t1))· 

(4.22) 

(4.23) 

The remaining integral is given by interchanging ~ and 
1), Le., 

F~_P( ~,1)) = F~+P(1), 0; 

the coordinates on the hyperboloid are 

with ~,1) > O. 

G. Hyperbolic system 

F!,i(a, 13) ( 

I B ir 
== (ir,)'+l A F';'(v, r) -;y;- cna! cntl cnv + rr' sna sn{3 snv 

+ .!:.... dna dnj3 dnv\ -/-1 dv 
r' ) 

==AimF';'(a,r)F';'(tl,r), (4.24) 

where the integration region is over the appropriate 'de 
of the rectangle in Fig. 1 corresponding to the Hilbe •• 
space HI, e.g., ifi==1, (A,B)=(iK'+2K, iK'). 

The coordinates on the hyperboloid are 

xo=(ir/r') cn(Q!, r) cn({3, r), 

Xl = - ir sn(a, r) sn({3, r), 

x2 = (i/r') dn( a, r) dn({3, r), 

where a r::: (iK' , iK' + 2K), tl E (iK', - iK' ). The constants 
appearing in (4.24) are numbers which can in prinCiple 
be determined by calculation in special cases of the 
integrand. 
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5. THE ROTATION GROUP IN AN ELLIPTIC BASIS 

There has recently been an investigation by Patera 
and Winternitz7 of the rotation group in a basis alternate 
to the usual one in which the component of angular 
momentum in a fixed direction is diagonalized. If the 
components of angular momentum are denoted by 
L; (i = 1, 2, 3), satisfying the usual commutation relations 
[L;, L j] = EiJ~ k' the operator which is diagonalized is 
E = - 4(L~ + r2L~), where 0 < r2 < 1. In their work 
Patera and Winternitz examined the two variable 
realization on the sphere of 50(3) and showed that in this 
basiS the corresponding basis functions are ellipsoidal 
harmonics or products of Lame polynomials as opposed 
to the conventional spherical harmonics in the canonical 
basis. The two-variable realization was discussed in 
detail in that paper together with the properties of the 
matrix relating the two bases. In that paper the authors 
were not, however, able to produce a realization of the 
single-variable model in which the basis functions were 
Single Lame polynomials. It is the purpose of this sec­
tion to show that this can be done in a quite straight­
forward way. We also show how to relate the overlap 
coefficients to the coefficients of the Lame polynomials. 

The one-parameter model of the representations of 
the rotation group is realized on the space of poly­
nomials [(z) of order less than or equal to 2J (J 
= angular momentum) in the complex variable z. The 
invariant scalar product is so defined that 

(5. 1) 

A canonical basis in this realization (i. e., one in which 
L3 is diagonal) is 

ZJ-M 
!~= [(J_M)!(J+M)!jl/2' -J""M""J. 

The generators of 50( 3) are 

Ll=ti(I-Z2) d: +iJz, L 2=t(I+Z2)d: -Jz, 

L . d iJ 
3 = zz dz - . 

The operator E can then be written 

d 2 

E = [(1 - r)z2 - (1 + r)] [(1 + r)z2 - (1- r)] dz2 

+ (2J - 1) 2z[1 + r2 _ z2(1 _ r2)] ~ 

+ 2J[1 + r2 + (1 - r 2) (2J _1)z2]. 

(5.2) 

(5.3) 

(5.4) 

If we now write the eigenfunctions! of E in terms of new 
functions h, where 

b=l+r, 

1- r (5.5) 

and make the change of variable 

- i(l + b)z 
sn(w, r) = [(b _ z2)(I_ bz2»)lf2' (5.6) 

the operator E acting on the h functions has the form 

1 i 2 ) 2( ) (5 7) 4E=dw2-rJ(J+l sn w,r. • 
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The eigenvalue equation for E acting on the h functions 
is then the Lame equation. The corresponding solutions 
are the Lame polynomials. There are two cases to con­
sider, viz., when J is even or odd. 

Arscott9 has shown that there are eight species of 
Lame polynomials, four corresponding to even J and 
four to odd J. We shall conSistently use his notation for 
the Lame polynomials as it is very suggestive of the 
corresponding expansion of the Lame polynomials in 
terms of Jacobi elliptic functions. In each case (J even 
or odd) the four corresponding polynomials form a 
complete basis for representation space. We now make 
these statements explicit. 

Case 1, J == 2N (N = 1, 2, ... ) 

The complete basis set is 

A~+m = Jf2N UE;'N+2(W) , A;;" = Jf2N SCE;'N+2(W), 

Aj-m=F2N sdE;'N+2(W) , A;;' =F2N cdE;'N+2(W) , 

where F=r ' [(b_z2)(I_bz2)]1/2. 

(5.8) 

F can also be expressed in terms of w via Eq. (5.6), 
but we not do this here. The pair of discrete indices 
labeling the A functions are the eigenvalues of two 
discrete operators. The first of these is the reflection 
operator R which acts on functions! according to 

R[(z)=!(-z) 

so that R Aj~= P Aj~. The second discrete label is related 
to the inversion operation I which acts on functions! 
according to 

I!(z)=z2J !(I/z) 

so that IAPj'm = qA~qm' This method of labeling basis func­
tions has been employed by Patera and Winternitz. The 
index m in each case labels the number of zeros of each 
Lame polynomial appearing in the basis and hence also 
labels the basis vectors of a given type. For the basiS 
function A~+m' m lies in the range 0 ""m ""N + 1; for all 
other basis functions we have the range 0 ""m ""N. 

Case 2, J == 2N + 1 (N = 1, 2, ... ) 

The complete basis set is 

Here m varies between 0 ""m ""N for Aj-m but varies 
between 0 ""m ""N + 1 otherwise. 

The calculation of the nonzero elements of the overlap 
matrix relating the E or Lame basis to the canonical 
basis can be achieved by writing down the equation 

A~~=fo (X~)m.M [(J-M)!(J~M)!11/2 (ZJ-M+pZJ+M), 

(5. 10) 

where the summation extends over those M for which 
(- I)J +M = q. All that is required is then the writing out 
of the left-hand side as a polynomial in z and equating 
coefficients. We shall illustrate this calculation in the 
particular case of the coefficient (X;N)m,2q corresponding 
to the basis function A;':vm on the left-hand side of (5.10). 
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FIG. 2. The mapping snw=-i(1+b)z/[(1-bz2)(b-z2)]V2 in the 
w plane. In order to make this a single valued map, the z 
plane has two cuts along the intervals II = [b- V2 , b1/2 ] and 12 
= [- b-1I2 , _ bV2 l. The lines IV = 2K + iv and w = - 2K + iv with 
- K' < Imv < K' are identified. 

Written in terms of the variable z the basis function 
A;;"m can be expressed in the form 

N 

A;~.m = r'2N:0 (- I)P (1 + b )2P a~p 
p=o 

where UE;'N+2(W) = '[,:'0 a;'p sn2Pw and the coefficients 
satisfy the recurrence relations 

X;'+ ag' + 2a~ = 0, 

(2N - 2p + 2) (2N + 2p - 1) r2 a;'P-2 

(5. n) 

+ [4(1 + r 2)p2 - X;] a;;, - (2P + 1) (2P + 2) a;'p+2 =0, (5.12) 

where 4X;: is the eigenvalue of the operator E. Equating 
coefficients on both sides of (5.10), we obtain 

N 

(X;N)m.2.=[(2N-2q)I(2N+2q)I]1/2 ~ 22P a;;' 
p=o 

xE (_I)P+u+v C(N :P) (N ~ ~(1 + r)2N'P->1+V(I_ r)U-o-v. 

(5,13) 

For ° "" p < N - q the u, v summation is over integers 
u, v such that ° ""u + v ""N - q - p. For N - q ""p ""N, 
u=v=O. This expression then relates the overlap 
matrix to the coefficients a;'p of the expansion of Lamll 
polynomials in terms of Jacobi elliptic functions as 
given by Arscott. Similar calculations can be made for 
the other nonzero elements of the matrix (X~)m.M' 

It is also possible to map the one-variable model we 
have examined thus far, into the two variable model of 
the rotation group realized as square integrable func­
tions on the three-dimensional sphere. This is achieved 
by the following means. With each functionj(z) we 
associate a function on the sphere given by 

J I f (x. v~ J dz FJ(x) = -2' -2- f(z)-. 
1H Z Z 

C 

(5.14) 

Here x is a point on the two-dimensional unit sphere 
i.e., x=(X1,X2,X3 ), xi+X;+x2=1 and v ' 

[ 1'( 2 ) 1 . ( 2 ] 3 = '2t Z - 1 , '2t Z + 1), z . The contour of integration is 
any closed path around the origin. 
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1. Canonical basis: Substituting the basis vector f~ in 
this expression, we get 

(J! )2 
FJM(O, C/J)= (J-M)!(J+M)! iM p';o(cos8)exp(-iMC/J), 

(5. 15) 

where P~N (cosO) is the matrix element of a rotation 
about the x axis in the canonical basis. The point x on 
the sphere is parametrized as 

x = (sinO cosC/J, sinO sinC/J, cosO). 

2. The elliptic basis: In this case it is convenient to 
make the change of variable indicated in Eq. (5. 6). The 
resulting integral is then 

P J'l F J"",( a, (3) = 21ft (1 - rV [iK sna sn(3 snw - dna dn(3 dnw 
c (5.16) 

-rcnacn(3cnw]J (snwt2J E J
P• (w) dw , 

m snw 

where E~"",(w) is one of the Lamll polynomials which form 
the particular basis for given J, e. g., E;;"m(w) 
=UE;'N+2(W). The integration is over a contour which 
encloses the origin in the w plane and lies strictly inside 
the square in the complex w plane with vertices 
(2K, ±iK') and (2K, ±iK'). The situation is illustrated 
in Fig. 2, where the details of the mapping are shown 
together with a possible contour. The coordinates on 
the sphere are given by the relations 

X= «(I/r / ) dn(a, r) dn((3, r), - (ir/r/) cn(a, r) cn((3, r), 

- r sn( a, r) sn((3, r)) 

with aE(-2K, 2K), (3 co (-K, -K+2iK'). 

In each case the integral (5.16) and hence Fj';,.(a,(3) 
is expressible in terms of a product of Lamll poly­
nomials of the type appearing in the integral, e. g. , 

where we have used the notation of Arscott for the pro­
duct of two Lam~ polynomials. In each case X is a con­
stant of proportionality which can in principle be calcu­
lated. This result can readily be obtained by con­
sidering the properties of the integral under the dis­
crete operators R and I as well as using the fact that the 
integral satisfies the Laplace equation and is symmetric 
in Q and {3. 

In order to make this a single valued map, the z plane 
has two cuts along the intervals II = [b- 1/2 , b1 / 2 ] and 
12 = [- b-1/2

, - bI/2
]. Because of the periodicity of the 

elliptic functions the lines 2K + iv and - 2K + iv, where 
- K' < v < K' are identified. 
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Composition of coherent spin states 
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Clebsch-Gordan coefficients for the S U(2) group are computed in the coherent spin state basis 
introduced by Radcliffe. 

Coherent spin states have previously been defined by 
Radcliffe. 1 This note is devoted to the calculation of 
Clebsch-Gordan coefficients in this new basis. 

As is well known, coherent states for boson systems 
are defined according to 

where p, runs over the entire complex plane 0 S- creates 
spin deviation and 10) is the ground state Is, m =: s). It is 
convenient2

,3 to introduce the Fock space built in the 
two-dimensional complex space C2 which is isomorphic 
to a space J of square integrable entire analytic func­
tions 3 of two complex variables z and z': 

\ Q!) = k exp(Q! a+) \ 0), (1) 

where k is a normalization factor, Q! a complex number, 
and a+ the boson creation operator 0 In very much the 
same way Radcliffe has defined coherent spin states 
Is, p,) with total spin s according to 

(2) 

fEJ-I
f(Z,Z')= 6 Cw (zP/..[fii)(z'P'/fj71) 

PEN 
p'E N 

\\f\\2= L; Cpp'2(+oo. 
pE N 
piE N 

s-o s-1 

~0~ (1/v'2)(J.lz - J.ll) (1 + A *J.ll) (1 + A *J.lz) 

s=~ s=! 

10~ (~)I/Z (J.lz-J.lI)(1H*J.lI) (1 + A *J.ll)z(1 + A *J.lz) 

s=1 s=2 

!0~ (£)I/Z (J.lZ-J.lI)(l+A*J.lI)Z (1 + A *J.ll) 3(1 + A *J.lz) 

S=SI-~ s=sl +~ 

S10~ [2s1/(2s1 + 1)]I/Z (J.lz - J.ll)(1 + A *J.ll)2s1-1 (1 + A *J.ll) Z'1 (1 + A *J.lz) 

s=O' s =1 s=2 

101 (1/v'3)(J.lz - J.ll)Z (J.lz - J.ll) (1 + A *J.ll) (1 + A *J.lz) (1 + A *J.ll)Z(1 + A *J.lz)Z 

s=~ s=! s=~ 

!01 (1/12)(J.lz - J.ll)Z(1 H *J.ll) (6/5)I/Z (J.lz-J.lI)(1+A*J.lI)Z(1+A*J.lZ) (1 + A *J.ll)3(l + A *J.lz)Z 

s=1 s=2 s=3 

201 (3/5)I/Z (J.lZ-J.lI)z(1+A*J.lI)Z (4/3)I/Z (J.lZ-J.lI)(1+A*J.lI)3(1+A*J.lZ) (1 + A *J.ll)4(1 + A *J.lz)Z 

s=O s=1 s=2 s=3 

t(J.lz -J.ll) 3 (fir) I/Z (J.lz - J.ll) Z(1 + A*J.ll) @1/Z(J.lZ - J.ll) Z(1 + A *J.ll) z(1 + A *J.lz) Z (1 +A*J.ll)3(I +A*J.l2)3 

x (1 + A*J.lzl 

s=~ s=! s=~ 
7 

s='2 

(2/5) 1 /2 (J.lz - J.ll) 3(1 + A *J.ll) (6/5)1/2 (f.!2 -J.ll)2(1 + A*J.ll) 2 (12/7) 1 /Z(J.lz - J.ll)(l + A *J.ll) 3 (1 + A*J.lZ) 2 (1 + A *J.ll)4(1 + A *J.lZ) 3 

x(1 + A *J.lz) 

s=1 s=2 s=3 s=4 

(1/12)(J.lz - J.ll)3(1 H *J.ll) 2 (10/7) 1 /Z (J.lz - J.ll)Z(l + A *J.ll)3 (15/8) 1 /2(J.lz - J.ll)(1 + A *J.ll)4 (1 + A *J.lzl z 
(1 + A *J.ll)5(1 + A *J.l2) 3 

X(1+A*J.lz) 

s=! s=~ s=~ 9 
s=2' 

(4/7) 1/2(J.lZ - J.ll)3(1 + A */Ll)3 (45/28)1/2(/L2 - /Ll)z(1 + A *J.ll)4 12 (/L2 -/Ll) (1 H*/Ll)5(1 +A*/L2)z (1 + A*/Ll) 6( 1 + A */Lzl3 
x (1 + A*J.lZ) 
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In ] the generators of SU(2) are 

S =-- z-+z'-1 ~ 2 2) 
1 2 2z' 2z' 

S =-.!. z- -z'-. ~ 2 2) 
2 2 2z' 2z' 

(3) 

S =-% (z~ -z'~\ 
3 \2z 2z'j' 

with N = z(2/2z) + z'(2/2z,) and S2 = %N(%N + 1), 
N is the operator "number of particles." 

where 

With this notation the states 18, m =s) such that 

S2)s,s)=s(s+1»)s,s), (4) 

5+)s,s)=O (S+=Sl+iS2), (5) 

(s,s)s,s)=1, (6) 

can be chosen as the homogeneous polynomials ~. = 
z,2'/v'2s1 A coherent spin state is then defined accord­
ing to 

(7) 

where S-=Sl-iS2 =-z(2/2z'). Two such states IS, Il) 
and Is, A) are not orthogonal to one another. Their scal­
ar product is 

(s, AI s, Il) = (1 + A* 1l)2> . (8) 

The essential property of such a set of states is its 
completeness 

+s 

J Is,Il)(s,llldM(Il)= L:; Is,m)(s,ml=d.>, (9) 
C;2 m=-s 

where the weight is given by 

dM(ll) = [(2s + 1)/1T] [tfll/(1 + 1 1l12)2>+2]. (10) 

The integration is carried out over the whole complex 
plane. 

We now consider the addition of two spins S1 and S2' In 
the tensor product of two Bargmann's spaces ]1(Zll Z'1) 
and]2(z2,z'2) the infinitesimal generator of SU(2) is 

(11) 

Looking for the vectors I SI S2' S, s) satisfying the rela­
tions (4), (5), and (6) among the eigenvectors of S~ [with 
the eigenvalue SI(SI + 1)] and S~ [with the eigenvalue 
S2(S2 + 1)J one finds 
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The corresponding coherent spin states are calculated 
from the relation 

exp(As-)18182,8,S)= IS1S2,S,A). (13) 

With the notation 1811 Ill) ® 182, 1l2) = I S182' Il l Il 2), one 
finds 

with 

k _ ( (28 + 1) ! (2SI) ! (282) ! )1 /.2 
- (81 + 82 - 8)! (81 - 82 + 8)! (82 - 81 + 8)! (81 + 82 + 8 + 1)! • 

These polynomials are the coefficients of the expanSion 

S1+&2 

1 S1 8 2' Ill1l2) = L:; J dM(A) 1 8 1S 2, 8, A)(SI82' 8A 1 8182, Il l Il2)· 
s= IS1->21 

(15) 

They are the "coherent" analogs of the well-known 
Clebsch-Gordan coefficients (8182,8, m I S182' ml m 2). The 
connection between these two kinds of coefficients is 
gi ven by the relation 

Particular cases of formulas are listed in Table I. 
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The paper investigates the solutions of Maxwell-Einstein equations for null electromagnetic fields 
with or without matter in case of spaces of high symmetry. For the spherically symmetric space no 
such solution exists, while for cylindrically symmetric spaces, there arises a wide variety of 
situations. In reality, for the solutions that emerge, the spaces should more appropriately be termed 
plane symmetric. Some solutions are exhibited. 

I. THE SPHERICALLY SYMMETRIC SPACE 

It is well known that if one assumes the space to be 
spherically symmetric, then one cannot have a solution 
of the Einstein-Maxwell equations corresponding to a 
radially expanding field of pure electromagnetic radia­
tion. Thus with the line element 

dz2 = _ e~dr2 _ r 2d!J,2 + eVdt 2, (1) 

where A and v are functions of rand t, the equations 

R,..v -iRg,..v= -81T[(1/41T)F ,..~'''v], (2) 

*F"'''';",=F'''''';",=O, *F,..aF,..a==F,..aF,..a==O (3) 

do not have any nontrivial solution. Vaidyal by relaxing 
the Maxwell conditions for a charge free space did ob­
tain a solution in which the current vector is null. Such 
a current may be interpreted as a charge moving with 
the velocity of light. 2 

A charge moving with the velocity of light and having 
no rest mass: This may not conflict with the equations 
of Maxwell and Einstein; nevertheless, the idea is un­
conventional and foreign to physics as we know it right 
now. It seems therefore interesting to investigate 
whether other solutions exist where the Einstein-Max­
well equations are rigorously satisfied but the energy 
tensor may be modified in a more conventional manner 
by the presence of ponderable matter. 

For the discussion of null fields it is more convenient 
to take the line element in the form 

(4) 

where r is now a null coordinate and A, B are functions 
of u and r. It is easy to verify by direct calculation that 
the null vector K'" == or is geodetic and shear free. 
Hence from Robinson's theoremS we may construct a 
null electromagnetic field tensor of the form 

F ,..v = a [K,.. (av cos{3 + bv sin(3) - K)a,.. cos{3 + b,.. sin(3)] 

(5) 

which will satisfy the Maxwell equations. a and {3 in the 
above expression are the "amplitude" and "polarization" 
factors and the unit spacelike vectors if and bV are 
given by 

if = r-lo~, bV = (r sin8)-lo~, 

where we have numbered the coordinates u, r, 8, cp as 
0,1,2,3, respectively. The Maxwell equations now give 
after some algebraic Simplifications 

sin8{3,2 + (as/a) =0, 

(a, 2/a) sin8 + cos8 + {3, S = O. 

(6) 

(7) 
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The above two equations do not possess any solution 
with a independent of the angle coordinates. Thus the 
only nonvanishing energy tensor component of the field 
Too (= 2a 2~) would be angle -dependent. Thus if the 
Einstein gravitational equations are to be satisfied 
there must be an angle -dependent matter distribution 
compensating for the above dependence. However, the 
actual situation is even more complicated. The general 
solution of Eqs. (6) and (7) is given by 

a sin8==exp[j(u - cp) + g(u + cp )], 

where 

(3=!'(u -cp) -g'(u+cp) 

u =logtan8 /2, 

and f and g indicate arbitrary functions of their argu­
ments. The radiation energy tensor will thus have 
Singularities in particular directions. 

II. THE CYLINDRICALLY SYMMETRIC SPACES 

(A) The Simplest case of cylindrical symmetry cor­
responds to the Marder metric 

dz2 == exp[2(y -l/J)](dt 2 - dr 2) - exp( - 2l/J)r 2dcp2 

-exp[2(l/J+JJ.)]dZ2• (8) 

The above line element may also be written 

dz2 = 2 exp[2(Y -l/J)]d1)d~ - exp( - 2l/J)(1) _ ~)2t$p2 

-exp[2(l/J+ JJ.)]dZ2, (9) 

where 1), ~ are both null coordinates. We shall number 
the coordinates ~,7}, cp, Z as 0,1,2,3 and consider the 
null vector K'" = or. The vector is geodetic and the con­
dition of vanishing shear gives 

(10) 

where the subscripts indicate differentiation with 
respect to the coordinate concerned. Equation (10) in­
tegrates to 

(11) 

where fl(~) is an arbitrary function of ~. The nonvanish­
ing R,../s are 

Ru == [l/Jl - (7) - ~)-l]2 + (l/Jl + JJ. l )2 - 2(Y1 -l/Jl)[JJ.1 + (7) _ ~)-l) 

+ [JJ.l + (7) - ~)-l ],u (12) 

Roo = [l/Jo + (7) - ~)-1]2 + (l/Jo + JJ.o)2 - 2(yo -l/Jo)[JJ.o - (7) _ ~)-l] 

+ [JJ.o - (1) - ~)-l ],0' (13) 

Copyright © 1974 American Institute of Physics 1277 



                                                                                                                                    

1278 A.K. Raychaudhuri and A.K. Dutta: Null electromagnetic fields in spaces of high symmetry 1278 

ROI = [1J! 0 + (TJ - ~)-l ][1J!1 - (TJ - ~)"l] + (1J!o + fJ.O)(l/Jl + fJ. l ) 

+ [2yo - 2l/Jo + fJ.o - (TJ - ~)-l ],1' (14) 

R22[exp(2Y)/(TJ - ~)2] = 2l/JIO + fJ.O[l/Jl - (TJ _ ~)"l] 

+ l/JO[fJ.l + (TJ - ~)-l] + (TJ _ ~)-l 

X (fJ. l -1J!1)' (15) 

R33 exp[ - 2(2l/J + /1- y)] = - 2 (l/Jol + fJ.ol) -l/JO[fJ.l + (TJ - ~)-l] 

- /10[l/Jl + (TJ - ~)-l] - 2fJ.ofJ.l 

+ (TJ - ~)-l(l/Jl + fJ. l ). (16) 

III. THE ENERGY STRESS TENSOR AND THE 
FIELD EQUATIONS 

We have 

T "V = (T ,,)rad+ (T ,,)mat' 

(T "v)rad= + 2a2K~1i,,01ivo, 

(T ,,)mat = (p + p)v"vv - pg"v' 

(17) 

(18) 

where we have assumed the matter to be a perfect 
fluid. If now the only nonvanishing v"'s are V

O and vl, 
we get 

1 0 1 V VI =v VO=2, 

(Tll)mat = (p + p)vi, 

(T~)mat = (T~)mat = - p, 

(TDmat = (Tg)mat = t(p - cp), 

so that finally 

R~ =R~ = (81T /2)(p - cp), 

gOlRol =R~ =Rg= - 81TP, 

Roo = - 2a 2Kg - 81T( P + p)v~, 

Rll = - 81TTu = - 81T(p + p)vi. 

The null electromagnetic field is given by 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

F "V =a [K,,(av cosJ3 + bv sinJ3) - Kv(a" cosJ3 + b" sinJ3)], 

where 

a,,=exp(-1J!)(TJ - ~)1i2"" 

b",=exp(1J! + fJ.)1i3 ". 

The Maxwell equations give 

(i) J3 is an arbitrary functions of ~ alone 

(ii) a =G(~)exp(l/J)/(TJ- ~)exp(2Y -2l/J), 

where G(~) is an arbitrary function of ~. 

The electromagnetic energy-stress tensor T "V has 
only one nonvanishing component: 

Too=H(~)exp(21J!)/(TJ- ~)2, 

where H(~) is a positive function of ~. 

The condition R~=R~ gives, using (15), (16), and (10), 

[l/Jl - (TJ - ~)"l][fJ.o + 2l/Jo + (TJ - ~)"l] = 0, (26) 

so that either 

(27a) 
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or 

(27b) 

With (27a) satisfied, R~, R~, as well as Rll vanish so 
that this is consistent only with a pure radiation field as 
is evident from equation (22), and (25). The complete 
solution in this case can be easily obtained. From equa­
tions (27a), (10), and (11), 

e~=f2(~)(TJ - ~), 

e"=f3(~)(TJ- ~), f 3W=fl/g· 

(28) 

(29) 

From Eq. (23) ROI would vanish for the pure radiation 
field and this gives 

(30) 

Substitution into (24) and (13) gives a 2 in terms of the 
functions of ~. 

In case (27b) is satisfied, Eq. (11) becomes 

exp(2l/J + fJ.)/(T/ - ~) = const. (31) 

The field may now be either a pure radiation field or be 
associated with matter. For the pure radiation field 
R~=R~=O and R~+R~=O gives 

fJ.ol + [/1o/(TJ - ~)] + fJ.ofJ. l - [fJ.l/(TJ - ~)] = 0, (32) 

which integrates to 

e"(TJ - ~) =fsW + g2(TJ) , (33) 

so that from (31) 

e~=(TJ - ~)/(f5 +g2)l/2. (34) 

The vanishing of Rll and ROI gives, using Eqs. (10) and 
(27b) 

Al + 2(Y1 -l/Jl) - (AlllAl) = 0, 

AoAl + [Y1 - 2l/Jl + (TJ - ~)-l ],0 = 0, 

where 

A = l/J -log( TJ - ~). 

Eliminating Yl from Eqs. (35) and (36), one gets 

(35) 

(36) 

(37) 

AOAI + [-%Al +t(AlllAl)],O=O. (38) 

In view of (34) and (37), Eq. (38) is identically satisfied 
and Eq. (35) gives . 

eY = [( g~)l/%/(fs + g2)3/4](TJ - ~). 

We then get from (24) and (13) a 2 in terms of f6' fs and 
their derivatives. 

In case there is a fluid along with radiation, the field 
equations may be written as 

-81TH(~)exp(2A) -81T(P+p)V~ 

=Roo = 2A~ = 4(vo - AO)Ao - 2AOO ' 

- 81T(p + p)vi =Rll =2Ai +4(vl - Al)Al - 2All , 

41T(p - p) =R~ = - 2 exp[2(A - V)](AlO - 2AoAl), 

2g 01 (AoAl + VIO - 2AIO) = - 81TP, 

where 

v =Y -log(TJ - ~). 

(39) 

(40) 

(41) 

(42) 
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Physically the integration of the set would require a 
knowledge of the equation of state-in any case the in­
tegration looks difficult. We have been able to find a 
mathematical solution which however gives a value of 
p/p greater than t. The solution is as follows: 

eX = 0; + Tj)-i, eV 
:::: (; + Tj) "', 

81Tp =2(; + TJ)-2(2''''){1 + a), 

81Tp=2(~ +TJ)-2(2''''){3 +0), 

vr= [( 0+ 1)/(2 + a)] (~+ TJ)2(1+"'), 

vg= t[(2 + 0)/( a + 1)](; + TJ)2(1+"'), 

81THW = 0(30 + 4)/( a + 1) 

so that for H to be positive ('Y must be greater than O. 

(B) Dutta and Raychaudhuri: considered stationary 
null fields for which they took the line element in the 
form 

where f, 1/1, 1, m are considered functions of x alone. We 
shall number the coordinates t, x, y, z as 0, 1,2,3, 
respectively. The null vector is taken to have compo­
nents JC1 and K3 only. The condition that the vector is 
null gives 

_la 2 +2ma +f=O, 

where 

a=K3 /Ko. 

Thus 

a = [m =F (m 2 + fl)l /2J/l. 

Again the condition that the vector is geodetic gives 

(44) 

(45) 

(46) 

-11a 2 +2mla +fl =0. (47) 

As the quadratics (44) and (45) must have a common 
root, this root may be written as 

a = -~(VjUl)' (48) 

where we have written 

v=f/l, u=m/l. (49) 

Differentiating (46) and eliminating Vi with the help of 
(48), we get a l =0 so that Eq. (48) integrates to 

f/l=-2a(m/l)+b. 

Substituting from (50) in (46), we get 

f /1 = - 2a(m/l) +a2
• 

(50) 

(51) 

If now the energy-stress tensor be due to this null field 
alone, R~ = R~ = 0 and we get 

el/l=Ax~ 

and 

flll +mi=-4b. 

Substituting from (51) in (53), we get 

(fl + aml )2 =: - 4ba 2 

(52) 

(53) 

so that b must be negative, say - c2 • Integrating we get 

f+am=2ca x+d. (54) 
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Combining (51) with (54) 

m=al-2cx-(d/a), (55) 

f=4cax+2d-a2l, (56) 

so that 

fl + m2 = [2cx + (d/a )]2. 

Making a suitable transformation, we may now write 

fl+m2 =r, (57) 

m=al±x, (58) 

f=-a 2l'f2ax, (59) 

eli>=x·i / 4 • (60) 

IV. THE ELECTROMAGNETIC FIELD AND THE 
FIELD EQUATIONS 

The vector K'" is already shear free and the null 
electromagnetic field is of the form 

F ",v =K",(av cos.B + bll sin.B) - Kv(al! cos.B + bl! sin,B), (61) 

with 

The Maxwell equations give 

tbBy +C 

and 

(62) 

(63) 

(64) 

where A and B are constants and C is an arbitrary func­
tion of the argument (z - a f). The Einstein equations 
now give 

xl/ill-l/il _(2X)-1(flll +m~)=O, 

xl/lll + 1/11 = 0, 

[2( - g)l /2]-1[(fll + mml)/x],l = 2KsK s, 

[2{- g)1 /2]-1[(lf1 +mm1)/x],1 =: 2KoKo. 

[2(- g)I/2]-l[(mfl - fml)/X],l = 2K 3Ko• 

[2( - g)1/2]-1[(lml - ml)/xJ,1 = 2KoKa. 

Equations (65) and (66) have already been dealt with. 
Equation (67) gives, using Eqs. (58), (59), and (64), 

l/x=. - (4A2 /as)f(x) + b logx + c, 

with 

f(x) = f [exp(2Bx)/2Bx]dx if B*O 

and 

f(x)=x ifB=O. 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

The solution (71) was given by Dutta and Raychaudhuri 
for the case B = O. 

The solutions as given above break down for l = O. 
In that case one gets 

K S =A/xS/4
, 

Ko=Axl/4, 
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and the field equations give 

f /x=4A 2x +Blogx + c, 

m=x. 

V. CONCLUDING REMARKS 

While in the usual cosmologies, one either considers 
a pure matter universe or one which has besides a dis­
tribution of blackbody radiation; it seems plausible that 
in the earlier epochs nonequilibrium processes led to a 
directed flux of radiation in a background distribution of 
matter. The present investigation was motivated by a 

J. Math. Phys., Vol. 15, No.8, August 1974 

desire to throw some light on such situations. However, 
so far we have been able to present only pure radiation 
solutions and they too exhibit unwelcome Singularities. 
It seems that the solutions that we envisage would re­
quire space-times of lesser symmetry. 

ip. C. Vaidya, Proc. Ind. Acad. Sci. 33, 264 (1951). 
2W.B. Bonnor, Int. J. Theor, Phys. 3, No.1 (1970). 
31. Robinson, J. Math. Phys. 2, 290 (1961). 
4B. K. Dutta and A. K. Raychaudhuri, J. Math. Phys. 9, 1715 
(1968). 
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In this paper we give a rigorous analysis for defining a class of superpropagators as boundary values 
of analytic distributions and discuss the ambiguities connected with this definition. 

I. INTRODUCTION 

Ambiguities 1 are inherent in the construction of 
superpropagators of nonpolynomial Lagrangian field 
theories, 1. 2 and in the many approaches that have been 
proposed for evaluating the superpropagators the 
sources of the ambiguity appear to be different. For 
example, in the Mellin transform approach1

•
3 there is 

nonuniqueness in interpolating the Taylor coefficients 
of the superpropagators by an analytic function or in the 
continuation of the coupling constant which is employed 
when the Mellin transform does not converge. In gen­
eral, to fix the arbitrariness it is necessary to impose 
physical requirements, one of them being unitarity 
which fixes the imaginary part. For the exponential 
interactions4 the arbitrariness in the real part is elimi­
nated by demanding "minimally singular" behavior of 
the solution. 

In this paper we should like to examine the problem 
of the definition of a class of superpropagators as 
boundary values of analytic distributions and discuss the 
ambiguities linked with this procedure. We analyze the 
superpropagators rigorously in the correct distribution 
theory framework, thereby avoiding difficulties con­
nected with the Euclidicity postulate3 and methods like 
the Mellin transform approach. We show that the 
ambiguities arise because of the existence of a brach 
point in the analytic distribution whose boundary value is 
the superpropagator. 

II. SUPERPROPAGATORS AS DISTRIBUTIONS 

The superpropagator of a massless theory with 
Lagrangian of interaction Lint (rt» is given by 

., 

=~ Cn[~D(X1 -x2 )]n, 

(2.1 ) 

where D(x) = 1/(- r + iO) is the causal propagator (the 
numerical factor 1/4n2 has been absorbed in the coupling 
constant K2). 

As a distribution <I>[K2/(-x2 +iO)] is by definition the 
boundary value (as Y - 0+) of <I> [~/(- x2 + iY)] on the real 
axis of the plane P = - r + i Y, where Y is a positive 
definite real form. The distribution <I>[K2 /(_X 2 +iY)] can 
be obtained in the upper half-plane of P by the analytic 
continuation of its values on a half-line of some argu­
ment 8, where 8=80 + 271m and 0<80 <71 (m integer). 
Thus the problem reduces to defining <I>[K2/(eI8T)] as a 
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distribution, where T= a".x"x. is a positive definite real 
form. This can be done under the following two 
conditions: 

(a) <I> (z) is an entire function of z, of order of growth 
p > 0 and type (]. 

(b) There is a e, as specified before, such that 
'T2-E<I>[K2/(e,9'T)] is continuous in x" (e > 0). 

The exponential-type interactions satisfy these con­
ditions whereas the rational interactions violate the 
first condition. 

The procedure for evaluating the superpropagators is 
thus split into three steps, shown schematically as 
follows: 

Step 1: 

(<I> 
K2 ) 

el8 'T 
Define and 
evaluate 

Step 3: 

Boundary 
value as Y - 0+ 

Step 2: 

<I>(_X 2:iY} 
Analytically 
continue 

Step 1: Since <I>[K2 /(e I8'T)] satisfies condition (b), it is 
locally sum mabie and therefore defines a regular dis­
tribution by 

I=(<I>(~/eI8'T), cp) = J dx<I>(K2 /e I8'T)cp(x), (2.2) 

where cp belongs to some test function space (e. g., the 
S-type spaces). 5 

then 

Let x" = b "vx~ such that 

b"va"pbpa = K2ovcr; 

1= (det b)J dx<I>(e- i9/r 2 )j(x), 

where r2 =~ + xi + ~ + ~ and j(x) = cp(bx). 

(2.3) 

(2.4) 

For convenience, in the following we write t:.. = e-19/ 

r2 and consider 

E= J dx<I>(t:..)j(x) 

= J dx[<I>(t:..) - C2 t:..2 ][j(X) -j(0)0(1-r)] 

+ j(O) J dx<I> (t:..) 0(1 - r) 

+ c2 J dxt:..2 [j(x) - /(0)0(1 - r)] 

Copyright © 1974 American Institute of Physics 1281 
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- (1/21)xl'x.fI'.(0)8(1-r)] 

+ f(O) J dx<I> (~)8(1 - r) + (1/2 1) fl'v(O) 

X J dx Xl'x.[<I> (~) - C2~2]8(1 - r) 

+ C2 J dX~2[j{X) - f(O) 8(1 - r)] 

+ Cs J dx~S[j{x) - f(0)8(1 - r) 

- (1/21 )xl'x.fl'v(0)8(1- r)], 

where fI'V"'l(O) == 0 1'0.··.01f(0). 

Continuing in this way we obtain 

E= fdX(<I>(~)-tacn~n) (j{x)-~(2n~4)1 
Xx "'X f··· (0)8(1-r)\ 1'1 "2n-4 1'1 1'2n-4 'J 

., f ( " 1 +~ Cn dx~n j{x) -~ (21-4)1 

xx ... x f (0)8(1-r») 
"I "2/-4' "1"'1'21-4 

(2.5) 

The first term in the above equation is defined as 

1~~ fdx (<I> (~) - ~ Cn~n) V(x) - ~ (2n ~ 4) 1 

Xx ···X f. ... (0)8(1 - r») 
"I "2n-4 "I "2n-4 

=1)-IrJ,!.1 dX( <I>(~) - ~Cn~n) f(x) 

+~Pl["'ldX( <I>(~) -~ Cn~n) (2n ~2)1 

where 0'" A'" 1. (2.7) 

Condition (a) ensures the vanishing of the first term in 
Eq. (2.7) as N - 00. For the second term we consider 

X x" ···x" f" ... " (Ax) 
I 2N-2 I 2N-2 

=11 drr2N+l(<I>(e-le) _ t C e-lner-2~ F (r 2) (2.8) 
T'O r 2 n=2 n ) N , 

where FN(r 2)=f(dn/(2N-2)1]11 .. ··'11.. fl"" (Ax) is 
~I, ~2N-2 1·' ~2N-2 

the integral over the angular vanables and 1/1' are the 
direction cosines. 
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If cP E sa , 5 then 

I f(2N-2) (x) I '" AB2N-2(2N _ 2)S(2N-2) , (2.9) 

where t,) (x) is a Kth derivative of f(x). Thus 

(2.10) 

By condition (b), splitting the range of integration in Eq. 
(2.8) into (O,N-I/p) and (N-l/p,l) and applying the first 
law of mean for integrals, we obtain 

I ~ I '" il\T-l/p I FN(Jl) I [JlN I <I> ( e;e) I +~ I Cn 1 JlN-nJ 

., 
+i(l-l\T-I/p)IF WIL; I C I ~N-n 

N rr-N+l n , 
(2.11) 

where Jl and ~ are obviously N-dependent and satisfy 
0'" Jl"'N-I/P", ~'" 1. 

By Eq. (2.10) 

C'B2N-2(2N_2)B(2N-2) [ I (e-1e)1 I ~ I '" (2N _ 3) 1 JlN <I> M N-I / P 

+ l\T- I /P~ I cnl JlN-n + n?;/J Cn I ~N-n ] . (2.12) 

Condition (b) implies that 

and 
N N 

N-I/p~ Icnl JlN-n"'l\T-I/p~ ICnll\T-(I/ p)(N-n) 

and 
., ., 
L; I C I ~N-n '" l\T-(I/p)N L; I C I Nn/p 

n=N+l n n=N.l n 

where M and F are constants. 

:.1 ~ I '" DN(2N - 2)(2N-2HB-l-(1 /2p) J expN[2 + (1 +1n(B22 I /P)], 

(2.13) 

where D is another constant. 

We therefore see that for 

f3 < f30 = 1 +(2p)-1 (2.14) 

the second term in Eq. (2.7) vanishes as N - 00. Even 
when f3 = f30 this can be made to hold by choOSing an ap­
propriate B which is equivalent to restricting cp to a 
countably normed subspace of SBo. By a similar analysis 
it can be seen that the last two series in Eq. (2.6) con­
verge under the same conditions for f3. 

Thus for every cp E SB, f3 < flo or cp E sao· B with B ap­
propriately chosen, E is well-defined and equals (see 
Appendix) 

E=~Cnelne((-\)n ,f) 
r ,",soc(n) 

., 2~ ( ) +~ 4n- 2r(n)r(n _l)A(n) on-2 6(x),f , (2.15) 
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From Eqs. (2.2) and (2.4) we get 

I = (if> (/C2 e-i9/T) , q;) = (det b)E. (2.16) 

From Eqs. (2.15), (2. 16) and the Appendix it can be 
easily seen that the Fourier transform of the distribution 
if>(~e-16/T) is equal to 

[ ( 
/Cze-Is )] ~ (det o)w2 ( (OP)2) n-2 _ J if> -- -LJ --- C e In6 

T - 1'1=2 r(n)r(n -1) 4 n 

x {1JI{n) +¢(n -1) -In[(bp)2/4] + [2A(n)/Cn] elnel. 

(2.17) 

The Fourier transform clearly5 converges to a distribu­
tion in Ss(~ < 130 ), It should be noted that this convergence 
is uniform with respect to b1J.11 and therefore allows us 
to continue the parameters b J,IV under the summation in 
Eq. (2.17). 

Step 2 and Step 3: So far we have defined if>[~/(g""x"x)] 
for g",,=e I8a,,", We now continue this result to g""=-Tl,, .. 
+ ie"",' where 1'/"" is the usual Minkowskian metric and 
E",,:;:;:Ei, € > 0 and 0 < arg(- TI"" +ie",,) < 11'. 

From Eq. (2.3), as € - 0', we obtain 

(bp)2- ~ele(_p2 -iO), 

and 

det 0 .... - i/C4eI29 , 

log(bP)2/4]-10g[(~ei8/4}{- p2 -iO)], 

== In«~ /4) I pal] + i{ 6 - 11-), for p2 > 0, 

=In[(~/4)lp21] +i9, for p2 <0. 

(2.18) 

:.0 [if> ( -r:iO)] =~ r~~~n~1)(~(P2/iO») n-2 

X{1JI(n) + 1JI(n -1) -In[ (~/4) Ip21l +if)(p2)1T - i6 

+ [2A(n)/Cn]e InB}. (2.19) 

From the equation for A(n) [Eq. (2.15)] it is easily 
seen that the last term of Eq. (2.19) depends on 60 , and 
not on m(G= 60 +2mn). From the uniqueness of the 
analytic continuation J {if>[~/(- r +iO)J} cannot depend 
on 90 ; however, it does depend on the arbitrary integer 
m. For example, for the exponential superpropagator 
for which 1T/2 ~ 60 < n, 

{
'" e-180' /1 n-l e-190' 

A(n) = drr2n~l~l' 2)/ - drr211-1L)~l'( 2 I 
,.=1 1-11+ t! \r- r 1'=0 ,.0 t! \r- r 

I" e-11101 
== 2~ l! (l-n) + tEn+l (- e-ISo) , 

'~n 
where En is the exponential integral function. a 

:.A(n) = He-19on/n!)[ - i(11' - 60 } + I/J(n + 1)1. (2.20) 
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Hence 

By suitable averaging over some values of m J it is 
possible to obtain a unitary result. A claim has been 
made in Ref. 7 that a unitary and unambiguous result 
can be obtained by a method analogous to ours. This is 
contrary to our result. The averaging procedure J how­
ever, introduces an ambiguity in the real part of the 
superpropagator and this is eliminated by demanding a 
"minimally singular" solution. 4 

III. CONCLUSIONS 

We have shown that under two conditions-

(a) if> (z) is an entire function of z of order of growth 
p > 0 and type a; 

(1)) there exists aBo, 0<9 0 <1T, such that r-·if>[{~e-19)/ 
T] is continuous in T(e > 0)-

the superpropagator if>[~/(_X2 +iO)] can be defined as a 
boundary value of an analytic distribution in the space 
(SIl)', where 13 < 130 == I + 1/2p or in the space (,sIlo·B), for a 
suitably chosen B depending on p and a. We obtain a 
series representation for the superpropagator and this 
representation converges as a distribution in the space 
above. The ambiguity in the result is due to the exis­
tence of a branch point in the analytic distribution which 
is a reflection of the fact that the function if> (z) has an 
essential singularity at infinity . 
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APPENDIXS' 

We briefly consider the distribution {1/r 2 )6 and the 
ass~ciate function (1/r2)~o.(nl' Here r2 ==x~ + x~ + x~ 
+xs· 

The function {1/r2 ).r is locally summable for Re z < 2 
and therefore defines in this region a regular distribu­
tion which is also analytic in z. By analytically con­
tinuing (1/r 2 ) .. beyond this range, one obtains for 
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n - 1 < Rez < n + 1 , n == 2 ,3, .. , , 

(C\ )", cp) == f dx (rI2) I! (1)(X) -1>(0) - 2~ 1> .. ,,(0) 

x"x" -'" _ ( 1) '" (0)x"1"'X"2rr-48(1 - r») 2n - 4 ! 'f'''1''' "2n-4 

rr2 (0) "-2 1 
+r(n)r(n-1) 4" 1>(0)-;z:-; 

=((r\ ):.00(n)'CP)+r(n);;n_l)((~r-20(X)'CP)n:z' ) 
(AI 

where cp is a test function in an S-type spaces (SB in our 
case). 

The distribution (1/r 2 )1! is therefore meromorphic in z 
with simple poles at z == n, n == 2,3, ..•. Equation (AI) also 
defines the associated function (1/r 2 )!saoo(") in the range 
n-1<Rez<n+1. 

The Fourier transform of (1/r 2 )1! is given by 

[(..!. )I!] _ 2(p2) .. -2 r(2 - z) 
J r2 -1( 4 r(z) , (A2) 

which has the same analytic structure as (1/r 2
) ... 

In the neighborhood of the pole at z == n, n == 2,3 , '" the 
Laurent expansion ofJ[(1/r 2 )1!] is 
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( 
1 p2 ) x. -- + lJ!(n) + lJ!(n -1) - In - +... . 

n-z 4 
(A3) 

Thus the Fourier transform of the associated function 
at z==n is 

[( 
1 ) "] 1(2 (P2) "-2 ( J ? ... 00(") == r(n)r(n -1) -4 lJ!(n) + lJ!(n -1) 

p2 ) 
-In 4 (A4) 
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A boundary value problem of a linear differential-integral equation is converted to a Cauchy system 
by means of parameter imbedding. Numerical results are shown for an equation from nuclear 
physics. 

1. INTRODUCTION 

In the mathematical description of physical processes, 
boundary value problems for integro-differential equa­
tions frequently arise. Example of such processes are 
the distribution of a drug in the body1 and elastic 
scattering of nucleons, such as O! particles and protons, 
from medium sized nucleii. 2 The conversion of such 
problems to Cauchy systems has previously been dis­
cussed,3.4 and numerical experiments have demon­
strated that such Cauchy systems can feasibly be 
solved.5 • 6 In this paper we show another method of re­
ducing integro-differential equations to Cauchy systems 
by means of parameter imbedding, and we show numeri­
cal results for a degenerate kernel. 

2. DERIVATION OF CAUCHY SYSTEM 

Let u(r) be a solution of the linear differential integral 
equation 

u"(r) + Aq(r)u(r) = 10L K(r,r')u(r')dr', 

o :s r :s L, O:s A :s A, (1) 

with boundary conditions 

u(O) = 0, 

u'(L) = c. 

We shall consider a degenerate kernel of the form 
N 

K(r,r') = L:; !i(r)gi(r'). 
i=1 

(2) 

(3) 

(4) 

We regard u as a function of both r and the parameter A, 
so we write, where necessary, 

u = u(r,A). (5) 

Introduce the auxiliary function z(r, A) that is a solution 
of the linear differential equation 

z"(r,A) + Aq(r)z(r,A) = 0, O:s r:s L, O:s A:S A, (6) 

with the boundary conditions 

Z(O,A) = 0, 

Z'(L,A) = 1. 

Next, consider the differential equation 

(7) 

(8) 

W"(r,A) + Aq(r)w(r,A) = cp(r), o :s r :s L, O:s A :s A, 
(9) 

W(O,A) = 0, (10) 

W'(L,A) = O. (11) 

Introduce the Green's function,G(r,r',A),in terms of 
which the solutions of Eqs. (9)-(11) can be written 
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w(r, A) = J L G (r, r' ,A)cp(r')dr' • 
o 

(12) 

In terms of the auxiliary functions z and G, the solution 
of Eqs. (1)-(3) can be written 

N 

u(r, A) = cz(r, A) + L:; mi(A) 10 L G (r, r', A)!,(r')dr', (13) 
;=1 

where 

m;(A) = 10L g;(r')u(r',A)dr', i= 1,2, ••• ,N. (14) 

Using the two auxiliary functions z and G, we have con­
verted the differential integral equation of Eqs. (1)-(3) 
into a linear integral equation. We next shall obtain a 
Cauchy system for these auxiliary functions, and then 
we shall obtain a Cauchy system for the integral equa­
tion. 

Differentiate Eqs. (6)-(8) with respect to A to obtain 

z~(r,A) + Aq(t)zA(r, A) + q(t)z(r,A) = 0, 

ZA(O,A) = 0, 

Z>..(L,A)= O. 

(15) 

(16) 

(17) 

Here we regard z A as a new function of r and A. In terms 
of the Green's function, the solution of Eqs. (15)-(17) is 

zA(r,A) = - 10L G(r,r',A)q(r')z(r',A)dr'. (18) 

This is a differential equation for the function z(r,A). 
The initial condition at A = 0 is 

z(r,O)=r, O:sr:sL. (19) 

Next, differentiate Eqs. (9)-(11) with respect to A to ob­
tain 

w~(r,A) + Aq(r)wA(r,A) + q(r)w(r,A) = 0, 

WA(O,A) = 0, 

w>"(L,'\) = O. 

In terms of the Green's function, we can write 

wA(r,A) =- 10L G(r,r',A)q(r')w(r',A)dr'. 

(20) 

(21) 

(22) 

(23) 

Next, differentiate Eq. (12) with respect to A to obtain 

wA(r,A) = JL GA(r,r',A)cp(r')dr'. o 

USing Eq. (12), we can write Eq. (23) as 

(24) 

wA(r,A) =- 10L G(r,r',A)q(r') 10L G(r',r",A)cp(r")dr"dr'. 
(25) 

Since Eqs. (25) and (25) must hold for all arbitrary func­
tions cp(r), it must follow that 
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G",(r,r' ,A) = fOL G(r,r",X)q(r")G(r",r";X)dr", 

o ~ A ~ A. (26) 

This is a differential equation for G(r,r',A). The initial 
condition on G is 

{
-r' 

G(r,r',O) = ' 
-r, 

o ~ r' ~ r, 

r ~ r' ~ L. 
(27) 

Equations (18), (19), (26), and (27) comprise the Cauchy 
system for the auxiliary functions z and G. We now con­
sider the integral equation Eq. (13). To evaluate u(r, A), 
we need the values of mi (A). Substitute for u(r, A) from 
Eq. (13) in Eq. (14) to obtain 

L N 
miCA) = fo gi(r')[cz(r' ,X) + .E miA) 

j=1 

x J L G(r', r", A)!j(r")dr"]dr', i = 1,2, .•• ,N. (28) o 
This we recognize as a set of linear algebraic equations 
for m 1 (X), m2(A), ••• , mN(A). 

It is expedient to adopt matrix notation. Let a be the 
N x 1 vector whose elements are 

ai(A) = fOL gi (r')z(r' ,A)dr', i = 1,2, ... ,N. (29) 

Next, let B be the N x N matrix whose elements are 

b;j(A) = fOL gj(r') fOL G(r',r",A)!j(r")dr"dr', 

i,j= 1,2, •.• ,N. (30) 

If m is the N x 1 vector whose elements are m i (A), we 
can write Eq. (28) as 

meA) = ca(A) + B(A)m(A). (31) 

Introduce the resolvent matrix R(A), in terms of which 
the solution of Eq. (31) is 

meA) = ca(A) + cR(A) a(A). (32) 

The matrices Band R are related by 

R(A) = B(A) + B(A)R(A). (33) 

We now obtain a Cauchy system for R. Differentiate Eq. 
(33) to obtain 

R",(A) = B",(X) + B",(A)R(A) + B(X)RA(A), (34) 

which can be written 

R",(X) = [BA(A) + B",(A)R(A)] + R(A) [BA(A) + B",(A)R(A)] 
(35) 

or 
RA(A) = (I + R(A)]BA(A) [I + R(A)], (36) 

where I is the identity matrix. Equation (36) is the de­
sired Riccati equation for the matrix R. The initial con­
dition on R is found from Eq. (33), 

R(O) = [I - B(0)r1B(0). 

Expressions for the elements of the matrix B",(A) are 
obtained by differentiating Eq. (30), 

(btjh = fOL gt(r') fOL G",(r',r",A)!j(r")dr"dr', 

(37) 

i,j = 1,2, •• • ,N. (38) 
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The functions g1 (r),g2(r), ... ,gN(r) and !1 (r).f2(r), ... , 
!N(r) are known functions, and GA(r,r' ,A) is given by Eq. 
(26). 

3. SUMMARY OF CAUCHY SYSTEM 

The functions z, G, and R are defined to be solutions of 
the differential equations 

zA(r,A) = - fOL G(r,r', A)g(r')z(r', A)dr', (39) 

G",(r,r',A) = - fOL G(r,r",A)q(r")G(r",r',A)dr", (40) 

RA(A) = [I + R(A)]BA(A) [I + R(A)], 

o ~ r ~ L, 0 ~ A ~ A (41) 

with initial conditions 

z(r,O) = r, 

{
-r' 

G (r, r' , 0) = ' 
-r, 

o ~ r' ~ r, 
r ~ r' ~ L, 

R(O) = [I-B(0)J-1B(0). 

The elements of the matrix BA(A) are defined by 

(btjh = fOL gi(r') fOL G",(r',r",A)!ir")dr"dr', 

(42) 

(43) 

(44) 

i,j = 1,2, ... ,N. (45) 

At the points A * where the values of u(r, A *) are desired, 
we evaluate the vector meA) by 

meA *) = c[I + R(A *)]a(A *), 

where the elements of the vector a are given by 

a,(A *) = foL gi(r') z(r', A *)dr', i = 1,2, ••• ,N. 

To evaluate u(r,A *), we use Eq. (13), 

(46) 

(47) 

N JL u(r ,A *) = cz(r, A *) + .E miCA) G(r, r', A *)!,(r') dr', 
i=1 0 

o ~ r ~ L. (48) 

4. COMPUTATIONAL TECHNIQUES 

One numerical technique that has been shown to be fea­
sible5- 7 is that of semidiscretization, or the method of 
lines.8 In this method, the Cauchy system of Eqs. (39)­
(44) is integrated numerically from A = 0 to A = A along 
lines of constant values of r. At each step in the nume­
rical integration, the right-hand sides of these equations 
are evaluated by an appropriate quadrature formula 
using the values of the functions z, G, and R at each of 
the lines of constant r. It is clear that the type and 
order of the quadrature formula dictate the locations of 
the lines of constant r. 
In the numerical example to follow, Simpson's rule with 
twenty intervals is used to evaluate the definite integ­
rals, and a fourth order Adams-Moulton procedure is 
used to integrate the differential equations. Computa­
tions were performed using an IBM 360/65 digital com­
puter. 

5. A NUMERICAL EXAMPLE 

To describe elastic scattering of nucleons, such as 0/ 

particles, protons, etc., from medium size nucleii, such 
as Fe54,Pb208, etc., optical model potentials can be 
used.2 •9 In this model, the complex many-body effects 
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introduce a nonlocal potential in the Schrodinger equa­
tion governing the qlotion of the particle.lD,l! The re­
duced S-wave Schrodinger equation is a one-dimensional 
differential-integral equation where the kernel of the 
integral term represents the nonlocal interactions. The 
equation isll 

u"(r,X) + [X + V(r)]u(r, X) = fOL K(r,r')u(r',X)dr', 

0:::::: r:::::: L, 0:::::: X :::::: A, (49) 

with boundary conditions 

u(O,X) = 0, 

u'(L,X) = A"JA cos("JA L + 0). 

(50) 

(51) 

We here consider the special case of a degenerate ker­
nel of the form 

K(r,r') = rr'[exp(- !r2 - h'2) + exp(- tr2 - !r'2)]. 

The local potential, V(r), is given by 
(52) 

V(r) = - exp(- tr2). (53) 

The coefficient A is a known constant. 

In the second boundary condition, Eq. (51), the phase angle 
o is unknown. An additional relationship exists at the 
boundary, namely, 

u(L,>..) = A sin(lfL + 0). 

We now show how the value of 0 is determined. The 
values of the function u(r, X) are given by [Eq. (48)] 

N 

(54) 

u(r,>") = ez(r,>") + 1] m i (>..) JL G(r,r', x)fi(r') dr', 
i=1 D (55) 

and the values of m are given by [Eq. (46)] 

m(>..) = e[l + R(>..)] a(>..). (56) 

In Eqs.(55) and (56),e represents the value ofu'(L,>"), 
or 

e = A5 cos(,fil L + 0). (57) 

In view of Eqs. (55) and (56), we can write 

u(L,>") = elP(>"), (58) 

where IP(>") is a function of z(L, X), G(L, r' ,>"),R(>"), and 
a(>..) , all of which are being computed in the' Cauchy sys­
tem. Next, using a trigonometric identity, we write 

u2(L,>..) + u'2(L,X)/X = A2, 

which can also be written, using Eqs. (57) and (58), 

e21P2 + e2 /X = A2 
or 

The phase angle 15 is given by 

15 = tan-1(,filIP) - "JA L. 

(59) 

(60) 

(61) 

(62) 

A Cauchy system was developed for Eqs. (49)-(53), and 
a computer program was written in the FORTRAN lan­
guage. Several sample cases were run, and we present 
here some results. Table I shows the phase angle 15 for 
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TABLE 1. Phase angle (0) for various values of It(L = 1, A = 1). 

It o (degrees) 

0.0 180.000 
0.05 176.393 
0.10 174.919 
0.15 173.802 
0.20 172.872 
0.25 172.063 

TABLE n. Values of u(r, It) for It = 0.1 and O. 25 (L = 1, A = 1) 

u(r, It) 

r It = 0.1 A = 0.25 

0.00 0.0 0.0 
0.10 0.018 25 0.029 29 
0.20 0.036 78 0.058 98 
0.30 0.055 85 0.089 44 
0.40 0.075 73 0.121 07 
0.50 0.096 69 0.154 22 
0.60 0.118 96 0.189 23 
0.70 0.142 78 0.226 41 
0.80 0.168 36 0.26605 
0.90 0.195 90 0.30840 
1.00 0.225 59 0.353 65 

various values of >... Table IT shows values of u(r,>") for 
>.. = 0.10 and>.. = 0.25. In all cases, the parameters A 
and L were both arbitrarily set equal to 1. O. Numerical 
quadrature was accomplished via 20-interval Simpson's 
rule, and integration of the differential equations was 
performed using an Adams-Moulton method with a step 
size of O. 01. 

Other methods, such as effective mass approximations 
and iterative techniques,ll,12 have been used to solve 
equations involving nonlocal potentials. These values 
compare favorably with the values found using the im­
bedding approach, as indicated in this paper. The im­
bedding approach has the advantage of giving the wave 
solution inside the potential region. This is useful in 
understanding such phenomena as the Perey effect.12 

6. DISCUSSION 

The imbedding approach, as used in this paper, yields 
numerical results consistent with those found by other 
methods. In subsequent papers, we shall extend these re­
sults to problems with general (nondegenerate) kernels 
and problems with nonlinear boundary conditions. 
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The zero-mass Dirac equation admits a simple generalized covariance group which is an 
inhomogeneous Lorentz group G different from the Poincare group. Its mathematical structure and 
unitary irreducible representations have been studied by Flato and Hillion [Phys. Rev. D 1, 1667 
(1970)]. Physical consequences concerning neutrino physics were then obtained by introduction of 
the Stokes parameters. The present article is divided into three parts: (1) Introduction, in which we 
present briefly the idea of generalized convariance, summarize the main results obtained by Flato 
and Hillion, and introduce the l4-dimensional unification group proper for the generalized 
con variance of the free neutrino equation. (2) In the second part, we study by the well-known 
method of induced representations all the strongly continuous unitary irreducible representations of 
the 10-dimensional Dirac group G as well as I)f the 14-dimensional unification group G'. 
(3) Physical applications: in this chapter, we concentrate on particular zero-mass representations of G' 
which are of interest at least for the study of the neutrino free-field theory. These classes of unitary 
irreducible representations of G' permit us to have two possible physical alternatives which are 
discussed. 

I. INTRODUCTION 

To begin with, we summarize the essential ideas in 
Ref. 1: In classical theory, the field belongs to a cer­
tain linear space of functions on Minkowski space with 
values in a;n. This tensor or spinor field satisfies a 
classical field equation of the type A( a) ~(x) = 0 where 
A( a) is a differential operator. (;n is also a representa­
tion space of a finite-dimensional non-unitary represen­
tation of SL(2, (f), the universal covering of the connect­
ed component of the homogeneous Lorentz group. The 
equation A( a) ~(x) = 0 is said to be relativistic covariant 
if when we make the transformation x - x' = Ax + a in 
Minkowski space (where ± A-A in the covering map) 
and, at the same time, cotransform the field ~(x) - ~'(x') 
= S(A)~(x), our original equation A(o)~(x) = 0 goes into 
A(o')~'(x') = 0, 

One can ask what are the most general transforma­
tions of the field ~(x) compatible with the Poincare 
transformation x - x' = Ax + a, which lead to the equa­
tion A( a')~' (x') = O. A general cotransformed field which 
meets our purpose is, e. g., of the form ~'(x') 
= S(A) 1jJ(x) + cp'(x'), where cp'(x') is a solution of the 
field equation A( a')cp'(x') = O. Thus, we have to introduce 
a generalized covariance group which is, e. g., a semi­
direct product of SL(2, (f) by the space of solutions of 
the field equation. The multiplication law is directly 
obtained by 

(Al, Cf.'l(x»)(A, cp(x» = (AlA, cp(x) +S(A-l)CPl(X». 

The space of the solutions of the field equation is in 
general infinite-dimensional and the mathematical study 
of this kind of groups sets some yet unsolved problems. 
In particular, the gxhaustive classification of its uni­
tary irreducible representations (Urn) in unknown. How­
ever, the special case of zero-mass Dirac operator 
A(il) = Y'o", can be partially studied by considering only 
the subspace of constant solutions. We obtain a gener­
alized covariance group which is the Dirac group G 
= SL(2, C)IR\ with the multiplication law (Al' al )(A2, a2) 

= (AlA2' az + S(A2l)al) which is equivalent to 
(Al, al )(A2, a2 ) = (AlA2' al + S(A l )a2) and where S is a real­
irreducible representation equivalent to 

D(t, O)G:>EBD(O, t): 
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AESL(2,a;),A-S(A)=( ReA ImA\. 

-ImA ReA) 

The faithful UlR (which belong to the prinCipal series) 
can be obtained by direct methods1: 

rJ"f(Z) = a(Z, g)f(Zg) , where Z= (Zl' Z2) E (I;2,j(Z) E L2(([;2), 

g=(A,a), A=(; ~)ESL(2,a:), a=(h1,hz,hs,h4)EIR\ 

Zg=(aZ1 +yZz, OZ2+j3Z 1)' 

a(Z, g) = exp[i(tj3Z21(OZZ + j3Z1r1 + CC)] 

xexp[i«h1 +ih3)Zl +(h2+ih4)Zz+CC)]. 

Next, we introduce the Stokes parameters as a kind 
of internal variables like in Ref. 1. Either in terms of 
two perpendicular plane polarizations or in terms of 
two circular polarizations, the state of polarization of 
a beam of photons is described by a linear superposi­
tion of two states X = C1X1 + CaXz and we have I C1 1a 

+ I C2 1
2 = 1. The Stokes parameters P", are then defined 

by the relations: 

Po== Icl l2+ ICalz, P1 = Icl I2_lczI2, 

It is quite interesting to notice that they define a map­
ping of the unit ball in (CZ =::SL(2, 4::) • (Cz/SL(2,4::) on the 
"Stokes cone" P ",p'" = 0, a thing related to the fact that 
we deal here with zero-mass particles. This formalism 
works with the electromagnetic field as following: Let 
F ",v be the electromagnetic field and ?;/(i= 1, 2, 3) a com­
plex vector defined by ?;i=Fi4 + [:7iFjk where (i,j, k) 
is a cyclic permutation of (1,2,3). For plane waves, 
this vector is isotropic: ?;~ + ?;~ + ?;~ = 0, and there exist 

cP =(:~) E 0;2 

such that ?;1 = CP1CPZ' ?;2= t(cp~ - cp~), ?;3 = ti(cp~ + cp~). Then, 
one can verify that a sufficient condition for having en­
ergy conservation with time is if il '" cP = ° where aO is the 
2 x 2 identity matrix and d (i == 1, 2, 3) the Pauli matri­
ces. Conversely, for fully polarized plane waves of a 
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time-independant electromagnetic field, in virtue of 
Maxwell equations, the Stokes spinor q; is shown to sat­
isfy the equation (T" B" q; = O. 

We know that the two-component free neutrino Weyl 
equation (T"B,,1)!=O can be derived from the zero-mass 
Dirac equation by adding subsidiary conditions and anal­
ogously, we may consider the two-component spinor 
field as a Stokes spinor. The differences, from our point 
of view, between neutrinos and photons, which are a 
natural consequence of the formalism developed in 
Ref. 1, are 

(1) For neutrinos, the Dirac group is the covariance 
group of the field equation while for photons, it is only 
the covariance group of the polarization equation. 

(2) In terms of Stokes parameters, neutrinos are al­
ways fully polarized while this is not the case for 
photons. 

In the internal space of the neutrino Stokes param­
eters, one then distinguishes like in Ref. 1 among four 
principal types of operations extendible to four types 
of automorphisms of the Dirac group (the identity auto­
morphism plus three different ones) which are identified 
with the four types of neutrinos existing in Nature. 

Thus, in the example of neutrino physics, we use two 
groups: the Poincare group acting on the "external 
space" (which is the Minkowski space r4) and the Dirac 
group acting on the "internal space" of the Stokes pa­
rameters R4. The natural idea is then to look for a for­
malism which could describe these two aspects. The 
simplest mathematical unification (in the sense of 
Ref. 2) of the Dirac group and the Poincare group which 
acts as it should act separately on R4 and on r 4 is the 
semidirect product SL(2, G::)(IR4x r4) denoted by G'. For 
what additional reasons are we led to the unification 
group G'? 

The first reason is that space-time translations 
should commute with the field translations since these 
two types of translations act on two different and dis­
connected spaces lR4 and r4. 

The second reason is that in Ref, 1 a generalized 
covariance principle for the second-quantized neutrino 
equation was obtained. 

This principle was compatible with the usual 
Wightman covariance principle (which is also postulated 
by us) only if the reduction. of the representation of the 
Dirac group on SL(2, G::) coincides with the reduction of 
the representation of the Poincare group on SL(2, C). 
This fact is ensured if we take a unification group of the 
Poincare and the Dirac groups with SL(2, G::) as inter­
section. The preceding two reasons determine uniquely 
the unification group G'. 

Therefore, our first aim in the second chapter will 
be the study of the UIR of the 10 dimensional Dirac 
group and its 14-dimensional unification with the Poin­
care group. These groups are semidirect products of 
a semisimple group by an abelian normal subgroup and 
the complete classification of their unitary, strongly 
continuous, irreducible representations is obtained by 
the Mackey theory of induced representations. Among 

J. Math. Phys .• Vol. 15, No.8, August 1974 

the UIR of G', we are certainly a priori interested only 
by those representations for which the Poincare Casimir 
P" P" = 0 since the one-particle neutrino states are mas's­
less. Among these, of particular interest for us are two 
classes of UIR of G': the first class consists of such 
UIR that, when restricted to the Dirac subgroup, remain 
irreducible and when restricted to the Poincare sub­
group are reducible into two continuous-spin irreducible 
Poincare representations. The second class is com­
posed of such UIR (obtained as a limiting case of the 
first class) which are irreducible with respect to the 
Dirac subgroup but reducible with respect to the Poin­
care subgroup giving rise, after decompOSition, to all 
possible discrete spin representations with multiplicity 
one. Finally in chapter three we utilize these classes 
of representations to sketch briefly two possible physi­
cal alternatives for the construction of a neutrino Fock 
space and a free field theory incorporating both exter­
nal and internal symmetry groups. 

II. UNITARY STRONGLY CONTINUOUS 
IRREDUCIBLE REPRESENTATIONS OF G 
ANDG' 

Let G = SL(2, <r;) 1R.4 be the Dirac group and (A, h) its 
elements. Let ffi4 be the dual space of JR4. The dual ac­
tion of G on JR4 is: fi - TS(A -l)ii where it is a "four spinor", 
A E SL(2, <C), S the representation of SL(2, C) defined 
above and T A denotes the transposed of A. This action 
determines two orbits in iR4: the trivial one {O}, and 
ft4 _ {O}. The stabilizer of the first one is SL(2, C) and 
the corresponding induced representations, with ker 
nel /R4

, are the unitary continuous irreducible repre­
sentations of SL(2, G::). On the second orbit, we choose 
the stabilized point (1,0,0,0), the stabilizer of which is 
the nilpotent group of the 2 x 2 complex lower triangular 
matrices N. The irreducible unitary representations of 
this group form the one complex parameter class L(t) 
of the unitary characters of the complex plane. Almost 
everywhere, we can choose the matrix 

A(h) = ( .:?i \. . so that/~)= TS(A'l(ii)/~). 
-/3 13 ft=h2+lh4 \~ \ 0 

6=h1+lhs h4 0 

The H~lbert space of the induced representation G UL ( t) 

is L 2( 1R4 - {O})(the space of square integrable functions 
defined on the orbit [{4 - {O} with values in the space 
G:: of the representations L(t) of the little group). 

Let 

Ao=(OI
O 

(3
0
)ESL(2, C); 

\Yo 13 0 

by a straightforward calculation, one gets 

and the standard form of Wigner of the induced repre­
sentation is then 
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TABLE 1. Nontrivial orbits for G' . 

Orbit (X, n) Stabilized point lit", xn) Stabilizer group 

(Ek' rm (k, 0, 0, 0) (m, 0, 0, 0) {I} 

(Ek'~) (k, 0, 0, 0) (- m, 0, 0, 0) {l} 

(Op, nim) (p, 0,0, 1)(0,m, 0, 0) {I} 

(Oo~, n£m) (1,0, ft., 0) (0, m, 0, 0) Ny 

(0o", nim) (0,0,1,0)(0, m, 0,0) Ny 

(Ck, n~ (0, k, 0, 0) (1,0,0,1) {I} 

(Col,n~ (l, 0, 0,0) (1, 0, 0, 1) N 

(Ck,n~ (0, k, 0, 0)(-1, 0, 0, 1) {I} 

(COl' nO) (l, 0,0,0) (-1, 0, 0, 1) N 

= exp[i(h1h1 + hahz + 1ia~ + h4h4)] exp[i(- t(30(3-1(00(3 - (300}"1 

+ CC)]F(A(ilh) 

By a straightforward calculation, these representa­
tions are shown to be equivalent to those found in 
Ref. 1. 

Next, we are interested in the UIR of the unification 
grpup G'=SL(2, C) (R4XT4). The dual space is (1ft4 
X T4) and the dual action of G' is given by: (Ii, x) 
- (TS(A-1)h, T X-lx) where ± A - A E L:. Except for the or­
bit {O}x{O} which leads to the representations of 
S L(2, C), we find three kinds of orbits: 

(1) The first ones are the Cartesian products of the 
trivial orbit {O} in ft4 by the well-known orbits of the 
Poincare group. It is clear that the corresponding in­
duced representations of G' are unfaithful, with kernel 
R4, and coincide with the usual UIR of the Poincare 
group. 

(2) The second type consists of the unique orbit {a4 

- {O}}x{O} and the corresponding UIR are those of the 
Dirac group discussed above. 

(3) We are interested in the third type of orbits which 
will give us the faithful UIR of G'. These are subsets 
of the products {a4 - {O}} X n where n is a nontrivial or­
bit of the POincarl! group P, which are not expressible 
as Cartesian subproducts. Let (ho' xo) be a point in {R4 

-{o}}xn, where n is a fixed orbit of P. All points be­
longing to the orbit generated by the point (ho, xo), that 
can be written as (h, xo), verify (h) = TS(A-1)(lio) where 
A belongs to the stabilizer of xo. 

Therefore, it is clear that there exist in {it4 - {O}} 
xn as many orbits as in 1ft4 - {O} under the action of the 
stabilizer of xo. Thus, we have to choose one fixed 
point xn on each orbit 0 of P and next to determine the 
orbits in it4 - {O} under the action of its stabilizer. No­
tice that we could have chosen first a point in Ii¥ - {o} 
and then look for the orbits inn. This way is clearly 
equivalent but leads to a different parametrization of 
the orbits. Our choice is made so as to put an accent 
on the space-time parametrization of the orbits. Of 
course, for the study of the reduction of the UIR of G' 
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on P and G, it will be quite important to be able to pass 
from one point of view to the other. 

Let n:: (positive mass), nim (imaginary mass), n~ 
(mass zero) be the orbits in f4 and (± m, 0, 0, 0), 
(0, m, 0, 0), (± 1, 0, 0, 1) respectively, be the correspond­
ing stabilized points on each one._Th~ corresponding 
stabilizers are SU(2), SL(2, R), Ea (Ea being the two­
fold covering of the Euclidean group Ez in two dimen­
sions). By an easy calculation, the orbits in 1ft' - {O} 
are found to be: 

under the action of SU(2), 

Ek={h;h~+h~+h:+h:=ka}, kE]O+oo[, 

under the action of SL(2, R), 

Op ={h;h1h4 - ha~ =p}, pER - {O}, 

OOA={h; ~ = Xhv h4 = XhJ, X E R, 

0000 ={h;h1 = ha= O}, 

under the action of Ea, 

Ck={h;Ii~+h:==ka}, kE]O+oo[, 

COl = {h; ha = h4 = 0, h~ + ~ = Ia}, I E ]0 + 00 [. 

We Sh~ll denote by (X,O) the orbit generated by the 
point (h, xn) where xn is the point chosen on 0 and X is 
one of the orbits in ft4 - {O}, (h E X). 

At this point, a Borel set having only one intersection 
point with each orbit can be easily built up and we know 
that this is the only condition needed for the UIR of G' 
to be obtained by the Mackey method. 

On each orbit with a nontrivial projection on 1ft4 and 
r4, we need to choose a particular point and to deter­
mine its stabilizer. This is what we do in Table I, 
where N r denotes the real lower triangular matrices: 
Let L be a representation of the stabilizer of the orbit 
(X, n) in the Hilbert space H. The induced representa­
tion can be written formally 

[G,UL(Ao, ho, xo)F](ii, x) == (x, x~(n, h~L(A-Vl, x)Ao 

x A(A~l (h, x)))F(Ao1ii, Ai/X) 

where F(h, x) E L a[(X, o},H] (the space of square inte­
grable functions defined on the orbit (X, n) with values 
inH) and A(iz, x) is a fixed matrix satisfying (ii, x) 
= A(iz, x) • (fix> xn). We also know that A-1(h, X)Ao 
x A(Aol(ii, x) is always an element of the stabilizer of the 
orbit. When the stabilizer is {I}, for any choice of the 
matrix A(n, x), we have A -1(1i, x)AoA(Ao1(ii, x» == I. 
Therefore, in such cases, we find only one representa­
tion which is 

f(h, x) (Ap,hp,,,o\ (x, x~(h, h~ f(A"Olft, Aolx),f(n, x)E L 2 «X, 0». 
The stabilizer Ny is isomorphic to the additive group of 
the real numbers. Its unitary representations are the 
unitary characters L(f) (t E R). 

On the orbit (OOA, nim), we choose the matrix: 

C
K(l- Ai)-l(iil - i~) -(1 + xi)"1(n2 + ih4)X1 0

1

) 
A(h, x):=; 

K(l- xi)"l(fi2 - ih4) (1 + Xi)"1(h1 + i~) iu 
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K= (1 + A2)(h~ +h~ + ~ + h~rl with U ER 

The point e+~A) is stabilized by the matrix au ~) so that 
we have 

(~1 + iii,) = T(A -l(h, x»f + iX) 
hz +ih4 \ ° 

and therefore the matrix 

(

K(1- Xir1(~1 - i~) -(1 + Xit1(~Z + i~'») 

K(1- Xir1(hz - ih,) (1 + Xir1(h1 + ills) 

belongs to the coset space SL(2, C)/N and A(h, x) span 
the coset space SL(2, (J;)/Nr • Notice that we have thus 
parametrized the orbit by five real numbers: 
h1' hz, ~, fit, u. 

To simplify writing, we put 

But this matrix belongs a priori to NT' From this, we 
deduce 

u' - u = - Im[KK'[(G'o{3 + Y06f(-Yof3 + ao6) - ({30]j 

+ 600)(6013 - (306)]] . 

We now define 

b =Re[KK' [(G'J+ Y06)(-Yo13 + G'06) - ({30~ + 606)(6013 - (306)]] 

and the representation induced from L(t) (t E R) is 

F(h, u) (AO.hO.xO) [o,uL(t)(Ao, ho, xo)F](h, u) = (x, x~(1i, hg)eltb 

XF(Ao1fi, u'). 

The or~it (°11"", oim) i~ tre~ted in a similar way. Setting 
6= - i(h1 + ills), 13= i(h~ +ih,), we find the same expres­
sion for the matrix A(h, x). We are therefore led in this 
case to the same calculations and to a similar result. 

Next, we consider the orbit (COl' n~). Its stabilizer is 
N, the representations of which are the unitary charac­
ters L(t) (t E a:). 

Therefore, the representation space will be the space 
of square integrable complex valued functions defined 
on the orbit. We choose the matrices 

A (Kl-1(!i1 - i~) -r1(iiz +iii'J 
A(h) = 

Kr1(hz - iii,) r1(h1 + i~) 

which span the coset space SL(2, C)/N, and which verify 

(~1 + i:)= T(A-1(fi» f) with K= lZ(ii~ + h~ + ~ + fi:>-l. 
hz +ih4 \0 

Therefore, in this case, a complete parametrization of 
the orbit is given by the four real numbers fi1, hz'~' h,. 
We now set 6 = Z-1(h1 + i~), (3 = - r1(fiz + ih,) and find 
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6 = (1 + Xit 1(h1 + ilia), {3 = - (1 + Xi)"l(nz + in,) 

so that 

K= (13~ + 66)"1. 

and we obtain the form of the matrix A(Ao1(n, x»: 

A(A01(h, x»= , 
( 

K' (-i'oJ3 + ag6) + iu' (6013 - (306) 60{3 - (306) 

-K' (60{3 - tl06) + iu' (- i'0{3 + G'06) - i'0{3 + G'06 

where u' E It and K' = [( 60f3 - (306)( 60f3 - (306) + (- Yo{3 
+ ao6)(-Yo13 + 0'00)]-1. Next, a straightforward calcula­
tion leads to 

'f 1 °1) 
\KK'[( G'o~ + Y06)(-YoJ3 + G'06) - (J3o~ + 606)(60,9 - (306) 

with K= (,9/3 + 66)"1, K' = (6G'0- ,9Yo)(G'o6 - 13Yo) + (13 60 
- ,906)(1360 - (306), which is an element of N. The corre­
sponding induced representations are 

F(fi) (AO.hO.xO). [ouL<t> (Ao, ho, xo)F](h) = (x, x~(h, h~ 
x exp[i(tB + 1B)]F(Ao1fi) 

with B=KK' [(G'J+ i'06)(-i'0,9 + G'06) - (f30~ + 606) 
(60{3 - tl06)]. 

Finally, the last class of representations, corre­
sponding to the orbit (COl' n~) and stabilizer N, has the 
same form as the preceding one. Since the physical in­
terest of G' is related to the study of massless parti­
cles, we shall now pay a particular attention to the zero­
mass representations of G'. The orbit (COl' O~) is ho­
meomorphiC to R,' - {O} and the associated representa­
tions are labeled by the complex parameter t. These 
representations restricted to the Dirac group G are ex­
actly the UIR induced by L(t) for the particular choice 
of A(fi). (This choice of representative is different from 
the one we made at the beginning.) 

Next, we restrict our o.r..f(t) to the Poincare 
subgroup: 

Let 

C
-1/2COSI)/2 _p1/Ze-ltp Sinl)/2) 

A (x) = 
-1/2e 1tp sinl)/2 pl/2COSI)/2 

be the matrix which transforms the point (1,0,0, 1) into 
x = (p, p sinl) sincp, p sin I) coscp, -p cos I) on the orbit 
O~ in the helicity formalism. The ranges of the param­
eters are 
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The family of these matrices spans the coset space 
SL(2, (f;)/Ea, so that an element of the coset space 
SL(2, (f;)/N (which is homemorphic to the orbit (t4 - {O}) 
can be written in a unique way as A(fi) = A(x)A(q;) where 

A(q;)=(e-f~ O\EEz/N withO~q;<21T 
\0 e f1 

and we can explicitly realize the homeomorphism 
SL(2, (f;)/N- (COl' O~) by 

[~ ~] ~
Pl/2 cosO/2 cosq; )(p ~~ o 0 A(x) A(~l lpl/2sinO/2cos(q;-f/J) ps~nOSinf/J 

0' 0 lpl/a cosO/2 simp p smO cos . 
o 1/2 sinO/2sin(q;-f/J) -pcosO 

One can verify that A (x) A(q;) is exactly the matrix A(fi) 
that we have considered before. We now can parame­
trize our representation with the parameters x, q;. One 
has 

A(Aii1h) = A (Ai/x)A(I/J') and A-1(h)AoA(Ao1h) 

= A"1(q;)A-1(x)AoA(Ao1x)A(q;') 

where q;' has to be determined. But we know that 
A-1(x)AoA(Aii1X) belongs to E2 and by putting 

The last matrix belonging to N, we finally get 

cp + q;' - q;= 0 (mod2k1T) 

The restriction of our representation on the Poincare 
subgroup can be written as 

[G,UL(t)/r(Ao, xo)F](x, q;)= (x, xO> exp[i(tB + tB) ]F(Aii1X, q; - cp), 

where F(x, l/J) is a complex-valued square integrable 
function defined on O~ x r (r the unit circle). 

Next, (by utilizing the Fubini theorem) we pass from 
the space L z(O~ x r) to the space L Z(O~, L 2(r» of L 2(r)_ 
valued square integrable functions defined on O~ by the 
isomorphism: 

f(x, l/J)-F'(x) =f(x, ). 

The representation becomes 

[G' UL( t) I p(Ao, xo)F'](x) = (x, xn>L (A-1 (x)AoA(Aii1X»F' (Aii1X), 

where L is a representation of Ea defined by 

[~':' :) JJI.)~ "'P[;(tB+t B)JI.- </» 

with B=Zexp[-i(21/J-cp)] andfELZ(r). 

Thus, the representation G .UL ( f) restricted to the 
Poincare subgroup is induced by the representation L 
of the stabilizer Ea. We know that Ea has two series of 
urn: the discrete one L1 (j integer or half-integer) and 
the continuous one L[E, ~l (E = ± 1, r > 0). The represen-
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tation L is then easily shown to be reducible into the 
sum of the two representations L[+l, If I] and L[-l, It Il for 
f*0. 

From this, we obtain (for f* 0) the reducibility of the 
restricted representation G,UL(t) I p into the sum of the 
two corresponding continuous-spin urn of the Poincare 
group (containing, respectively, all integer and half-in­
teger helicities). 

For t = 0, the representation becomes: 

[G.UL(O)(Ao, xo)F'](x) = (x, xn>F' (A01X) 

and it is induced by the representation f( q;) - f( q; - cp). 
This last unfaithful representation of Ea is actually the 
regular representation of the twofold covering of the 
group of plane rotations. One then deduces that, for 
t = 0, the representation G' UL(O) I p is reducible into a 
direct sum of all the discrete spin zero-mass UIR of 
the Poincare group with multiplicity one. 

III. POSSIBLE PHYSICAL APPLICATIONS 

What was our line of thought until now? We have be­
gun with a generalized covariance prinCiple, and ap­
plied it to the classical free neutrino equation. 

When we wanted to implement this generalized covar­
iance prinCiple to the second-quantized neutrino equa­
tion, two things occured: (1) We had to parametrize the 
Hilbert space of the one-particle neutrino states as 
square integrable functions defined on a new type of in­
ternal variables: the neutrino Stokes parameters. In 
this way, we account for a type of internal structure of 
the neutrino, and also parametrize some of the phenom­
ena of its weak interactions (cf., Ref. 1). (2) The pa­
rametrization of the Hilbert space of the one-particle 
neutrino states explained in point (1) enabled us to ex­
tract finally the abstract form of a generalized Wight­
man covariance principle for our problem, which 
stressed the important role that the unitary representa­
tions of the Dirac group play in our formalism. If we 
insist upon having also the usual Wightman covariance 
principle for our quantized field, we are led to a com­
patibility condition which (in addition to a Simplicity 
argument) gives rise to the unification group G' as ex­
plained in the introduction. In other terms, from the 
action of the unification group G' on 1A,4 x t\ plus the 
neutrino second-quantized free-field theory (and of 
course assuming the conservation of transition ampli­
tudes), one can axiomatize a unification-covariance 
principle in which the unitary representations of the 
14-dimensional unification group G' play the predomi­
nant role. 

This unification-covariance principle incorporates 
two aspects: if the field translations are equal to zero 
we get the usual Wightman covariance axiom, and if the 
space-time translations are equal to zero we get our 
generalized covariance principle. 

G' is therefore a kind of unification group between ex­
ternal and "internal" symmetries, which plays also in 
our approach a field theoretical role. 

As was noticed by us in section two, there are two 
types of UIR of G' of interest for us: those which are 
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irreducible when restricted to the Dirac subgroup and 
reducible into two continuous- spin UIR of the Poincare 
group P when restricted to the latter, and those which 
are irreducible when restricted to the Dirac subgroup 
and reducible into an infinite sum of all discrete spin 
zero-mass um of P with multiplicity one, when restrict­
ed to the Poincare subgroup. This fact gives us two in­
teresting mathematical possibilities, which we shall have 
now to confront with the physical aspects of our problem. 
It was guessed by some people in the last decade that the 
so-called continuous-spin representations (often refered 
to as infinite-spin representations) might have to do with 
zero-mass particles occuring in Nature and in particu­
lar with neutrinos. This point of view was studied in de­
tail in Ref. 3: in this work, it was suggested that the 
continuous- spin VIR of the Poincare group with a small 
p >0 (_p2= WI' WI' where W" is the pauli-Lubanski vec­
tor) might be utilized as a representation acting on a 
one-particle physical neutrino space. Infinite component 
fields were constructed which correspond to these re­
presentations (suffering from the usual diseases of this 
kind of theories), and a generalized V -A theory was 
constructed for the interacting case. 

In the limit when p - 0, the infinite component field 
theory in question goes to a usual field theory of a fixed­
helicity zero- mass particle and the generalized inter­
action goes in the limit to the usual V - A interaction. 
It is now evident how to construct the free-field neutri­
no theory which incorporates also the "internal struc­
ture" of neutrinos. Actually we shall mention two possi­
bilities. However, since there exists an unusual feature 
common for the two possibilities to be mentioned, we 
discuss this feature before. 

We focused our attention on two particular classes of 
um of G'. Both remain irreducible when restricted to 
the Dirac subgroup. However, both are reducible when 
restricted to the Poincare subgrwp. In one case, we 
obtain after reduction on Poincare two continuous-spin 
VIR of the Poincare group: one containing all integer 
helicities, the other containing all half-integer heli­
cities. In the second case, we obtain after reduction on 
P all discrete-spin um of the Poincare group (integer 
as well as half-integer helicities) with multipliCity one. 

Evidently, the second case is a limiting case of the 
first one. A question arises whether we shall choose 
the first or the second of the physical alternatives. to be 
mentioned later, how comes and what can be done about 
the fact that in both cases we have already on the level 
of one-particle states both integer as well as half-inte­
ger helicity states occuring together? 

The first half of the question can be simply answered: 
group theoretically the result is not astOnishing since 
G' contains an eight-dimensional abelian normal sub­
group "half" of which having a vector character and 
"half" of which having a spinor character. 

From the physical point of view we have to remember 
that the Dirac group was also the covariance group (in 
our generalized sense) of the polarization equation of a 
fully polarized plane wave (for time-independent elec­
tromagnetic field). 

Thus it is not astonishing that we find in the end at 
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least a trace of a fully polarized photon state. 

As to the second half of the question, we shall rather 
adopt the point of view that as far as we are interested 
in the neutrino free field or in the neutrino leptonic 
weak interactions, we shall systematically (when look­
ing at the usual space-time behavior of our system) re­
tain only the half-integer helicity part of the reduction 
and ignore the integer helicity part. It should be men­
tioned however, that the integer helicity part might play 
an important role in systems involving e. g., neutrinos 
and photons. 

What are now the two phYSical alternatives that we 
got by means of our study? 

(1) To take the idea of continuous-spin representa­
tions seriously. In such a case, we shall utilize this 
class of VIR of G' which are irreducible when restric­
ted to the Dirac group and reducible into two continuous­
spin um of P when restricted to the Poincare subgroup 
(we shall utilize this subclass of representations which 
corresponds to a small value of p after reduction on P). 

The construction of the Fock space is straightforward: 
the one-particle representation space will be the Hil­
bert space H of the urn of G' which we utilize here, and 
the n-particle states space Hn will be constructed as 
usual as a completed skew- symmetric tensor product of 
n factors of H: 

HfI=Hlf··~H. 
~ 

n 

If we denote by {o} the one-dimensional vacuum space, 
our Fock space will finally be 

F={O}+ $ Hn. 
n=O 

The remaining of the free field construction in this for­
malism is straightforward. (Evidently as was said be­
fore, when concentrating on the Poincare behavior of 
such a system, we shall only retain the half-integer 
continuous-spin UIR part for the one-particle states.) 

(2) To utilize those UIR of G' which are reducible on 
the Poincare subgroup, giving rise to all discrete spin 
zero-mass representations of P, and of course are ir­
reducible when restricted to the Dirac subgroup. In 
such a case, we are led to the usual space-time de­
scription of the neutrino-by the ordinary finite compo­
nent field theory-but with an unusual feature, that al­
ready the one-particle states will contain all possible 
helicites. PhYSically, this means the following: either 
we are dealing with neutrinos that can exist in aU heli­
city (half-integer) excitation states, or that once we 
passed from the neutrino equation to the groups G and 
G' (by the generalized covariance principle) and then 
came back to, e. g., the corresponding free-field the­
ory, we built a theory not only of the neutrino but also, 
in addition, of all other possible zero-mass discrete 
spin particles (which are yet to be discovered!). 

Of course, in this case, the construction of the corre­
sponding free-field theory is as before. The advantages 
and disadvantages of the two alternatives which were 
discussed are rather clear from the context. However, 
it should be noticed that both alternatives [mentioned in 
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(1) and (2)] have interesting space-time features (these 
features are of course seen in the limit when the field 
translations are set equal to zero and the theory then 
shows only its usual space-time aspects) and certainly 
both alternatives have also nice features concerning the 
"internal structure" of zero-mass particles since in 
both cases the corresponding urn of G' is irreducible 
when restricted to the Dirac subgroup G. 

It is this last condition which is necessary in order 
to utilize and develop the results concerning the Dirac­
group aspect of our problem, mentioned in Ref. 1, such 
as parity violation, number of the different types of 
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neutrinos occuring in Nature, conservation of lepton­
number, leptonic-weak interactions and so on. 
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Recent work by Moshinsky et aL on the role and applications of canonical transformations in 
quantum mechanics has focused attention on some complex extensions of linear transformations 
mapping the position and momentum operators x and p to a pair ~ and t of canonically 
conjugate, but not necessarily Hermitian. operators. In this paper we show that for a continuum of 
complex linear canonical transformations, a related Hilbert space of entire analytic functions exists 
with a scalar product over the complex plane such that the pair~, f can be realized in the 
SchrOdinger representation 'II and - id / d 'II. We provide a unitary mapping onto the ordinary Hilbert 
space of square-integrable functions over the real line through an integral transform. The transform 
kernels provide a representation of a subsemigroup of SL (2, C). The well-known Bargmann transform 
is the sp_ecial case when ~ and if are the harmonic oscillator raising and lowering operators. The 
Moshinsky-Quesne transform is regained in the limit when the canonical transformation becomes real, 
a case which contains the ordinary Fourier transform. We present a realization of these transforms 
through hyperdifferential operators. 

I. INTRODUCTION 

The purpose of this work is to explore some of the 
consequences of the use of general canonical transform­
ations in quantum mechanics. We shall concentrate here 
in studying complex linear transformations between the 
quantum mechanical operators of position and momen­
tum x and p, and a new pair of quantities given by 

f = c~ + dp, a, b, c, d E?a: complex field, 

with the unimodularity condition 

ad-bc= 1 

(1. 1a) 

(1. 1b) 

which ensures that, if x and p are canonically conjugate 
operators, then ~ and ~ will also be canonically conju­
gate, namely 

(1.2) 

in units where Ii: 1. In the usual Hilbert space H of quan­
tum mechanical states,1 we have the space of square in­
tegrable functions over the real line R with the scalar 
product 

(f,g)o= JlRdxj(x)*g(x) (1. 3) 

for j, g~H. (The star denotes complex conjugation.) The 
stone-von Neumann theorem states, moreover, that we 
can always (through a unitary transformation if neces­
sary) use the Schrlidinger realization of the realization 
of the Heisenberg algebra (1. 2), i. e., represent x and p 
by x and - id/ dx over a set dense in H. 

When the transformation (1.1) is real, a scalar pro­
duct where Tt and t are Hermitian and realized by the 
Schrodinger representation as 7j and - i d/ d7) on functions 
of 1) in H' '" H, with a scalar product analogous to (1. 3) 
leads to the Moshinsky-Quesne transform2 between H 
and H'. The ordinary Fourier transform is a special 
case of this for a = 0 = d, b = 1 = - c. 

The use of a complex linear transformation (1.1) with 

a = 2-1 /2 = d, b = _ i2-1 /2 = C (1. 4) 

has proven to be of great importance, as developed by 
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Bargmann3,4 and applied to the coherent-state formula­
tion of quantum optics. 5 Equation (1.1) with (1. 4) gives 
to Tt and it (notice that Bargmann' s ~ is here it) the 
meaning of creation and annihilation operators with re­
spect to the harmonic oscillator states. Hermitian con­
jugation inH induces the properties ~+=i~ and (it)+=~. 
In order to find a Hermitian form where the Schrodinger 
realization for ~ and t can be implemented, Bargmann 
introduced a space] of entire analytic functions J in 
7)Ea:-the complex field-restricted by the condition 
I](r,) I"" Y exp( to! 1]*1]) for finite y> 0 and 0 < a < 1, with a 
scalar product given by 

(1.5a) 

(1.5b) 

for J, gE], where the integration is extended over the 
complex 1]-plane (with a definite limiting procedure, see 
Ref. 3) and, in Bargmann's case, the weight v(1j,1j*) 
= 1T-1 exp( - 1]* 1]). It was also shown in Ref. 3 that] com­
pleted with respect to the norm induced by (1.5) is a 
Hilbert space and, moreover, a unitary mappingA:H =] 
can be implemented through the transform pair 

J(1]) = Jm. dxA(1], x)j(x) , 

j(x) = Jet d/.l(1])A(1j, x)*J(7) , 

(1.6a) 

(1. 6b) 

with the kernel A(1j, x) = 1T-1 /4 exp[ - t(x2 + 7)2) + 21/2X7)]. 

In a recent work, Kramer, Moshinsky, and Seligman6 

have considered a class of complex linear transforma­
tions of the type (1, 1) and applied them to the study of 
clustering in nuclei, thereby achieving Significant con­
ceptual and calculational simplifications. We have taken 
their motivation to study the general ease of complex 
linear transformations and set up a continuum {)f spaces 
] of entire analytic functions with different growth re­
strictions In the complex 7)-variable and a scalar pro­
duct of the general type (1, 5) with appropriate measures 
v(1j,7j*), where the Schrodinger representation is real­
ized. As in Bargmann's case, completion with respect 
to the norm induced by (1. 5) shows that the]' s are 
Hilbert spaces and that unitary maps A:H =] can be 
implemented through transforms of the type (1.6). We 
shall call these canonical transforms, 

Copyright © 1974 American Institute of Physics 1295 
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In Sec. II we construct and characterize the spaces] 
and find the transform kernels in Sec. III. In Sec. N we 
determine the behavior of the transforms in the limit 
where the parameters a, b, c, d become real. The scalar 
product (1. 5) is shown to collapse to an integral over R, 
so that the Moshinsky-Quesne transform is regained. 
As the composition of two canonical transformations is 
of the same type, the composition of the corresponding 
transforms is developed in Sec. V. In Sec. VI, the 
transform kernels are shown to provide, when bounded, 
representations of a semigroup HSL(2, 0:) of the group 
SL(2, 0:) of canonical transformations (1.1). In Appendix 
A we give a realization of canonical transforms through 
hyperdifferential operators, while in Appendix B results 
for general n-dimensional spaces are presented. 

In a future series of articles we intend to explore the 
consequences of more general complex canonical trans­
formations in quantum mechanics. In Ref. 6 it was 
shown that a transformation in the radial coordinate 7 of 
a higher -dimensional space unde rgoing a linear trans­
formation is related with the Barut-Girardello trans­
form. B Among the classes of canonical transformations 
where classical and quantum mechanics follow each 
other9 are point transformations followed by linear ones. 
This has been used to relate10 the representation of the 
algebra 50(2,1) given by the dynamical algebra of a har­
monic oscillator (with the addition of an inverse-square 
potential) and its exponentiation to the discrete series 
representations of the group SO(2, 1), with Bargmann's 
realizationll of the same series. Finally, many-sheeted 
canonical mappings of phase space into itself such as 
those considered in Ref. 12 can be implemented with the 
help of the representations of the group of automor­
phisms and an associated transform. 6 

II. THE SPACE] 

Consider the complex unimodular linear transforma­
tion (1. 1) written in matrix form as 

(2.1) 

(i.e., Mr-:SL(2,0:». The corresponding adjoint opera­
tors, relative to the scalar product in H, where x and p 
are Hermitian, can be then written in terms of the ori­
ginal ones as 

Z+ "O(~) =M*Zo=M*M-1Z = CZ 

where the conjugation matrix 

c=(~ iV) 
tW u* 

(2.2a) 

(2.2b) 

is such that detC = 1, CC* = 1 and its elements are given 
and restricted by 

u= a*d - b*c r=:<I: , 

v = 2 Imb*a, w = 2 Imc*d r=c1R, 

(2.3a) 

(2.3b) 

(2.3c) 

For every M r=cSL(2, <1:) we have thus a conjugation ma­
trix C(Mlo In particular, if RFSL(2,lR), then C(R)= 11. 
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and r, and t are Hermitian, and C(MR) = C(M). Barg­
mann's case (1. 4) corresponds to the imaginary anti­
diagonal matrix with u = 0, v = 1 = w. Since from (1. 2), 
r, and t are canonically conjugate, we want to implement 
the SchrOdinger representation 

1i1(1) = 111(1), (2.4a) 

tJ( 1) = - i :1) J( 1) (2.4b) 

on any suitable function] of the complex variable 1). In 
order that the total derivative in (2. 4b) be well defined, 
the function] must be analytic in 1). The conditions we 
are asking for a scalar product to satisfy can then be 
formulated, through (2.2), as 

(ii!, g) = (j, [ur, + ivE]g), 

(t], g) = (j, [iwr, + u* ~]g). 

(2.5a) 

(2.5b) 

We can see that an ordinary scalar product of the type 
(1. 3) cannot fulfill this requirement. One must look for 
a more general kind of scalar product. PropOSing the 
form (1. 5) we can turn Eqs. (2.5) into differential equa­
tions for the weight function v(1), 1)*). Using (1. 5), (2.4) 
and performing an integration by parts [provided that the 
boundary value of J(1)*v(1), 1)*)g(1) at infinity be zero]' 
the conditions (2. 5) can be given as 

d 
1)*v(1), 1)*) = (U1) - v-)v(1i, 1j*), d1j 

2-.v(1j 1j*) = _I W1j + u*1....)V(1j 1j*) 
ilTj*' \ il1j" 

(2.6a) 

(2.6b) 

The solution of (2.6) with a specific choice of normaliza­
tion is 

V( 1), 1j*) = 2 (21TV)-1 /2 exp {2~ [U1j2 - 21j1)* + U*1j*2]} 

= V(1j* , 1j)* • (2.7a) 

A convenient representation is obtained when we write 
in polar form Ti=pe i8 , u=wei0 , whereupon (2.7a) 
becomes 

v(1j, 1j*) = v[p, 0] = 2(21TVtl /2 exp{- : [1 - w cos(rp + 20)]}. 

(2.7b) 
The boundary condition onJ(1j)*v(1j, 1j*)g(Ti) can now be 

made explicit: we write J(1) = f
b
(1jV-1 /2) exp[( - U/2V)1j2], 

imposing the condition v> 0, then the scalar product 
(1. 5)-(2. 7) becomes the Bargmann scalar product3 be­
tweenfb(1j') and gb(7J') for 1j'=1jV-1 / 2• The growth 50ndi: 
tions imposed on these functions imply then that f and g 
must satisfy 

Il(pei8 ) I .;yexp{ ~\y -wcos(rp +20)]}, (2.8) 

for finite y> 0 and 0 < ct < 1, which is dependent on the 
direction 0 in the complex Ti-plane. This is sufficient to 
characterize the space] of entire analytic functions for 
which the scalar product (1. 5) is finite. Bargmann's 
analysis3 can now be translated to state that for V> 0, 
the space J with the scalar product (1. 5) is a Hilbert 
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space, unitarily equivalent to H through a transform of 
the kind (1. 6). It should be noticed that Bargmann's 
transform is indeed regained in the particular case (1.4), 
allowing for the choice in the measure normalization: 
here it is chosen as 2(21TV)-1/2 so that it go over smoothly 
to the Moshinsky-Quesne transform (Sec. IV), while in 
the original work3 it is set as 1T-1 • For every matrix ME 
SL(2,0:) such that C(M) satisfies v> 0 we have thus a 
Hilbert space J . 

A dense orthonormal basis for J can now be con­
structed as 

Un(7j)=[(21TV)1/2n !]-1/2 exp (- 2: rr)(1/V-1/2)n, 

n=0,1 9 2, ..•• (2.9) 

These functions satisfy the following recursion relations: 

(2. lOa) 

~ d] - -UV-1 / 27j+V1/2_ U(7j)=-n1 / 2U (7j) d7j n n-1' (2. lOb) 

and, in particular, 

[U1) + v d~,] Uo(1) =- O. (2.10c) 

They are, thus, eigenfunctions of a number operator 

A - [ d] - 1 AA - -NuUn(1) '" UV-17j2 + 1) d7j Un(Ti) =- v 1)TJtun(TJ) =-nUn(TJ). 

(2.11) 

From the orthonormal basis (2. 9) we can build the 
generating function 

K(Ti, 7j') ",t Un(TJ)Un(TJ')* =- (21TV)-1/2 
",0 

x exp{- ;)u~ - 2Ti7j'* + U*Ti,*2]} =-K(T/', TJ)*, (2. 12a) 

which acts as the reproducing kernel under the scalar 
product (1. 5): 

(2. 12b) 

III. THE TRANSFORMATION KERNEL AND PAIRS 
OF TRANSFORM BASES 

We want to establish a mapping between the elements 
f of the Hilbert space H and the elements! in J, as 
given by (1. 6) in such a way that if f(x) is mapped into 
!(n), then ~f(x) maps into TJ](TJ) and ~f(x) into 
-i(d/d1)J(7jL Through (2.1), this means 

ril (TJ) =- fIR dxA(TJ, x)rif(x) = fIR dX([ ax + ib a~ ]A(7j, x»)f(x) , 

(3.1a) 

d - r A 

-i dr/(7j)= )IRdxA(Ti,x)l;f(x) 

= fm dx (~X+id a~]A(7j,x»)f(x), (3.1b) 

and hence the transformation kernel A(TJ, x) must satisfy 
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TJA(T/, x) =- [ax + ib :x }(1), x), 

- i a~ A(1), x) = [ex + id a~ ]A(1), x). 

The solution, with proper normalization, is 

A(1), x) =-cP A (21T I b I )-1/2 exp {;b [ax2 - 2XT/ + d1)2]} , 

where we choose the phase factor to be 
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(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 

where <I> (b) '" phase of b E [- 1T, 1T). This choice of phase 
has been made so that the representation properties of 
the A(1), x) be simple (Sec. VI) and for M<=:SL(2, R) they 
agree with Ref. 2. The integrability condition in (1.6a) 
requires that Im(a/b):;. 0 (i. e., v:;. 0) and that if a=- 0, 
then b should be real. The integrability of Eq. (1. 6b) can 
then be seen to hold through the identity ub =- - ivd + b* 
since this implies that I id/2bl .,; 11- wl/2v. The nor­
malization makes the transforms (1. 6) be inverse to 
each other 9 as 

fIR dxA(1), x)A(1) I ,x)* =-K(1), 1)'), 

fa: dt.J.(1)A(1), x)*A(17, x') = 6(x - Xl). 

Equation (3.4a) can be verified directly, while Eq. 

(3.4a) 

(3.4b) 

(3. 4b) will be shown to hold when we will write the trans­
form kernel A(17, x) as the generating function linking two 
orthonormal bases, one in H and one in J. 

We have constructed an orthonormal basis of functions 
{Un (17)} for J in (2.9). In searching for a corresponding 
basis {Un(x)} for H we can go directly through the trans­
form definition (1. 6b) or, preferably, use the indepen­
dent method of using the raising operators (2.10) for 
{Un(17)} translated to operators in x and d/ dx through 
(2.1). The extremum Uo(x) of the ladder is found from 
(2.10c) as 

(3.5a) 

normalized with respect to the scalar product in H, with 
cP A given by (3. 3b). From Uo(x) and the raising operator 
(2. lOa) we find 

Un(x)=-[vnn!]-1/2 [ax -ib d!]" Uo(x) 

(3.5b) 

with 

(3.5c) 

The basis {Un (x)} can be checked to be indeed orthonor­
mal under the scalar product in H and we can verify di­
rectly that the transformation kernel is indeed the gen-
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erating function between the bases: .. 
A(1),x)=~ U,,(1)U,,(x)*. (3.6) 

".0 

In particular, notice that for Bargmann's case (1.4), 
{U,,(1)}} is the basis of monomials in 1) while {U,,(x}} are 
the harmonic oscillator wavefunctions 1/J,,(x}. 

There are reasons for not being satisfied with the ba­
sis {ii,,(1)} alone. There is the problem of not having a 
manifest limit as v - 0 (when the transformation matrix 
M becomes real) and that of being eigenfunctions of the 
number operator (2.11) which inH reads v-1(ax-ibd/dx} 
x (a*x - ib* d/ £Ix). Thus, we introduce the well-known 
harmonic oscillator wavefunction basis (with the usual 
phase convention) 

1/J,,(x} =[2"n! 1T1/ 2J-l/2 exp( - t,x2)H,,(x}, n = 0,1,2, •••• (3.7) 

The raising, lowering, and number operators are sim­
ple and can be translated to operators in 1) and d/ d1) 
through (2.1) in order to find the transform basis. The 
differential equation for the ground function yields 

~O(1)=[1Tl/2(a+ib}]-1/2exp(- d-~c 1)2) 
a+zb 2 ' 

where we must take the sheet given by (a + b}-1/2 

(3.8a) 

= I a +ibl-1/2 exp- ti .p(a + ib), and the rest of the basis 
can be generated through the application of the raising 
operator, i. e. , 

(3.8b) 

which reduces to (3.7) when M becomes 1. It is also 
interesting to notice that Bargmann's case (1.4) gives 
back the basis {U,,(1)} with the proper normalization. 
(Notice that only the leading term of the Hermite poly­
nomial survives). As a final check of the calculation we 
can verify that the transformation kernel A(1), x} in (3. 3) 
is the generating function between the bases {I/J,,(x)} and 
{~,,(1)}, i. e., .. 

A(1), x) =~ ~.(1)1/J,,(x)* (3.9) 
".0 

implemented through the use of an integral representa­
tion for one of the Hermite functions. 13 

IV. THE LIMIT OF REAL TRANSFORMATIONS 

We now want to examine the behavior of our construc­
tion when the parameters a, b, c,dE"(I; in (2.1) become 
real. Notice that the basis functions {~n(1)} present no 
peculiar behavior and indeed go smoothly into {I/Jn(x)} 
when M- :n. The transformation kernel A(1),x) in (3.3) 
is uneventful when a, b, c, d become real and only when b 
approaches zero does the expression become indetermi­
nate at first sight. The analysis in Ref. 2 leads us to 
expect that the kernel will become a Dirac 6 in 1) - x. 
This has to be examined further. Indeed, we intend to 

J. Math. Phys., Vol. 15, No.8, August 1974 

1298 

show that the scalar product (1.5) collapses to a line 
integral as v- O • 

Consider the measure (1. 5b) parametrized in its polar 
decompOSition (2.7b) as dj.L(1) = v[p, B]pdpdB. When v- 0, 
w = 11 - vw1 1/2 "" 1 - ~vw- 1. Recalling that for real, 
positive e- 0, l.i.m.e-1/2exp(-r//e)=1T1/26(q), we can 
write 

1. i. m. v[p, B] =1. i. m. 2(21Tv)-1/2exp {- p2 [1 - (1 - ~vw) 
v-a v-O V 

xcos(cp +2B)]} 

= 21/26 (p[ 1 - cos(cp + 2B)]l/2) 

x exp[ - ~p2W cos(cp + 2B)] 

=p-16(sin(~ +B)}exp[-~p2wcos(cp +2B)] 

= p-l[6(B +~) + 6(B + ~ -1T) 1 exp[ - ~p2W]. 

(4.1) 

All of these steps should be done remembering that the 
functions are under the double integral fo" pdp fo2n dB, in 
particular, the third step takes into account the fact that 
the point p = 0 is immaterial for the 6 as it is cancelled 
by the measure in p, and the last step makes use of the 
consequence that the 6 will act only in picking out values 
in the integration over B. The growth condition (2. 8) on 
the function space is such that the scalar product is fi­
nite and for the line Bo: - ~, 1T - ~ is 

Il(pef90) I ,.; y exp(iv\~ - wl)< Y exp(twp2) (4,2) 

when we write w"" 1 - ~vw, a = l-A(v) and let A(v) be 
any function of v which decreases faster than v as v- O. 
Similarly for g. If we now define for J(1) =J[p, B], J(x) 
: J[x, - ~} andIe-xl: J[x, 1T - ~ ] for x;;. 0, the limit 
indicated follows, 1. e. , 

with the condition, in effect, that J be such that I (x) 
Xexp(- twX2) is square integrable over R, and similarly 
for g. 

As can be seen, as v- 0 the integral over 1),:::(1; be­
comes an integral over a straight line passing through 
the origin and with a phase - ~ = - #(u) = .p(a). When 
the transformation matrix M is real, u=l and the in­
tegration path becomes the real axis. By a Similar argu­
ment, the reproducing kernel K(1)~ 1/') in (2.12) becomes 
the Dirac Ii(x -x'). The behavior of the transformation 
kernel A(1),x) at the limit b- 0 can be analized when this 
takes place from any direction in the complex plane. 
Using (1.1b), 

A(x', x) = (21T)-1/2cp A I b 1-1/2 exp{ -I b 1-1[(,0 A (2/ a>-1/2x 

- CPA (2a)-1/2x ')2) exp G~ X'2) 

_ a-1/26(x _ a-1x') exp(iC X'2) 
Ibl-O 2a 

and the phase of the direction in which the inverse 

(4.4) 



                                                                                                                                    

1299 Kurt Bernardo Wolf: Canonical transforms. I 

transform takes place, ~(a) = - #(u), is the appropriate 
one which will make use of the Dirac 6. 

We can make explicit the condition that a transforma­
tion M in (2. 1) lead to a transform involving only a line 
integral. Notice first that C(M) = 11 if and only if M 
E SL(2, R), the measure in the transform space being 
simply dx. Next, we can examine the cases when C(M) 
is a lower triangular matrix (v = 0). We consider the 
case u = 1 so that the integral be along the real axis. 
Analysis of the conditions (2.3) leads us to the restric­
tions: a, b real. An important subclass is that consid­
ered in Ref. 6, namely b=O, a=d-1 real, where (4.4) 
simulates the matrix elements of a Gaussian potential 
for c=iq, q> O. 

Transforms involving line integrals along a path tilted 
by a phase a can be obtained multiplying the transfor­
mation matrix M on the left by a diagonal matrix with 
elements exp( ia), exp( - ia) as then u = exp( - 2iQ'). In 
particular, forb=i=-c-\ d=O (Q'=1T/2) we obtain a 
Laplace transform with kernel (3.3) given by - i(21T)-1/2 
x exp( - xx'), which is off by a factor and a phase from 
the usual Laplace transform. The condition "b real 
when a = 0" for the kernel (30 3) is now violated, so it 
is not surprising that the integral in (1. 6a) can diverge 
for f r:=H. A restriction on H [for instance f(x) = 0 for 
x < 0] may make the transform meaningfuL The inverse 
transform is an integral over a Bromwichcontour up 
along the imaginary axis 0 

V. COMPOSITION OF TRANSFORMS 

For every matrix M r:= SL(2, <t) in (2.1) satisfying 
Im(a/b);:' 0 we have associated a canonical transform 
(1. 6) from the Hilbert space H to a Hilbert space J 
characterized by (1. 5), (2.7), and (2.8). Take now two 
such spaces J 1 and J 2 associated to the transformations 
Z1 = M 1 Zo and Z2 = M 2Z0, with transformation kernels 
A1(11,x) andA2(1),x). Then, since z2=M2MilZ1=M21zl> 
we want to find the unitary mappingbetweenJ1 andJ 2. 
Labelling jCk) (T/) r:= J k and the corresponding measures 
dJ.l k(11), we obtain from (1. 6), 

jC2)(11) = J
a

dJ.l1(1)')A21 (r;, r;')jC1)(r;'), 

j<1 )(11') = J
a 

dJ.l 2(1)A21 (1/, 11')*l<2)(r;), 

(501a) 

(5.1b) 

where the transform kernel A 21 (11, TI') from J1 to J2 is 

A21 (T/, T/') = J
IR 

dx A2(11, x)A2(1j', x)* =A12(Tj', T/)*. (5.1c) 

Explicitly, it is 

A21 (11,11') = <I> (b2, - bt;b) exp[ - 'h(1T/2 + ~ (b ))](21T 1 b 1-1
/ 2 

xexp{(i/2b)[a11,*2 - 2TI'*11 + d112]}, (5.2a) 

where 

and 

=±1 

[compare with Eqs. (303)J, and can be written as a 
generating function 
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~ 

A 21 (1), 1)')=~ ~~2)(11)ljj~I)(1)')*0 (5.3) 

In particular, this allows us to define Ak(11, x) =AkO (11, x), 
AOk(x, TI) =Ak(Tj, x)* and the reproducing kernel in each 
space as Kk(r}, 11') = Akk(TJ, TJ'). The composition of trans­
forms can then be effected through any (allowed) space 
J 3 as 

A 21 (T/, T,")= Ja dJ.l 3(11')A 23(r;, T/,)A3l (11', 11"), (5.4) 

which generalizes (5.1c) when we understand that 
fa dJ.lo(11) ••• = fIR dx· •• and H = Jo, it corresponds to 
M21 =M23M31 for M3l = MaMi\ etc. with the explicit 
forms as obtained from (5.2). Notice that when M1 and 
M2 belong to the class v = 0, the transform (5.1) in­
volves only line integrals although M2Mii may not be­
long to this class. Similarly, the condition Im(a/b) ~ 0 
which must hold for M1 and M2 may not hold for their 
composition M ~i1. The existence of the transform 
(5.1) is assured, however, as A 21(1i, Tj') belongs to J 1 

as a function of its second argument and to J 2 as a 
function of the first. Square integrability is only de­
manded in H or its isomorphic spaces. 

VI. LINEAR OPERATORS AND REPRESENTATIONS 
OF HSL (2,C) 

Let P be a bounded operator mapping H onto itself, 
represented by an integral kernel P(x, x') through 

f'(x) = J
IR 

dx' P(x, x')f(x'). (6.1) 

It then follows from (106) that P will also map J onto 
J through 

l'(11) = f dJ.l(11')P(TI,11')f(rl'), (6.2) 
a 

represented by the integral kernel 

P(11, 11') = J J
IR 

dx dx'A(1), x)P(x, x')A(rl', x')* 0 (6.3) 

To a productR =fQ of such bounded operator then 
corresponds 

R(x x") = f dxP(x x')Q(x' x") , IR ' , 
(6.4) 

which is also bounded and 

R(11, 1/") = Ja dJ.l(TI')P(11, 11')Q(1J', 1J"). (6.5) 

In particular, to the unit operator, whose representa­
tive in H is 6(x - x'), will correspond through (3.4a) the 
reproducing kernel K(1J, 11') in J. 

Now, for every M!=' SL(2, <t), consider the operator 
A (M) with the integral kernel given by (303), when we 
restrict 11 to the real line 0 These are now operators 
mapping H onto H, and can be seen as passive SL(2, <t) 
transformations, as opposed to the active transforma­
tions seen in the last section, which mapped H onto J. 
We shall denote this integral kernel by 

D;~J(M) =AM(x, x') 

= exp[ - ti{1T/2 + <I> (b»)](21T 1 b \)-1/2 

xexp{(i/2b)[ax,2 - 2x'x + dX2]}. 

When integration is possible, these kernels satisfy 

(6.6) 

JJR dx'D~1(M1)D;~) .. (M2) = ~(bl> b2;b12)D;~, (M1M2) (6.7) 

and hence form a ray representation of a subset of 
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SL(2,<I:): the subset for which the operatorsA(M) are 
bounded. As the product of two bounded operators is 
bounded, such a set must be a semi group contained in 
SL(2, <1:). 

Notice first that the kernels representing A (M) with 
ME SL(2, R) are bounded. This is obvious when we ex­
amine the transform normalized basis (3.8), as here 
J =H, <A(M)lJin,A(M)lJin)o=(~n' ~n)o=l and {lJin(x)} is dense 
in Hand J. For ME SL (2, <1:) the operators A (M) will be 
HUbert-Schmidt operators when the kernels (6.6) 
satisfy f f dx dx' I D~J(M) 12 < 00. In performing the in­
tegrals, we see that we obtain the conditions 

Imb*a> 0: v> 0, 

Imb*aImb*d> Im2b. 

(6.8a) 

(6.8b) 

Now, the product of a Hilbert-Schmidt and a bounded 
one is a Hilbert-Schmidt operator, hence the set of 
matrices 

(
0 (3)(COShl: -iSinhl:)(O' W) 
Y 0 i sinh I: cosh I: Y' 0' 

(6.9) 

(0,0', f3, ••• , 0' real) will be represented by Hilbert­
Schmidt operators for I: > 0, as can be verified directly 
from (6.8). This is a semigroup which does not con­
tain the identity. If we add to (6.9) the point 1:=0, 
thereby making (6.9) contain SL(2,R), we will have a 
set of bounded operators representing the semigroup 
denoted by HSL(2, <1:) in Ref. 6. Notice that the matrix 
(1. 4) corresponding to the Bargmann transform does 
not belong to this seL 

An important subset of HSL(2, <1:) is the set of 
matrices which we write and decompose as 

(
0" - if3") = (1 O)(D 0 \(1 -i q') 
iy" 0 " i q 1 ° D-l

) ° 1 
(6.10) 

with 0", ... , 0", q, q';" 0, D> 0, which are bounded, but 
not Hilbert-Schmidt operators [as conditions (6.8) 
may be violated]. The set (6.10) manifestly forms a 
semigroup denoted by HSL(2,R) in Ref. 6, since it is 
related through a similarity transformation [by a 
diagonal matrix with elements exp(-ill/4), exp(i1T/4)] 
with the set of SL(2, R) matrices with nonnegative ele­
ments. The parametrization (6.10) furthermore allows 
us to reach the special cases f3" = ° [Eq. (4.4) which 
simulates the Gaussian potentialJ for which the decom­
position (6.9) fails. 

From the representation (6.6) we can build through 
(6.3) a continuum of representations of HSL(2, <1:) 
through (5.1c) as 

D~~!(M) =D~~!(MkMMrl) (6.11) 

where Mk E SL(2, <1:) satisfying the conditions for the ex­
istence of a transform. Notice that the variable 1)' in 
(6.11) appears as 1)'* in the explicit form (6.6). These 
D's will exhibit the composition 

fa dll k(1)')D~~I(Ml)D~~~. (M2) = <PD~~J.(MIM2) (6.12) 

and the property 

(6.13) 

so that the representation is unitary for ME SL(2, R). 
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APPENDIX A: REALIZATION THROUGH 
HYPERDIFFERENTIAL OPERATORS 

In this Appendix we want to introduce a Lie algebra 
structure for the set of canonical transforms as 

(Al) 

where 'T labels the elements of a one-parameter sub­
group (or subsemigroup) of SL(2, <1:). For our purposes it 
is sufficient to ask that the integral in (A 1) to exist, so 
that we can disregard the Hilbert space structure of the 
functions involved, and the operator UT need not be 
bounded. l4,ls 

We want to find a differential operator H which gen­
erates the transform (Al), i. e. , 

H(X' :X)f(x) = -i £ dX'[o~ AT(x,x') IT=o /(x')] (A2a) 

with the boundary condition 

AT(x, x') [T"o= O(x -x'). (A2b) 

If we knew H and solved for AT(x,x'), this would be a 
Green's function problem, 16 where AT(x, x') is the 
Green's function of exp( + i'TH). Here we know AT(x, x') 
as given by (6.6) and [and (4.4)], so that we can build 
the operator H(x, d/ dx) by inspection of (A2a), for vari­
ous one-parameter subgroups of SL(2,<I:), viz.: 

exp[ic(ix2)]: (! ~), (A3a) 

exp[ib(iP2)]:(~ -l
b), (A3b) 

[ . 1 (~2 ~2)] (COShtO - sinhto) 
exp to .. p -x : _ sinhto coshto ' 

[ . l( ~2 ~2)] cos2/' - sm2y 
( 

1 • 1 ) 

exptY .. p +x : .ly ly' sm2 cos 2 

(A3c) 

(A3e) 

The last three generators can be seen to constitute the 
well-known su(l, 1) dynamical algebra of the harmonic 
oscillator, 2 (A3d) being a scale operator, i. e. , 

f(x) =exp[if3t(xp + Px)]/(x) = exp( tfJ).tfexp( t(3)x] (A4) 

while Eq. (A3e), t<? + p2) being the oscillator Hamil­
tonian, gives the development in time t= ty of the 
system. ' 

The association of hyperdifferential operators in (A3) 
with 2 x 2 matrices can yield a host of Baker -Camp­
bell-Hausdorff relations between second order differen-
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tial operators, 17 as 

(
COShO - sinhO) 
sinhO coshO 

_(1 -tanh8)(1/COSh8 0)( 1 0) 
- 0 1 0 coshO -tanhO 1 

which gives 

exp [- tW(::2 + X2) ] 

(A5a) 

(A5b) 

Further, when allowed to act on specific functions! 
whose canonical transforms J are known, (A3) yield 
special function relations. For O=irr/4, (A5a) becomes 
the Bargmann transform matrix (1. 4), thus 

1(x)=exp[irr(d~2 +x?J!(x) 

=2-1/4expG ::2 )exp(ix2)!(2-1/2x). (A6) 

In particular, letting! be one of the harmonic oscillator 
wavefunctions IJin(x) given by (3.7), 1 will be (2.9) for 
u = 0, v = 1. Eq. (A6) with a change of scale gives 
immediately 

xn =2-'exp(i ::2 )H,(x) 

and its inverse 

which are formulas that do not commonly appear in 
special function tables. 14,18 

APPENDIX B; EXTENSION TO n DIMENSIONS 

(A7a) 

(A7b) 

We shall sketch here some of the results for the case 
of n-dimensional spaces Jft. The most general complex 
linear canonical transformation (2.1) now reads 

(Bl) 

where x, p, ~, and tare n-component column vectors 
and A, ••. ,D are nXn matrices satisfyinw AB=BA, 
CD = DC, and AD - BC = 11 (the tilde means matrix 
transposition). Hermitian conjugation is achieved as 

( ii+) (A* B*)( D _B)(A) (U iV)(ii) t+ = C* D* -C A 1 = iW u* t' (B2) 

where U=A*D-B*C, V=2Ah(B*A), and W=2Ah(C*D), 
the symbol AhM=(2i)-1(M -M*) denotes the anti-Hermi­
tian part of a matrix, so that V and Ware Hermitian and 
their determinants are real. An analysis parallel to 
(2.4)-(2.7) yields a Hermitian form for the space J" 
given by 

(j,g) = f«,v('1/, '1/*)d"Re'1/d"Im1){(1)*g(1) (B3) 
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= ([ trr]' detV)-1/2 exp{tij"V-1UlI -1iv-~* + m* V*-lU*lI*} 

(B4) 

the growth restrictions on 1 E J' can be seen writing 
1(11) = !b(V*-l/~) exp{- mV-1UlI} where (V1/2)2 = V, As V 
is Hermitian, when we ask it to be positive definite, 
its positive definite square root is uniquely defined and 
! b can be asked to be in the n-dimensional Bargmann 
space. The restrictions are then 

11(1I)I"'yexp{ta7j'V-~*-tRe[7j'V-1U1)]}, a<1. (B5) 

The transform kernel between H' and J n will be, in 
terms of the sub matrices in (B 1), up to a phase cp, 

A(Ti, x) =cp([2rr]n IdetB 1)"1/2 expi{tiB-1Ax -iB-~ + t7j'DB-~} 

(B6) 
out of an analysis parallel to (3,1)-(3.3), 

*Permanent address: Centro de Investigacion en Matematicas 
Aplicadas y en Sistemas (ClMAS), Universidad Nacional 
Autonoma de Mexico, Apdo. Postal 20-726, Mexico 20, D. F., 
Mexico. 

1P.A. M. Dirac, The Principles of Quantum Mechanics 
(Clarendon, Oxford, 1958), 4th ed. 

2M. Moshinsky, Proceedings of the XV Solvay Conference in 
Physics (Brussels, 1970); M. Moshinsky and C. Quesne, J. 
Math Phys. 12, 1772, 1780 (1971); M. Moshinsky, SIAM J. 
Appl. Math. 25, 193 (1973). 

3V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961); 
20, 1 (1967); V. Bargmann, "Group Representation on 
Hilbert Spaces of Analytic Functions" in Analytical Methods 
in Mathematical Phyics, edited by R. P. Gilbert and R. G. 
Newton (Gordon and Breach, New York, 1970). 

4V. Bargmann, P. Butera, L. Giraraello, and J.R. Klauder, 
Rep. Math. Phys. 2, 221 (1971). 

5J. Glauber, Phys. Rev. 1 130, 2529 (1963); 131, 2766 (1963); C. 
Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965). 

6p. Kramer, M. Moshinsky, and T. H. Seligman, "Complex 
Extensions of Canonical Transformations and Quantum Me­
chanics" in Group Theory and its Applications edited by E. M. 
Loebl (Academic, New York), Vol. III (to be published). 

7M. Moshinsky, T. H. Seligman, and K. B. Wolf, J. Math. 
Phys. 13, 901 (1972). 

BA. O. Barut and L. Girardello, Commun, Math. Phys. 21, 41 
(1971) . 

9K. B. Wolf, "The Heisenberg-Weyl Ring in Quantum Me­
chanics" in Group Theory and its Applications edited by E. M. 
Loebl (AcademiC, New York), Vol. III (to be published). 

10C. P. Boyer and K. B. Wolf. (unpublished) 
I1V. Bargmann, Ann. Math. 48, 568 (1947). 
12J.D. Louck, M. Moshinsky, and K.B. Wolf, J. Math Phys. 

14, 692 (1973); 14, 696 (1973). 
131. S. Gradshteyn and 1. M. Ryzhik, Tables of Integrals, 

Series and Products (Academic, New York, 1965), Eq. 
8.951. 

14F. Treves, Bull. Soc. Math. France 97, 193 (1969). 
15M. Miller and S. Steinberg, Commun. Math. Phys. 24, 40 

(1971). 
16M. Mukunda and B. Radhakrishnan, J. Math. Phys. 14, 254 

(1973) . 
17R.M. Wilcox, J. Math. Phys. 8, 962 (1967); E. Eriksen, J. 

Math. Phys. 9, 790 (1968). 
18C. M. King, M. Sc. thesis, Auburn University (unpublished); 

I am indebted to Professor J. D. Louck for having brought 
this work to my attention. 



                                                                                                                                    

Causal boundaries for general relativistic space-times * 
R. Budic* and R. K. Sachst 

Department of Physics, University of California at Berkeley, Berkeley, California 94720 
(Received 25 February 1974) 

Let M be a causally continuous space-time. Using indecomposable past and future sets in a 
symmetric way we construct a causal completion N for M. N is a causal space; the chronology of 
M in N is the chronology of M. The extended Alexandrov topology for N makes N Hausdorff 
and M a densely imbedded subspace. M is globally hyperbolic iff either the chronological future or 
the chronological past of each point in N -M is empty, causally simple iff the causality of M in N 
is the causality of M. The standard examples of causal completions are special cases. 

I NTRODUCTI ON 

Penrose's conformal completion method for certain 
general relativistic space-times l has proved useful in 
applications. 2,3 Various generalizations have been sug­
gested. 4

-
7 In particular, Geroch, Kronheimer, and 

Penrose5 have shown, under rather general assump­
tions, that certain open subsets of space-time can be 
used to assign a boundary to space-time. Some of the 
subsets Simply represent pOints of the space-time it­
self. The others are interpreted as ideal points at a 
singularity, or at infinity, or at an event gratuitously 
amputated out of a larger space-time. Geroch, 
Kronheimer, and Penrose obtain a Hausdorff topological 
space, interpreted as the space-time with the ideal 
pOints attached as boundary pOints. The boundary might 
be regarded as the place where information, carried 
by particles or fields, enters that portion of physical 
space-time which can be described by nonquantum 
general relativity. 

In general, the causality structureS of the space-time 
does not extend to the boundary. For example, it may 
not make sense to say a space-time even can signal to 
a boundary point at a speed less than that of light. Now 
causality structure is perhaps the deepest structure our 
phYSical models have. In general relativity, analyzing 
causality is central to the study of black holes, 2,3 to 
cosmology,9,10 and to each of the major recent mathe­
matical theorems. 2,11 Causality can be used to analyze 
in what sense properties of freely falling particles and 
photons determine a topology, differentiable structure, 
and Lorentzian structure for space-time. l2 In fact, 
causal structure determines these further structures up 
to a conformal factor. 13 In view of this basic character, 
one hates to lose the causality structure when attaching 
a boundary. 

The main purpose of this paper is to show that if 
space-time is causally continuous, 14 the causality 
structure does extend to the ideal points. Roughly 
speaking, a causally continuous space-time is one with 
the following three properties: There are no closed 
timelike curves and this property perSists even if suffi­
ciently small but otherwise arbitrary perturbations of 
the metric are made; moreover, if there are "gaps" in 
the space-time, their "dimension" or "shape" is re­
stricted; and finally, space-time is "not to concave" 
at infinity or other boundaries such as the big bang. In 
such a space-time the past and future of a local ob­
server depend continuously on his location. 14 There is 
then apparently just one reasonable, conformally in­
variant way to attach a boundary. Causal continuity in-
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sures that for the boundary points causality and topology 
cooperate in a rather cunning way. Most known physical­
ly interesting examples, such as the maximally extended 
Reissner Nordstrom space-times, are causally 
continuous. 

In Sec. 1 we shall review some known results and add 
a few preliminary propositions. Section 2 shows how to 
assign a causal structure to certain collections of 
space-time subsets. To avoid later redundancy, we 
work rather generally in these two sections, but we 
have in mind the ideal point boundary of a causally con­
tinuous space-time throughout. Section 3 reviews the 
technical definition of causal continuity and proves 
some results about causally continuous space-times. 
Section 4 discusses topology. Section 5 contains our 
main result. We there define the causal boundary of a 
causally continuous space-time and show how it is 
attached to the space-time. 

The essential feature of our methods in Secs. 1-5 is 
indicated in Fig. 1. The standard conventions2 for 
space-time diagrams are used. The figure shows a 
space-time conformal to an open sub manifold of two­
dimensional Minkowski space. The (closed) shaded re­
gions are not part of the space-time. P and F, shown 
dotted, are sets of the kind which represent ideal 
points. The key question is the following. By what gen­
eral method can one tell that P and F represent the 
same ideal point y rather than two different ideal pOints. 
Our answer here will be that P is the common past of 
F and F is the common future of P. Specifically, P is 
the largest open set each event in which can signal to 
each observer in F at a speed less than that of light; F 
is the largest open set each observer in which can re­
ceive such a signal from each event in P. We shall 
identify sets, and the points they represent, pairwise 
iff both these conditions, which do not imply each other, 
hold. 

In Sec. 6 we show that once a boundary has been 
attached, one need not repeat the process: Completing 

;;:; 
/ F 

M~ FIG. 1. 
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the completion gives nothing new. Section 7 discusses 
a byproduct of our investigations which has some inde­
pendent interest. Any time-oriented space-time deter­
mines an algebraic structure, called a complete lattice. 
The geometric properties of the space-time are re­
flected in the algebraic properties1S of the lattice. There 
is some hope that such lattices may be useful in 
analyzing global space-times properties and/or in 
quantizing. Finally, Sec. 8 mentions few unsolved 
problems. 

1. PRELIMINARIES 

This section reviews most of the standard definitions 
and results we shall need, sets the notation, and defines 
common pasts and futures. The latter are new, so we 
shall analyze some of their basic properties in sub­
sections 1.4-1. 8. 

Let (M, g) be a time-oriented space-time. 2 Thus g is 
a smooth Lorentzian metric on the smooth manifold M. 
A smooth future-directed curve in (into16) M is a 
smooth curve whose tangent is never zero and always 
timelike or lightlike future-directed. Define binary re­
lations.,: and « on M as follows: x.,: y, if there is a 
smooth, future directed curve from x to y; x« y if 
there is a smooth, future-directed, timelike curve 
from x to y. 

By abstraction, KronheiIller and Penrose8 obtained 
an algebraic structure which has some, but in general 
not all, the properties of (M, g, .,: , «). Suppose Z is a 
set, p is a binary relation on Z, and X,y,ZE Z. Recall 
that p is reflexive if xpx for all x, antireflexive if xpx 
for no x, and transitive if xpy and ypz together imply 
xpz. A transitive p is a partial ordering if two distinct 
elements x, y cannot obey both xpy and ypx. Let.,:, «, 
be binary relations on Z . ." called the causality rela­
tion, will correspond intuitively to signals which travel 
no faster than light; «, called the chronology relation, 
will correspond to signals slower than light. As here 
we shall often use boldface to distinguish structures de­
fined in general from corresponding structures defined 
on a space-time. 

Definition 1.P: (Z,",«) is a causal space if: 

A. x«y implies x,,:y; 

B . .,: is a reflexive partial ordering; 

C. « is anti reflexive ; 

D. either x"y«z or x«Y" z implies x«z. 

Let (Z,",«) be a causal spac e. By Axioms 1. 1 . A and 
1.l.D, « is transitive. If ye;;; Z, (Y,",«) is a causal 
space. 8 Let X and Z be causal spaces and 9: X - Z be a 
function. 9 is called isocausal if x.,: y implies ex., By 
and x« y implies ex« By. f) is called a causal isomor­
phism if it is one-to-one, is onto, is isocausal, and has 
an isocausal inverse. 

Let Z be a causal space, s,pe;;; Z be subsets. The 
chronological past rs of S is rs ={x E Z: x« s for some 
SE S}. Thus if yE Z, r{y}={XE Z: x«y}, where{y} 
e;;; Z denotes the Singleton subset. P is called a past set 
if p=rs for some S. A past set P is called indecom­
posables if it is not the empty subset and obeys the fol-
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lowing restriction: Whenever Q and R are past sets 
such that p = QU R, then Q = P or R = P. The causal 
past J-S of S is J-S={x E Z: x.,: s for some s E S}. 
Chronological and causal futures I+S and J+S, future 
sets, and indecomposable future sets are defined dually, 
i. e., with « or .,: replaced by the respective inverse 
relations» or ~. We shall often take dual results for 
granted. 

The time-oriented space-time (M,g) is called causal 
if, for all x,y E M, x": y and y": x together imply X= y. 
(M ,g) is causal iff there are no self-intersecting future­
directed curves which is true iff (M,":, «) is a causal 
space. 2,ll For all Se;;;M, rSe;;;Mis open. 11 

Let (M,g) be a causal space-time, and ue;;; M an open 
subset. The chronological common past ~ U of U is ~ u 
=r{XE M: x« u for all UE u}. Since «is transitive 
loUd ~ U iff U is not the empty set liSe;;; M. The chrono­
logical common future + U is defined dually. 

1. 2. Notation and Conventions: Throughout the rest 
of this paper: A. M = (M, g) is a causal space-time with 
chronology «, causality":, topology T ={ ue;;; M: U is 
open}, and power set S ={se;;; M}. The follOwing two 
examples indicate the basic notations that will be used. 
(i) + T ={se;;; M: S = + U for some U E T}, etc. (ii) Suppose 
U E T; then H U= H+ U)= ~[t(U)] =(~ 0+) U= (~o + )(U), with 
the first form preferred, etc. 

B. The collection P of pasts is p=rL;] =J+L is the 
collection of futures. The (past) hull lattice l is l = ~ T; 
dually, L == + T; the term "hull lattice" is suggested by 
the results of Sec. 7 following. !H is the collection of 
indecomposable past sets; dually, ih is the collection of 
indecomposable future sets. 

C. (P, F) E P x] means PEP and FE], etc. (P, F) 
will be called a hull pair if (p, F) E P x], P == ~ F and 
F=+P. Define a relation ~on PU] as follows. A~A 
for allAEpU]. IfA,BEPU] thenA~B iff either 
(A,B) or (B,A) is a hull pair. We shall show below that 
~ is an eqUivalence relation and that each equivalence 
class contains at most two members. 

D. i:M-P denotes the function with rule Jx=r{x}; 
dually IX=I+{x}. For example, suppose se;;; M. Then rs 
is an open subset of M. But is ={is : s E S}={l-{s} : s E S} 
is a subset of T; thus is is a collection of open subsets 
of M. 

The ideal points we eventually wish to discuss are the 
elements of;11uih/ ~. In the rest of this section we first 
analyze how the~ topology T, the collection P of pasts, 
the hull lattice L, the collection m of indecomposable 
past sets, etc., are interrelated. Then we examine 
common pasts and futures in some detail. We will base 
most of our proofs in the paper on the follOwing standard 
propOSition. 

Proposition 1.32 ,11: Suppose U E T, Se: M, and S"d rs; 
then: 

A. Interior (Closure 5) = Interior S =rs; 

B. Closure (Interior S)=Closure S={xEM:S"dlx} 
d J-S; 

C. rUd u. 
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Lemma 1.4: Suppose U, VE T. Then: 

A. Ud. V implies t UC t V; 

B. H U"d. U; 

C. t U"d. V iff UC + V. 

Proof: Part A follows directly from the definitions. 
For part B, first note than if U E U then Z E t U implies 
u«z. Let Q::={xEM:x«z for all ZE t u}; thus Q"d. U. 
Therefore H u=:.rQ"d. rU"d. U, where we have used 
Proposition 1.3.C. Finally, for part C, suppose t U 

"d. V. Then the dual of part A and part B itself together 
give + V"d. H U"d. U. The dual argument gives the 
converse.-

Proposition 1. 5: 

A. T"d. P"d.L::= + J; 
B. (+ot)l is the identity; +([)::=L; T"d.P-t-ZcJ 

C. (r)p is the identity; H 

n. pnJ=:'{r/J,M}::=Lnl. T"d.J-+-lcp 

Proof: Part A. T"d. P since rs is open for all SC M. 
P =rS"d. Z. Now T"d.) by the dual of T"d. P so +JC +T 
==-L. Conversely, suppose L=:.+ U, UET. Then tL"d. U 
by the dual of Lemma 1. 4. B. Thus + ad. H L by the dual 
of lemma 1.4.A. This gives L"d. H L. Lemma 1.4.B. 
~ives H L"d. L. Thus L::= H L E +J; thus l c + J. Thus 
L=+J. 

Part B. We have just shown that (+ 0 t) is the identity 
on l; dually, (t 0 +) is the identity on l. Thus H[) 
=:.l. 

Part C. Suppose p=:.rs, SC M. P"d. rp since « is 
transitive. By Propositions 1.5.A. and 1.3.A, P 
=:. Interior P =1 P. Thus 1" is the identity on P. 

Part D. Suppose SE pnJ. r1"S"d. S since «is a re­
lation. By Proposition 1. 5. C S =:. rs. Proposition 1. 3 • B 
and the transitivity of « give r Closure S =:. r{x EM: S 
"d. Ix}C Closure S. By Proposition 1.3. A we now have S 
=1" Closure S. Thus Interior s=:.s=:.[+r Closure S 
"d. Closure S, so that S is open and closed. Since a 
space-time is connected, S=:.r/J or S=:.M. Conversely 
[=r/J =:. r/J and, by Proposition 1.3. A, M"d. ["M =:. Interior 
l}!=:.}i. Thus PnJ =:.{r/J,M}. Now by Proposition 1.5.A, 
LnLcPnJ. Conversely, +r!J=M=:.tr/J and, since« is 
antireflexive, t M=:.r/J =:. tM. Thus Ln Z=:.{r/J,M}.-

We shall henceforth regard the empty set r/JC M, the 
past copy r/J E p, and the future copy r/J EJ as in princi­
ple distinct. Unless explicitly indicated otherwise, r/J in 
the following means r/JC M. The analogous comments 

," 

~ 
/ " / 

/ P / Q" 
, 
L---_____ _ J 

FIG. 2. Here I1x=(!x)U PU Q, and 
It Ix = (1x) UP. 
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M~ 

FIG. 3. p~ q, p"d.Q. 

apply to M; the distinction between ME P and ME J is 
sometimes essential. 1 

The following miscellaneous results will be needed 
later. 

Corollary 1.6: Suppose UE T and P,QE P. Then: 

A. P12 Q implies Closure P12 Q; 

B. pn U'*r/J implies P"d. + U; 

C. + U=:.Interior{xEM:u»x for all UE U}. 

Proof: By Propositions 1.5.C and lo3.A, P12 Q im­
plies Interior Closure p=:. P12 Q =:. Interior Q, so part A 
holds. For part B, we have P =:. r Pd. r(pn U)"d. + (pn U) 
"d. + U, where we have used Proposition 1. 5. C, the de­
finition of r, the definition of +, and the dual of Lemma 
1.4.A. Finally, Propositions 1.3.A and 1.5.A imply 
part C.-

Proposition 1. 7: Suppose PE P and XE M. Then: 

A. pn (ix) '*r/J iff x E P; 

B. +!X"d. HIx"d. Ix. 

Proof: x E P iff x E [-P iff there is aYE P such that 
x«y iff (ix)n P'*r/J. Thus part A holds. For part B first 
note that H [x"d. Ix by Lemma 1.4. B. Now suppose Z 

E ix (Fig. 2). Then Z E rix by the duals of Propositions 
1 . 5. A and 1 . 5 . C. Thus there is ayE ix with Z » y • 
y» w for all WE Ix since» is transitive. Thus Z E t Ix; 
thus t ix"d. Ix; by the dual of Lemma 1 .4. A, + ix"d. H Ix. -

1. 8: Figure 2, for an open submanifold of two-dimen­
sional Minkowski space, shows that neither equality in 
Proposition 1. 7. B need hold. 

Proposition 1.9: The following three conditions are 
equivalent: 

A. (p, F) is a hull pair; 

B. PEZ and F==-t P; 

C. FEL and P=:.+F. 

Proof: By Proposition 1.5. A, p::= + F implies pEL; 
dually F=:.tP implies FEZ. Proposition 1.9 thus fol­
lows from Proposition 1. 5. C and its dual. -

By our conventions, P and J have no elements in 
common. Proposition 1.9 implies that the relation - de­
fined in 1.2.n is an equivalence relation which identi­
fies a given A E P U] with at most one other element of 
PU]. 

2. SET CAUSALITY 

M, its topology T, the collection PC T of pasts, the 
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i \:''', 

, \ 

I \ 

• P " 

I 

I --
(e) (d) 

FIG. 4. Duality corresponds to turning the page upside down. 

collection] of futures, the hull lattice l, its duall, 
hi, /f1, and the equivalence relation - are as in subsection 
1.2. 

Ultimately we will consider space-times such that 
(jx ,Ix) is a hull pair for each event x, represent each 
event x by ix or equivalently ix, and use elements of 

Jh U /111 - to represent ideal pOints. For awhile, we work 
more generally. The game is to make P and] into 
causal spaces, abstracting from simple situations such 
as those shown in Figs. 3 and 4. Then one must glue 
P and] together. 

Various glueing constructions are possible algebrai­
cally, but most of these can be shot down by showing 
that they give unnaceptable answers in some of the 
standard examples2 of black-hole, big bang, or other 
conformally completed space-times. The key idea of 
the method we shall use is to glue P and] together 
along the hull lattice and its dual. 

2.1: Define relations;;. and » on P U] by the table 
below, whose use is indicated by the following exam­
ples. Suppose (P,Q)EPXP, (P,F)EPX] and (F,P) 
E] X P. The table specifies: P;;. Q iff Pd. Q, as in Fig. 
3; P»Q iff pn (-+ Q)*0, as in Fig. 4A; P;;.F iff there 
is a hull pair (i, L) such that P;;. i and I;;. F (Le., P 
d i and Ic F); etc. 

2.2 
A. pxp 
B. ]x] 
C. px] 
D.]XP 

• ;z: • 
"d' 
·c· 

3(L,L): -51 andLC' 
3(L,L): 'cL andLd' 

0» • 
.n(t.),c0 

(I .) n .,c 0 
·n·,c III 

(I .) nIt .),c III 

2.3: The dualities in the table are a little tricky: 
Line B is the dual of line A but both line C and line D 
are self-dual. Compare Fig. 4. Proposition 2.6.B and 
Example 2.7 following indicate on intrinsic difference 
between;;. in line C and;;. in line D. We now analyze 
the table, starting with line A. 
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Proposition 2.4: (P,~,«) is a causal space; i: M-P 
is isocausal. 

Proof: (P, C) is a partially ordered set so that Axiom 
1.1. B holds. Now suppose P, Q, REP. To check Axiom 
1.1.A, assume first P»Q. Thenpn (+Q)*0. 
Corollary 1,6.B and Lemma 1.4.B give Pd HQ:l Q, 
so that P;;. Q as required. Now to check that» is anti­
reflexive, assume P»Q and Q»P. Then P=Q and 
pn (-+ p) *0 ,by the argument just given. But XE P (t P) 
implies x»x, the desired contradiction. Now suppose 
P;;. Q»R. Then Pd. Q and Qn (tR)*0; thus pn (tR) 
*0 and P»R. Finally, assume P»Q;;.R. Then Pn (tQ) 
* 0 and Q"J R. By Lemma 1. 4 . A t R"J + Q. Thus P» R 
also in this case. Thus Axiom 1.1. D holds; thus (P,~, 
«) is a causal space. 

Now suppose x,YEM. If x;;'y, jX"JIY'Asin~e x;;.y 
»z implies x» z for any event z. Thus Ix;;. Iy, If x» y, 
then YElx so (Ix)n (+iy)"J (ix)n ([Y) * Ill, where we have

A 

used Proposition 1.7. Thus Ix» Iy in this case. Thus I 
is isocausal. • 

By the dual of Proposition 2.4, (], ~,«) is a causal 
space. To analyze how P and J are glued together, 
considerable casework will be required. Propositions 
2.5 and 2.6 below give some of the interrelations. 
Example 2.7 shoots down various false conj ectures. 
Proposition 2.8 shows that the relations defined in 
Table 2.2 cooperate with the equivalence relation _ . 
Theorem 2.9 is the main result we shall need. 

Proposition 2.5: t: P-] is isocausal; -+: I-I is a 
causal isomorphism. 

Proof: Suppose P, Q E P. If P;;. Q, then by Lemma 
1.4.A, tP;;'+Q. If P»Q, then, by Lemma 1.4.B ap­
plied to P=U, tP»-+Q. Thus t is isocausal. Dually, 
t :] - P is isocausal. Proposition 1. 5. B now shows + : 
I -l is a causal isomorphism. • 

Proposition 2.6: Suppose PE p, FE], and r 
E { ;;. , ~ , » , «}. Then: 

A. PrF iff, for some hull pair (i,I), PrL and LrF; 

B. PrF implies Pr (t F) and (-+ p) rF; P~ F iff P 
~ (tF) iff (+P)~F. 

Proof: In part A, the cases r =,,;; and r =;;. are trivial. 
Suppose P»F or F»P. Then pn F*0 or (+p)n (tF) 
*0 respectively. So suppose QEP, GE], XEQn G. 
Let L = t Ix; then Hi = 1. By Corollary 1.6. B, Propo­
sition 1.7, and their duals Qn (+L)*0 and (HL)n G 
*0. Substituting P=Q and F=G or +P=G and tF=Q 
finishes the proof of the direct assertion in A. To prove 
the converse, suppose first P» i and L» F. Then 
pn Land in F are both nonempty. By Corollary 1. 6. B 
and H L = i we get P» F. The remaining case, with 
r=«, is handled by the dual argument. Thus 2.6.A 
holds. 

We start the proof of 2. 6. B with the case P";; F • 
Then FC +L and i"J P, L El. + Pd. -+ L by Lemma 
1.4.A, so that -+ Pd F and F;;. -+ P. Moreover, -+ P"J F 
iff t Fd P iff t F;;. P, where we have used Lemma 
1.4.C. Now if tFd. P, set L=tF. Then iEI, L"J P, 
and -+ L:2 F, so that F;;. P. Thus B is valid if r=~. 



                                                                                                                                    

1306 R. Budic and R.K. Sachs: Causal boundaries 

I.·.·.p .. ~.j ...... ' 
,". .' 

I •••• ". • 

L __ ~ 
FIG. 5. 

N~w suppose P~ F. Then P:2 L, + LC F, LEL. Thus 
P:2 L = H L:2 ~F and P~ ~F; dually + P~ F. Suppose P 
»F. Then pn F*I/I. By Lemma 1.4.B and its dual, 
+P»F and P»~F. Finally, F»P implies F»+P and 
~ F» P directly from the definitions. Thus 2. 6.B is 
also valid. • 

Example 2.7: It is not true that P:2 ~ F and + PC F 
imply P~ F. We give a counterexample. Let c be the 
image of an inextendible lightlike geodesic in Minkowski 
space, c' be another. Set p=rc, F=rc', as shown in 
Fig. 5A. Then + P=I/I = ~ F, so that P~ ~ F and + P~ F; 
but P ~ F need not hold, as the figure suggests. This 
example is important in applications. P represents a 
point at future lightlike infinity, F a point at past light­
like infinity. 2 Various geometric and physical argu­
ments indicate that one must allow pj; F2. A similar 
situation arises in some of the cosmological models. 2 

In Fig. 5B, F represents a point on the big bang. The 
definitions in Table 2.2 were designed to handle such 
cases. 

Proposition 2.8: Suppose (L,L) is a hull pair, CE P 
U], and r is as in Proposition 2.6. Then irC iff LrC. 

Proof: Suppose PE P and FE]. By Proposition 2.6., 
LrP implies LrP and LrF implies LrF. The remaining 
cases involving r =» and r =« follow directly from 
Table 2.2 and the definition of a hull pair. The remain­
ing cases involving r = ~ or r = ~ can b~ proved by ar­
guments of the following kind. Suppose L ~ P. Then L 
:2 P and £:2 L so that L~p .• 

Suppose (C PU] is a subcollection. Proposition 2.8 
shows that ~ and « are well defined on the quotient 
space (I -. It is such quotient spaces which are of 
interest in what follows. However, since each equiva­
lence class contains at most two members, it will be 
convenient to work with differences rather than quo­
tients. Call C CPU] caus al iff f ~oes not contain both 
members yL, L of any hull pair ( ,L). For example C 
= Pu J - L is a causal subcollection and has essentially 
the same structure as PU] I - . 

Theorem 2.9: «(,~,«) is a causal space iff (is 
causal. 

Pro2j:yAssume ( is not causal. Then there is a hull 
pair (L,L) both of whose members are in r. By Propo­
sition 2.8, L?> L, L?> L; [A t, so that C i~ not a causal 
space. Conversely, suppose C is causal. In checking 
Axioms 1.1 we need consider only cases where at least 
one element is in P and at least one element is in J . 
Take P,QE P and FE] throughout. 
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To check Axiom 1.1. A, suppose P» F. Then by 
Proposition 2.6.A there is a hull pair (L,L) (neither of 
whose elements need be in () such that P» i and L 
» F. USing Proposition 2.4 and its dual, together with 
Proposition 2.6.A again, we get P~F. The dual argu­
ment finishes the proof of Axiom 1.1. A. 

Suppose now P~ F and F~ P. By Proposition 2. 6.B, 
P ~ ~ F?> P and F?> + P ~ F. Thus P = ~ F and F = + P. 
This is a contradiction since ( cannot contain a hull 
pair. Thus, to show ~ is a reflexive partial ordering, 
it remains to show that ~ is transitive. Suppose first 
P~ Q~F. Then, for some hull pair (L,L), P~ Q;,.L and 
£ ~ F, so that P ~ F. Similarly trivial cases will be 
omitted in the rest of the proof. Now suppose P~ F~ Q. 
By Proposition 2.6.B, P~~F~Q, sothatP~Q. The 
dual arguments finish the proof that Axiom 1.1. B holds. 

If P» F and F» P, then P ~ F and F ~ P by Axiom 
1.1.A. By the above proof of Axiom l.1.B this cannot 
occur. Thus « is antireflexive and 1.1. C holds. 

The proof of Axiom 1.1. D follow the above proof that 
~ is transitive almost verbatim. For example, if P 
»F~ Q, then P» ~ F~ Q, so that P» Q by Proposition 

2.4. • 

3. CAUSAL CONTINUITY 

To proceed further, one needs a restriction on M. 
The appropriate condition can be motivated in various 
ways,14 though it is not clear that all physically inter­
esting space-times obey the condition. In the present 
context, the simplest motivation is the following. A 

Since we eventually plan to represent each XE M by Ix 
or Ix, it seems reasonable to require that I and i be 
one-to-one maps which leave chronology completely 
unaltered. This gives the following definition. 

Dejinition 3.1: M is causally continuous iff for all 
x,YEM: 

A. ix»Iy iff x»y iff ix»iy; 

B. ix=ly iff x=y iff ix=iy . 

Proposition 3. 2: The following requirements are 
equivalent: 

A. Requirement 3.1.A; 

B. forallxEM, +ix=ixand ~lx=ix; 
C. for all x,y EM, XE Closure J+{y} iff Y E Closure 

J"{x} . 

Proof: In any case: (i) x» y iff Y E Ix; and (ii) ix» iy 
iff (~ix) n (ly) * 1/1 iff Y E lx, where we have used the 
definitions in Table 2.2 and used Proposition 1.7.A. 
(i), (ii), and their duals show 3.2. A and 3.2. Bare 
equivalent. The equivalence of 3.2. Band 3.2. C is 
proved elsewhere. 14 • 

Proposition 3.2 shows that if M is causally continu­
ous, (Ix ,Ix) is a hull pair for all x EM. In our subse­
quent discussion we shall need two more definitions and 
two further results. The Alexandrov topology T' on M is 
the smallest topology T' on M such that ix and Ix are 
open for all x EM 8; thus T' CT. A causal space 
(Z,~,«) is weakly distinguishing 8 if, for all w,z E Z, 
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r{w}=I+{Z} and I-{w}=r{z} together imply W=Z. 

Proposition 3.3: If M is weakly distinguishing and 
obeys Condition 3.1.A then: 

A. T'=T; 
B. M is causally continuous. 

Proof: Suppose the hypotheses of the proposition hold 
and T' * T; we will show a contradiction. There are 
distinct events x ,y E M such that x ~ y and + iy-:21x. 2,8,11 

By Proposition 3.2.B, Iy-:2 Ix; by Axiom 1.l.D, Ix-:2iy . 
Thus ix=ly ; the dual argument gives ix=iy . But x*y, 
the required contradiction. Now T' = T implies that un­
less x=y, neither Ix=iy nor ix=fy can hold. 2 ,B,ll Part 
B of the proposition follows. • 

Corollary 3.4: If M is causally continuous, T' = T. 

4. TOPOLOGY 

Some of the examples given by Geroch, Kronheimer, 
and Penrose5 indicate that in general one cannot hope to 
get a reasonable causal structure for ideal pOints which 
cooperates with any reasonable Hausdorff topology. 
When M is causally continuous, as we shall assume 
throughout this section, the situation is more cheerful. 

4.1: Call Cc PU] !In en~argement of Miff C is causal 
and C contain either Ix or Ix for all x EM. The extended 
Alexandrov topology T on an enlargement C is defined 
as the smallest topology on C such that, for all CEC, 
each of the following four sub collections is open: 

ric}, ric}, ~{c}= C -.l{c}, K-{C} = C -J+{c}. 

Suppose C is an enlargement of M. Because of Propo­
sitions 2.8 and 3.2.B we can, and shall, assume Ix 
E C and Ix ¢ C for all x EM without essential loss of 
generality. 

Theorem 4.2: (C,T) is Hausdorff; I:M-CiS an 
imbedding. 

Proof: Throughout the proof P and Q are distinct 
elements of CnP and F and G are distinct elements of 
cn]; "Closure" and "Interior" will refer to T on M, 
not to T onC. 

Since C is causal, either Q:t P or vice-versa; suppose 
Q:t P. Then Closure Q12 P by Corollary 1. 6.A. Choose 
x E P - Closure Q. Then P E r{lx} by causal continuity 
and Proposition 1. 7 .A. Q E K"{ix} by Proposition 1.3 .B. 
For any CEPU], I+{C} and K"{C} are disjoint, since 
B» C implies B ~ C. Thus we have found separating 
neighborhoods for P and Q. 

Suppose G {, F. The dual of the argument just given 
shows there is an x E F - Closure G and that, within 
(PU] ,.;; ,«), Ix»F, Ix!- G. Causal continuity and 
Proposition 2.8 now show that FEI"{ix} and GEK+{Ix}, 
which gives separating neighborhoods. Throughout the 
rest of the paper we will use "extended duality" to 
connote that duality, causal continuity, and PropOSition 
2.8 are being used simultaneously, as in the argument 
just given. 

Either F~ P or F~ P. Suppose first F~ P. Then 
there is an x in P- Closure (+F). PEI+{ix} as above. 
FE K-{ix} by Propos ition 2.6. B with r = .;;, since + F 
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~ix by PropOSition 1.3.B. Thus we again have separat­
ing neighborhoods. Now suppose instead that F ~ P. 
Then + n P and t P-:2 F. Since C is causal, either + F 
*P or tP*F. If there is an XE +F- Closure P, then 
PEK-{lx} and +F»lx as above. Since +F»Ix iff (+F) 
n (tiX)*0iff F»ix iff FE 1+ {ix} , there are separating 
neighborhoods in this case. An extended dual of the 
argument just given completes the proof that (C,T) is 
Hausdorff. 

I: M
A

- Cis A one-to-one by C,?ndition 3.1. B. More­
over, I:M-IM is open when 1M is assigned the relative 
topology from (C,T) since the Alexandrov topology of M 
is the manifold topology of M and Condition 3.1. A 
holds. To show i is continuous, we consider sets of the 
form i-I B, where B is one of the subbasic open neigh­
borhoods 4.1 and 1-1 denotes the complete inverse 
image. Now Ix» P iff (ix)n (t P) *0 iff x E t P, by the 
dual of Proposition 1. 7. A. Thus j-1r{p}= t P is open. 
Moreover, p»ix iff pn (tix)*6iff XE P, where we 
have used causal continuity. Thus j- 1I-{P}=P is open. 
lx!- P iff xE M - Closure (t p) by causal continuity, 
Proposition 2.8, and the dual of Proposition 1.7 .A. 
Thus the complete inverse image of K-{P} is again 
open. Similarly, P:t ix iff x E M - Closu re P. Extended 
duals of the above arguments show that each subbasic 
open neighborlt0od 4.1 has an open complete inverse 
image. Thus I is continuous. Thus it is an imbedding •• 

5. IDEAL POINTS 

We now apply our results to ideal pOints. The notation 
is that of 1. 2. 

Suppose PE/H. Then5 P=I"c, where cC M is the 
image of some smooth, future-pOinting, timelike 
curve. There are essentially just two different cases5 : 

(i) c has a future end point x E M; (ii) c is future inex­
tendible. In case (i), P = Ix; in cas e (ii), P is inter­
preted as an ideal point. Compare Figs. 1 and 5. 

Throughout the rest of this section, M is causally 
cOI)tin~ous. ~efine the causal completion M of M as M 
=/H U /H - + (/H l.! L 1. Thus M has essentially the same 
structure as /H utfJ/ -. Define the casual boundary aM 
CM of M as aM=M-iM. M is an enlargement of M. 
Assign M the causality.;;, chronology «, and extended 
Alexandrov topology n. Thus (M,';;,«, n is a causal 
space with Hausdorff topology. Suppose x, y EM. 

Theorem 5.1: I: M - M is a dense imbedding. Ix 
»Iy iff x» y; Ix ~ iy iff Y E Closure (Ix). 

Proof: j is an imbedding by Theorem 4.2. To show 
that IMC M is dense we will again analyze the subbasic 
open neighborhoods B given by 4.1. Suppose P E B. De­
fine pn (i-lB)=ZC M and define Y=P- Z. By case­
work we will show Z*0 and I"YC Y. Extended duality 
and indecomposability will then show 1M is dense. 

Suppose B =I-{B}, BE M. Then XE P implies B» P 
»Ix. Thus Z = P in this case; Z is not empty since P 
EM; Y is empty so Y-:2 I"Y. Now if B = K-{B} , we again 
have Z=P and Y=6, since P»Ix, P!-B, and Ix~B 
cannot hold simultaneously. Next suppose B = r{B}. 
Then, by the definitions in Table 2.2, z=Pn F*0, 
where F=B or F=tB, according as BE] or BE P re­
spectively. This gives Y=P-F. Since ]-P=P and]+F 
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FIG. 6. 

= F, Y:2 ry. Finally, suppose B = K+{B}. Let Q = B or 
Q = ~ B, according as BE P or B EJ respectively. In 
both cases we have Z=P-ClosureTQ*0, where we 
have used the definitions, Proposition 2.6, and Proposi­
tion 1.3.B. y=pn (ClosureTQ):2 I"y=pn Q. 

Now suppose PEB1n 8 2 , where 8 1 and 8 2 are sub­
basic open neighborhoods. Then P=I-P=[I-(Zln Z2)] 
U [I"YJu [I-Y2]. We cannot have Zln Z2=0. For if we 
did, indecomposability would give, say, P=I"Y

1 
which 

contradicts rYI 12 ZI' By induction, each 8 E T which 
contains some PEP contains the image of some x EM. 
By extended duality each nonempty 8 E T contains the 
image of some x EM. Thus 1 is a dense imbedding. 

Ix ~ ly iff lx:2 Iy iff Y E Closure (Ix) by the definitions 
and Proposition 1. 3. B. ix» ly iff x» y by Condition 
3.1.A. 

A topologized causal space Z is causally simple2 iff 
J+{z} and J -{z} are closed for all z E Z. Trivially M is 
causally simple. 

Corollary 5.2: 1: M - iM is a causal isomorphism iff 
M is causally simple. 

Example 5.3: Consider the submanifold of two dimen­
sional Minkowski space shown, together with its com­
pletion M, in Fig. 6. This space-time and its comple­
tion mimic many of the properties of a maximally ex­
tended, causally completed Reissner-Nordstrom solu­
tion. 2 In addition, s represents a point amputated from 
the space-time and resurrected in M. 

The reader may check the following points. As a point 
set, the boundary aM has the intuitively expected prop­
erties. For example v E aM corresponds to a hull pair 
and is a single point of M. The topology is also the 
expected one. For example U is an open neighborhood of 
y. The causality is for the most part also obvious. 
Thus w»v, z»v, and z»y~x. y;fx, which is accept­
able, but not intuitively obvious. 

6. PROPERTIES OF CAUSAL COMPLETIONS 

Throughout this section M is a causally continuous 
space-time and M is its causal completion. Boldface 
denotes structures formed from (M, ~,«, T) by re­
peating exactly earlier definitions given for (M, ""',«, n. 
For example P = I -{SC M} is the generalization of the 
definition in 1.2. B. Similarly, suppose U E T so that U 
is an open subset of M. Then tU=I-{x EM: x«u for 
all u E U}. We summarize some properties of M, with 
the rather tedious proofs omitted or drastically 
condensed. 

It can be shown that M is causally continuous in the 
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following sense (compare Sec. 3). M is weakly distin­
guishing; moreover, for all x,YEM, XE Closure r{y} 
iff y E Closure r{x}. 

Theorem 6.1: M is causally isomorphic and homeo­
morphic to its own causal completion mUm / .... 

Proof: We outline the main steps. (A) Suppose X,y 
E M and x» y; then there exists a z E M such that 
x»Iz»y, (B) Suppose PE P; then P=I-P. (C) r-oi: 
P - P is a one-to-one onto function with inverse i-I. (D) 
PC Miff j-I P EfiI. (E) Suppose PE P; then + p=I-i+ i- 1p. 
(!) SUl2pose (p, F) E P x J; then (p, F) is a hull pair iff 
(I- 1p,r1F) is a hull pair. (A)-(F) and some of their 
ext~nd~d duals imply that Mum /- is causally isomorphic 
to In uln / -. Since the topologies are determined by the 
causal structure, M is also homeomorphic to its own 
completion .• 

The follOwing theorem has several applications which 
will be discussed elsewhere. It corresponds to a result 
proposed by Seifert4 in a slightly different context. 

Theorem 6. 2: M is globally hyperbOlic iff, for every 
XE aM, either I-{x} or r+{x} is empty. 

The result follows from the relation between boundary 
pOints and inextendible curves discussed in Sec. 5. We 
omit the proof. 

7. LATTICE STRUCTURE 

Let l be the hull lattice of M, Nc l be a subcollection. 

Proposition 7.1: <l,:2) is a complete lattice. The 
greatest lower bound nN and least upper bound UN of the 
elements of N are given by 

nN=Interior n N, uN =H u N 
NEN NEN 

Proof: (T ,:2 ) is a complete lattice, with Interior n as 
meet andU as join.ls Lemmas 1.4.A and 1.4.B, to­
gether with their duals show that + and t are a Galois 
connection from T to itself. The result follows. 15 

Example 7.2: Let x and y be spacelike separated 
events in Minkowski space, c be the straight line between 
them. Then ix and iy are in l since Minkowski space 
is causally continuous. The greatest lower bound of 
these two elements is (Ix)n (jy) E l. However, in four 
dimensions, (Ix) U (iy) is not in l. It turns out that the 
least upper bound of ix and iy is rc, the geodesic hull 
of (jx)U (Iy). 

Example 7.3: Let l be the hull lattice of the Einstein 
deSitter cosmological model. In 113 , let L be the collec­
tion of all open, bounded, convex subsets together with 
the empty set and with 113 itself. (L,:2) is a complete 
lattice. The greatest lower bound of two elements in L 
is their set intersection; the least upper bound is their 
convex hull. It can be shown that Land l are isomor­
phic as complete lattices. 

By using the methods of Secs. 2-4, one can assign 
a causal structure and a Hausdorff topology to the hull 
lattice of a causally continuous space-time. Roughly 
speaking, the resulting structure is a big collection of 
fuzzy points. 
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8. CONCLUSION 

For a causally continuous space-time the causal 
completion defined here seems quite satisfactory. But 
should one assume that all physically interesting 
space-times are causally continuous? If so, one would 
like a characterization of the above causal completion 
which does not involve the rather clumsy Table 2.2. 
If not, one might look for generalizations. We have 
tried many generalizations; each seems to have some 
incurable disease. 
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The necessity for statistical mechanics of relativistic particles endowed with variable rest masses 
essentially arises from astrophysics (when dealing with clusters of stars or galaxies which do exhibit a 
mass spectrum) and from the statistical bootstrap model of Hagedorn and Frautschi for inclusive 
reactions of elementary particles. We begin this series with the simplest case of classical particles 
since this case demonstrates more clearly the main features of the theory. Moreover, this classical 
case is an excellent approximation for the statistical bootstrap near the "hadronic boiling point." We 
first derive the one-particle distribution function using the standard maximization procedure, in the 
implicit case of a uniform mass spectrum. It is shown that the actual mass spectrum possesses a 
part due to thermal agitation. An equation of states is derived. Other distributions are obtained 
(energy, 4-velocity). In the case of weak collisions, space-time correlations for the numerical and 
proper energy densities are derived and applied to the hadronic matter near the "hadronic boiling 
point." Finally, several extensions of these ideas are discussed. 

1. INTRODUCTION 

With the present article, we begin a series of papers 
devoted to the systematic study of the relativistic 
statistical mechanics of particles with variable masses. 
A few years ago such a subject could have been con­
sidered of mere academic interest. However, the 
situation has evolved mainly under the pressure of 
problems arising from astrophysics. 

Accordingly, let us briefly mention some of these 
problems. A first one occurs when dealing with 
statistical cosmology, 1-4 where the universe is con­
stituted of a gas whose particles are assumed to be of 
equal masses. These particles are generally considered 
as being galaxies and possibly clusters of galaxies. 
However, galaxies (and a fortiori clusters of galaxies) 
do not appear to possess identical masses. Therefore, 
a less crude approach to statistical cosmology should 
involve their mass distribution. A second problem where 
such an approach seems to be worth conSidering arises 
when treating in a statistical way clusters of galaxies 
themselves. Indeed a number of clusters (such as 
Coma or Virgo) contains large numbers of galaxies of 
unequal masses. At another scale star clusters could 
also be dealt with such an approach. Let us also men­
tion a general statistical approach involving implicitly 
mass distributions, by Saslaw. 5-7 In this theory exci­
tations of variable masses in a gravitational plasma are 
considered and discussed in connection with galaxy 
formation, etc. Other articles involving mass distri­
butions have been published either in the context of 
stellar dynamicsB or in cosmology .. 9 

However, the necessity of such statistical mechanics 
appear more clearly when considering the very attrac­
tive fireball model of multiple production of particles in 
high energy reactions, i. e., the statistical bootstrap 
initiated by Hagedorn10

-
12 (see also Frautschi's ver­

sion13
). In this theory a mass spectrum of the 

asymptotic form 

p(m) - c ma exp(bm) 

(where c, a, b are constants) is basic and leads to a 
good qualitative agreement with relevant experiments 
in high energy physics. 
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As a consequence, interesting applications of this 
theory have been considered14 ,15 in the context of the big 
bang cosmology. 

At this stage, and particularly when referring to star 
or galaxy clusters which do not exhibit a violent thermal 
agitation, the reader may wonder why should the theory 
be relativistic. The answer is both of theoretical and 
practical order. First it is clear that a relativistic 
treatment is needed for large masses or large veloci­
ties, and that such a relativistic treatment implies a 
Newtonian one. Second, in Newtonian physics, the mass 
is always decoupled from momentum or energy (i. e. , 
there exists a superselection rule which guaranties the 
conservation of mass16 while the situation is not so in 
relativity physics). This amounts to saying that an ex­
tension of Newtonian statistical mechanics to particles 
with a given mass spectrum does not present the same 
physical content as in relativity physics. 

In this paper, we are mainly interested in treating 
the simplest case, i. e., equilibrium, which is of im­
mediate importance in applications. A general relati­
vistic theory does not present any particular difficulty, 
at least at a theoretical level. 

In Sec. 2, the equilibrium distribution and the sub­
sequent equation of states are obtained. Section 3 is 
devoted to the study and discussion of the thermal mass 
spectrum. In Sec. 4, connected distributions (for energy 
and 4-velocities) are derived. Section 5 is concerned 
with space-time correlations. 

Conventions and notations 

Throughout this paper, the signature of the metric 
tensor g"v is + - - -. Greek indices run from 0 to 3 
while Latin indices run from 1 to 3. 

2. THE EQUILIBRIUM DISTRIBUTION 

Let us first derive the equilibrium distribution func­
tion of a relativistic gas of noninteracting17 particles 
endowed with unprecisely defined masses (or, equi­
valently, with a mass spectrum), i. e., such that 

(2.1) 

Copyright © 1974 American Institute of Physics 1310 
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The distribution function N(x\ p~) we are looking for 
is normalized through 

fN(xA, p~)(p'" 1m) d4 P =j'"(x~), (2.2) 

where the integral extends to the domain defined by 
Eq. (2.1). In Eq. (2.2), m must be considered as a 
mere notation standing for (p~p~)1 /2. It has, however, 
the physical meaning of a mass, and the normalization 
integral (2.2) will appear below to have the sense of the 
average over a mass spectrum of the current of parti­
cles of mass m. j'"(x~) is the 4-current of the gas, 

(2.3) 

where n(x~) is the invariant numerical world density of 
the gas, and it '"(x~) is its average local 4-velocity. 

Since the mass m is no longer a disposable param­
eter but rather a function of the p~' s, the normalization 
equation (2.2) has now to be justified. Let us start with 
the microscopic Feynman's current for n identical 
particles. Successively one gets 

:: l: roo dT o(x~ _ x~( T» Pj( T) 
1=1 .. 00 I m

i 

= ~ f dT d~ o(~ - x~( T»O(P~ - P~( T» P'". (2.4) 
1=1 m 

The distribution function N(x\ P~) is defined as the 
average value over the possible motions of the 
quantitylB.19 

from which [and from Eq. (2.4)] the normalization (2.2) 
follows. It should also be noticed that the variation of 
mass (and hence of the mass spectrum) is entirely due 
to dynamiCS through the terms P~(T). 

Let us now adopt another point of view. For like 
particles of fixed mass m, the normalization condition 
reads20 

j'"(x~)= [ ~P P'" Nm(x\P~) 
Hm 0 

(with Hm defined by P'" P," =m2) or 

j'"(x~) = ( m ~P P'" N m(x\ P~). J
Hm 

0 m 

Suppose now that we are given a mixture of particles 
endowed with different masses mj and that those parti­
cles of mass m, have the weight w(m j ); or, in other 
words, there exists a true mass spectrum. Then, 
instead of the preceding equation, we should have 

j'"(~)=6 w(m j )l m, ~P !'" Nmj(x~,pA), 
j H 0 j 

m
J 

and going to a continuous mass distribution 

j'"(x~)= [<0 dm w(m)i m ¥ ~ Nm(x\p~), 
o Hm 0 
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which is easily seen to be rewritten as 

:: LI>~"o d~ N(x~, p~) ~ QED (2.2') 

Once again-in a different physical context-the nor­
malization equation (2.2) has been recovered. 

With the normalization (2.4), the momentum-energy 
tensor reads 

(2.5) 

Of course, j'" and T'"v must satisfy the conservation 
equations21 

a,"j'" =0, a T'"v=o 
'" 

The 4-entropy density18.20 is given by 

(2.6) 

S'"(~) = - f ~ N(x\ P~) In[N(x\ P~)] d4 p (2.7) 

and should verify 

(2.8) 

at equilibrium. In Eq. (2.7) we have dropped an unes­
sential multiplicative constant. The Simplest way to 
interpret Eq. (2.7) is to consider S'"(x~) as the 4-entro­
py density in the sense of information22

•
23 theory. How­

ever, if we go back to the Newtonian case, it is easily 
seen that a definition such as (2.7) amounts to adding to 
the usual Boltzmann entropy of kinetic theory a contri­
bution due to the mass denSity. In the relativistic case 
the situation is not that simple so that it is preferable 
either to take (2.7) as a generalization of the usual 
entropy or to interpret it within the context of informa­
tion theory. 

Let us now deriYe the equilibrium distribution func­
tion. We follow the usual maximization procedure which 
in local form writes 

(2.9) 

with account of the constraints (2.2) and (2. 5). By 
introducing therefore five Lagrangian multipliers c and 
~v, the following variation equation, 

OS'"(x~) + c oj"(x~) + ~v T'"V(x~) = 0, (2. 10) 

is obtained. Equivalently, it may be written as 

( d4 p P'" oN(x\ pA){ln[N(x\ p~)] + 1 + c + ~IPV}= 0, Ji," pIA .. 0 m 
pO .. o 

from which we immediately get 

N(x\ p~) =A exp(- i:"V), 

(2.11) 

(2.12) 

with InA::- 1- c. This form for the equilibrium distri­
bution function is quite similar to the Juttner-Synge20 

one. This is by no means surprising since (i) the basic 
phYSical contents are alike and (ii) their derivation is 
formally analogous. The main difference comes from 
the domain where the integrals are evaluated: 
{P'"P,";" 0, pO ;"O} in our case and {P'"P," =m 2

, pO> O} in 
the Juttner-Synge case. 
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Let us now calculate the Lagrange multiplier A. From 
dimensional arguments it is immediately seen that 
Acx:n~4 (with e= ~x~J. Finally, using the fact that the 
only 4-vector at our disposal is ~" and Eq. (2.3), we 
obtain 

A =n(xX)~4/41TX 

with24 

(2. 13) 

(2.14) 

where the XX dependance of ~ has been made explicit in 
the last equation. In Eq. (2.13), X is the following con­
stant: 

(2.15) 

where K 2 (x) is a modified Bessel function25 of order 2. 

As to the remaining Lagrange multiplier ~, it can be 
identified with the reciprocal temperature 

~ = (kT)-1 (k: Boltzmann const) (2. 16) 

as in the Jiittner-Synge case. However, this last point 
has to be discussed a little bit further. It has indeed 
been shown that this identification is (in the JUttner­
Synge case) not the only possible one. 26 This is due to 
the fact that the relativistic perfect gas law may be 
written either as p = nkT or as p = pkT'. Synge makes 
the first choice and, accordingly, the identification 
(2.16) follows. However, the second choice (p=mass 
density) leads to another expression. 26 Here, the 
identification (2. 16) has been effected (i) for the sake of 
comparison with the Jiittner-Synge case and (ii) be­
cause, as we show below, we have not a perfect gas law 
in p as in n. 

Equation of states 

In order to find out the equation of states obeyed by 
this particular gas, let us calculate its momentum­
energy tensor (2.5). This tensor has necessarily the 
form 

(2. 17) 

where p(XX) is the invariant mass density of the gas and 
P(xA) its pressure. A"V(UA) is the local projector on the 
space like 3- surface orthogonal to ii": 

From Eq. (2.17) we get 

p=T"Yu"uy , p=~p-T",,). 

It follows that 

which is easily calculated in a comoving frame 
(UO= 1, ul=O): 

p=4n/~. 

(2.18) 

(2.19) 

(2. 20) 

(2.21) 

It remains to calculate the trace T"" of the momen­
tum-energy tensor. However, instead of using the 
second Eq. (2.19) to get the pressure, it is sufficient 
to notice that the usual momentum energy tensor (for 
particles endowed with a mass m) is20 
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(2.22) 

and that T""(xX) can be obtained from T':"Y with an aver­
age over masses; i. e., through 

T" Y(XX) = (T':"Y(xA»mass 

And since 

(l>m,",s = 1, 

it follows that pressure is simply 

(2.23) 

(2.24) 

(2.25) 

i. e., is the mass average of the coeffiCient of g"Y. Of 
course, we have antiCipated a little bit on the next 
section; however, we see that the precise form of ( >mass 
has no importance at this stage. From Eqs. (2.21) and 
(2.24) we finally obtain 

P=tP, (2.26) 

which may be considered as the equation of states of 
this gas. It should be emphasized, however, that the 
"good" one does depend on its future use. Both Eqs. 
(2. 25) and (2.26) are equations of states, but they should 
not be employed without any precaution. For instance, 
if we had to introduce such an equation of states in 
cosmological equations, we should use Eq. (2.26) and 
not Eq. (2.25). In a sense, one could say that Eq. (2.25) 
reflects the fact that we deal with noninteracting parti­
cles, while Eq. (2.26) reflects the energy content of 
the model. 

Remark 

At first sight, it could be surprising not to find, as 
particular solutions of our variational problem (2.11), 
the usual Jiittner-Synge distribution for given masses; 
i. e., solutions of the form 

N( A A) ~ ni~ ( t - X) 
X,p =bt 41Tm~K2(mj~) exp-C,m;uxp (2.27) 

x o (pApX - m~) 28(pO)m j • 

In fact, solutions of this form are, of course, ad­
missible, but they cannot be contained in the above 
derivation since our definition of the 4-entropy density 
implied the use of continuous distributions and not of the 
singular type (2.27). To obtain a general solution, we 
should use the following expression for the 4-entropy 
density; 

(2.28) 

-i J.... r Nj(x\PX)ln[Nj(x\PX)]p,,~, 
.=1 mj Jp"P" =ml p 

po>o 

and the usual constraints provided by the numerical 4-
current and the momentum-energy tensor. 

3. MASS DENSITY 

Let us denote by N m(x\ pX) the usual JUttner-Synge 
distribution20 

Nm(x\pX)=[nU41Tm2K2(m~)]exp(- ~uxpX) (3.1) 

This distribution being normalized on the mass shell 
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{p~p~ = m 2, pO> o} appears in this context as being a 
conditional distribution. As a consequence, it is re­
lated to the equilibrium distribution (2. 12) through 

(3.2) 

where 1)(m) is the mass density we are looking for. Now 
from Eq. (2.12) and (3.1) we get 

1)(m)=(2~3/31T)m2K2(m~), (3.3) 

which is normalized as 

{' 1)(m)dm=1. 
o 

For m -0, 1)(m) reduces to 

1)(m) - U31T 

and for m - 00 to 

1)(m) -( U3) v' (2/1T)(m ~)3/2 exp( - m~). 

The first two moments are given by 

(m)=(2/31T)~-1, (m2)=5~-2, 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

from which follows that 15m - 5 kT, where 15m is the mass 
dispersion. 

More generally, 

(m I) = ;1T re ~ 5) . r e ~ 1 ) 21+1 ~-l. (3.8) 

Remarks and discussion 

(1) The above mass density may be derived with 
several other methods. Among them, the following is 
useful and sheds some light on what is really done. 

Let us calculate the local average value of an arbi­
trary function cJ>(m) submitted to the only constraints 
that (i) it does not grow faster than an exponential at 
infinity and (ii) it is locally integrable. We have18 ,27 

(cJ>(m» = .!. u,,! d,JJN(x\p~) P" cJ>(m) 
n m 

(3,9) 

A ('" m 3cJ>(m) 41TK2(m~) dm 
n )0 m~ 

(3.10) 

'" rcJ>(m)1)(m)dm. 
o 

QED 

(2) The existence of such a mass spectrum might ap­
pear extremely surprising since we have not made any 
assumption involving mass, except, of course, the 
possibility of the existence of a mass spectrum. 

In fact, we have made the implicit assumption that 
masses could take any values uniformly in the range 
(0, 00). Let us specify this point more precisely by 
saying that 1)(m) depends only on the thermal state of 
the gas since it depends on the reciprocal temperature 
~. 1)(m) should therefore be considered, not as a true 
mass spectrum, but rather as a systematic contri­
bution of thermal agitation to the mass. Consequently, 

DEF 
dF,(m) '" T/(m) dm (3.11) 

must be considered as a weight factor with respect to 
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which we have to integrate quantities like cJ>(m) a(m), 
where a(m) is the true spectrum. In the case considered 
above, a(m) '" 1, i. e., any positive mass is uniformly 
allowed. 

(3) The preceding argument can be supported by a 
more serious analysis of the derivation of the distri­
bution function (2.12). We have indeed maximized the 
entropy of the distribution N(x\ p~). However, what 
would have occured if we had maximized only the con­
ditional entropy (m being fixed)? A simple calculation 
shows that we would have obtained the JUttner-Synge 
distribution for N m' leaving the mass density com­
pletely undetermined as expected. Let us pursue this 
brief analysis by looking at the entropy of the distri­
bution written under the form (3.12). We get 

S"=-!T/(m)Nm(x\P~)ln[1)(m)Nm(x\P~)];: d,JJ 

(3.12) 

for the entropy 4-density. This last equation can be re­
written as 

(3.13) 

where the angle brackets denote an average over m and 
where S{1)(m)} stands for the entropy of the mass den­
sity 1)(m). From Eq. (3.13) it is clear that the maxi­
mization of S" [with due account of the constraints (2.2) 
and (2.5)] yields the JUttner-Synge distribution. 

Let us now maximize the total entropy density (3.13) 
with respect to the variations of 1)(m) only and let us 
also take the constraints (2.2) into account. We obtain 
the following equation: 

(3. 14) 

where the brackets denote an average over mass and 
where the index m indicates a quantity in which the 
mass is fixed. 28 Equation (3. 14) immediately provides 

(3.15) 

In Eq. (3.15) the quantities S~ and T::'v are completely 
arbitrary. Therefore, T/(m) is itself completely arbi­
trary, which result is not surprising since no specific 
assumption has been effected for 1)(m)! However, this 
arbitrariness shows that the mass dependance of T/(m) 
depends entirely on what is assumed as to the thermal 
agitation of the gas through the terms S~ and T':,.v. If 
these last two quantities are specialized to the usual 
ideal20 relativistic gas, then, with a simple calculation, 
expression (3. 3) is recovered. 

Accordingly, the mass density (3.3) must not be con­
sidered as a mass spectrum (either to be given or to be 
found from additional assumptions) but rather as a 
weight factor due to thermal agitation. 

(4) Suppose we impose some conditions on 1)(m), for 
instance, that 

(m) = mo (mo: given constant). 

Then instead of Eq. (3.15) we should find 

1)(m) =exp( - c - am - il" S~ - ~T~Vil"ilv) 

and, instead of Eq. (3.3), 

(30 16) 

(3. 17) 
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7)(m)dm =D exp(- OIm) dF/(m), (3.18) 

where D is a normalization factor and 01, the Lagrange 
multiplier associated with condition (3. 16). Note that, 
because of the asymptotic form (3.6), 01 can be positive 
or negative. 

In this context, Hagdorn's mass spectrum (1. 1) can be 
found anew by imposing a condition of the form 

(m - a In m) = const, (3. 19) 

whose physical meaning is not yet clear in this context. 

Another case of interest, since it occurs frequently, 
is the case when m is bounded from above or/and has a 
minimum value. Then it is easily found that 

7)(m)dm =E 8(m - mmin) 8(mmax -m) dF/(m) 

(E : normalization constant) 

where 8 is the Heaviside step function. 

(3.20) 

(5) What about the nonrelativistic case? With similar 
methods, the distribution function is found to be infinite, 
because of the lack of convergence in m. More 
speCifically 

7)(m) -m 3 / 2 • (3.21) 

This circumstance is due to the absence of link be­
tween mass and energy. It is therefore incorrect to say 
that Eq. (3. 6) constitutes the nonrelativistic limit of the 
relativistic mass density, even though the Maxwell­
Boltzmann distribution can be obtained from JUttner and 
Synge's by using the low temperature limit. 29 Compari­
son of Eq. (3.21) with Eq. (3.6) shows that they differ 
by the exponential factor exp( - m ~), which is a typically 
relativistic term. 

(6) It should be emphasized that, in this model, the 
particles constituting the gas can actually modify their 
masses through interactions or any other processes. An 
example of such a situation is provided by Hagedorn's 
fireballs. 

With this remark in mind, it is quite natural that our 
equilibrium distribution gives rise to an uniform true 
spectrum30 in the simplest case where no extra as­
sumption is made. Only with the introduction of basic 
dynamical processes, as to the mass loss (or gain), or 
with empirical or theoretical facts the "true" P eq( m) 
can be obtained. 

When such an extra function is given [as, for instance, 
Eq. (1. 1) in the statistical bootstrap], the equilibrium 
distribution function is simply written as 

(3.22) 

where A is a new normalization constant and Peq a given 
function. 

(7) A remark similar to that effected at the end of the 
last section can be made-our procedure cannot contain 
Singular distributions and, consequently, we have to 
impose them. Finally, the most general thermal 
spectrum has the form 
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with .. 
L;q;=I, qj?O,O.:sy.:s1. 
i=l 

4. CONNECTED DISTRIBUTIONS 

In this section, we derive (1) the 4-velocity distri­
bution and (2) the energy distribution. 

4-velocity distribution 

It is immediately obtained by taking the average over 
mass of the JUttner-Synge distribution written in 4-
velocity space, 

( A) ( nm~ A-)) q, u = 47TK
2
(mO exp(-m~u uA (4.1) 

n(xA) 1 
= --:;rr' (it- U

A
)4 • (4.2) 

Had we used a true spectrum uniform inside two 
values mmin and mmax' we would have found (I am in­
debted to the referee for pointing out an error in the 
calculation) 

q,(uA) = (~~XA))4 x (normalization const) 
u u A 

x [exp( - mmln ~ iiA uA
). P(mmln ~ iP'uA) 

- exp( - mmax ~ iiA uA
). P(mmax ~ uA uA)], (4.3) 

where P(x)=x3 /3! +x2 /2! +x+ 1. Such a minimum mass 
appears while dealing with galaxies (m -1044 g) or in 
Hagedorn's fireballs, where it is considered to be the 7T 

meson mass. 

In connection with these 4-velocity distributions it 
might be interesting to find out the mass spectrum which 
could give rise to the cosmic rays distribution, 

(4.4) 

where 01 - 2. 5, i. e., we look for a a(m) such that 

(4.5) 

It is easily seen that a(m) -m y
-

4 and that it should be 
limited from below (m ? mmin > 0). Naturally, this mass 
spectrum should not be taken too seriously and is, 
presently, a mere curiosity. 

Energy distribution 

Let us derive the distribution of the energy27 E = P'" ii". 
We have 

l/J(E) = (15(E - P'" ii,,), 

where the brackets now denote an average over the 
p", s, XA being fixed. Thus, 

l/J(E) = (A/n) f d~ 15(E - P" ii,,) exp(- ~P'" U,) 
PJ.J.P/.L>o 

pO .. o 

P" -X-u 
m '" 

(4.6) 

(4.7) 
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(4.8) 

5. SPACE-TIME CORRELATIONS 

Space-time correlations are of great interest in 
astrophysical applications, especially particle density 
correlations and mass density correlations. Naturally, 
applications require a more sophisticated true spectrum 
than the one used below. Here we derive what could be 
called "thermal correlations". 

Particles density correlations 

In Appendix A we derived the expression for such 
correlations (Eq. (All)) in the case of particles with 
definite mass m. To obtain the particle density space­
time correlations, we just have to take the average 
value of Eq. (All) over the thermal mass spectrum. 
Therefore, we get 

(0 j"(xA) 0 r(x'~);: (0 j"'"(X~) 

(with X~ = x~ - X' A) 

XUX"fC m ~ n - m ~UAX~ =-:rs dF/(m) 41TK2(m~) exp T 
o 

n X"'X" 
= 1T2 T(u~ XA)4 ' 

(5. 1) 

(5.2) 

(5.3) 

where T2 ;:X~X~. The space-time correlations for the 
invariant world density n are obtained by contracting 
the indices J.1. and v, and hence 

( ( ~) (/~) 4n «XA_x'A)(XA - X;))l/2 (5.4) o n x . 0 n x = 2 (~)4 
1T u~x 

They vanish on the light cone and decrease as - ["4. 

It should be noticed that, instead of Eq. (5.3), we 
would have obtained a temperature-dependant relation 
if we had used a spectrum with a nonvanishing mini­
mum mass. 

Mass density correlations 

These correlations are easily obtained from the 
expression of 

by multiplication by u,..uvu,.., uv'. The evaluation of Eq. 
(5.5) does not present any particular difficulty and 
follows exactly the one given in Appendix A for oj'-'". 
The only changes required are the introduction of a 
factor m u,..' u"' in equations such as (A2). Finally, we 
get 

(5.6) 

from which we have 

(5.7) 
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Consequently, the mass density correlation is 

4n 1 1 
(op(x~) Iip(X/~) = ~1T2 iI~X~ (X~X~) (5.8) 

It follows that (i) mass denSity correlations decrease 
more slowly in time than particle density correlations, 
(ii) unlike particle density correlations, mass density 
correlations do not vanish when XA and X'A are separated 
by a null 4-distance but rather tend to increase inde­
finitely. The latter circumstance is due to the absence 
of a minimum mass. If we had taken a uniform spec­
trum begining at mmln' a multiplying factor of the form 

exp[- mmtn ~ u~X~/(XAXA)l/2] (5.9) 

would have prevented such infinite correlations, making 
them going to zero when X~X~ - O. 

Note also that Eq. (5.8) can be rewritten as 

A P 1 1 
(op(x~). op(x' ) = 2" - XA • XAX ' 

1T U.. A 
(5. 10) 

where use has been made of Eq. (2.21). 

Space-time correlations for thehadronic fireball 10-1 3 

The hadronic fireball is characterized by the mass 
spectrum (1. 1) with a = - 3 and b -m;\ where mr is the 
1T meson mass. Moreover, this spectrum is limited 
from below by mr: 

p( m) = c m -3 exp( bm). (5.11) 

Strictly speaking, Eq. (5.11) is only the asymptotic 
form of the actual spectrum. It is, however, used in 
most calculations since the low energy part is difficult 
to obtain. 

In order to calculate the space-time correlations of 
the hadronic fireball, the 4-velocity distribution has to 
be derived. This distribution is given by Eq. (4.1) with 
another meaning for the average (), since we now have 
a "true" mass spectrum p(m). This average is given by 

(5.12) 

where H is a normalization constant, i. e., such that 
( 1) = 1. Note that, due to the asymptotic expression 
(3.6) for the thermal mass spectrum, ~ is always 
greater than b and hence b- l is a limiting temperaturelO 

(i. e., the "hadronic boiling pOint"lO.31). 

The 4-velocity distribution is now easily computed 
and turns out to be 

cf>haiu"') = (Hn~4/61T2) exp[ - m.( ~U~UA - b)] (~UAUA - btl. 

(5.13) 

Despite the denominator (~UAUA - b), this distribution 
is never singular provided ~ > b. 

Using now Eq. (A10) with N(uA
) given by Eq. (5.13), 

we find that 

(5.14) 

This formula exhibits interesting properties. One can 
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see that for x = 0, when ~ - b, the density fluctuations 
(and correlations) tend to infinity. This is due to the 
fact that, at ~ = b, the hadronic fireball undergoes a 
phase transition. This property shows, as remarked by 
. Carlitz31 in another context, that a thermodynamical 
model is no longer valid for a description of hadronic 
matter. Note also that, on the light cone, oj"v=D. 

For the mass density space-time correlations, the 
same techniques yield 

(T"V(.0) T'" v' (X'X»:= oT" v,,' v' (XX) 

Hn~4 X"XVX" 'Xv , 
= 67T2 ' T4 

x[( ~iixx~- bTt3 

Xexp[ - m.Tl( ~uxX~ - bTl] 

x [( ~ii X~ - bT)2 m~ 

+ 2( ~iiAXA - bT)m. + 2]. 

Contracting oT"v,,'v' with u"uji",uv" we get 

~ Hn~4 - c 
(op(x )op(x' x» = ""67T2( ~U~XA - bT)-3 (X U~)4 

x exp[ - mluAX~ - bT)T-1
] 

X [( ~iiAXX - bT)2m~. 2( ~iiAXA - bT)m. + 2], 

(5.15) 

(5.16) 

which exhibits the same qualitative features (discussed 
above) as 

A ~ Hn~4 1 1 
(on(x ). on(x' » = 67T2 x T2 X ~U~XA _ bT 

x exp[ - m.T-l( ~UAX~ - bTl] 

x [( ~UAXA - bT)2m; + 2( ~UAXA - bT)m. + 2] (5. 17) 

obtained from Eq. (5.14) by contracting the indices J1. 
and II. The only qualitative difference between mass 
density and numerical density correlations (or 
fluctuations) is that the former begins much before the 
latter when ~ - b. 

Expression of this kind will be proved useful in big 
bang models or in hadron stars. However, we must 
bear in mind that Eqs. (5. 14)-( 5.17) are only approxi­
mate since (i) the number of particles has been im­
plicitly considered as fixed and (ii) we have used 
Maxwell-Boltzmann statistics instead of the correct 
quantal ones. 32 We shall see32 that the difference may 
be important. 

6. DISCUSSION AND CONCLUSION 

In this paper, we have given the most simple proper­
ties of relativistic gases at equilibrium (and possibly 
at local equilibrium) when their particles may exchange 
mass. This was essentially possible for, at equilibrium, 
we did not need any detailed dynamical mechanism for 
such exchanges. It is clear, however, that dynamics is 
(at least partially)lO contained in the "true" mass spec­
trum has to be determined elsewhere: either experi­
mentally or theoretically as in the statistical bootstrap 
models for hadronic matter. 

It is also clear that the extremely simple properties 
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derived here cannot be applied bluntly to physical 
situations. Some less trivial generalizations are re­
quired. Among them let us mention (1) microcanonical, 
canonical and grand canonical ensembles, (2) presence 
of an external force field, (3) gravitation, (4) quantum 
statistics, and (5) nonequilibrium phenomena. 

Let us briefly review these various points. 

(1) The microcanonical ensemble is easily written18 

in the absence of mass spectrum and next integrated 
over a given p(m). From this microcanonical ensemble 
the canonical ensemble is derived, by using the method 
of structure functions. Although be it rather lengthy, 
this does not present any particular difficulty. 33,34 

However, the most interesting generalization is the 
grand canonical ensemble since particles can also be 
exchanged. Here again things are Simple (see Appendix 
B). 

(2) The usual relativistic gas in an external force 
field has already been treated elsewhere35 and the 
generalization is obvious. However, in the context of an 
eventual application to the primordial fireball (with 
10-23 s ~ t~ 1s), the classical external mesic-field 
deserves a particular consideration. First, this field 
contributes to the mass, adding a term in Xq, (X : coup­
ling constant; q,: mesic field). Second, such a classical 
field can be used to describe the interactions of a field 
containing a large number of 7T mesons. Third, in a 
modeP5 based on the statistical bootstrap, very heavy 
fireballs (which ultimately will turn out to be pro­
togalaxies) are produced (matter acquires a "grainy 
structure") in a sea of light particles, most of which 
are 7T mesons. Fourth, the relativistic scalar plasma 
(and at this stage of the evolution of universe, matter 
could be described as such, with suitable modifications) 
has been studied and presents particular instabilities36 ,37 

which could be interesting in this context. 

(3) As to the extension of the previous results to in­
clude gravitation, most results of Secs. 2, 3,4 are still 
valid, though some care is needed in handling indices, 
integration, etc. For instance, instead of Eq. (2. 5), 
we would write 

pO .. O 
(6.1) 

It is also clear that the normalization constant A will 
not change since locally Minkowskian coordinates can 
always be used to evaluate this invariant quantity. In 
the same way, the thermal mass spectrum will not 
change since the general relativistic Jiittner-Synge 
distribution38 preserves its special relativistic form. 39 

However, the main difference is that the distribution 
function has to satisfy a less trivial Liouville equation 
than the special relativistic one. Instead of 

pI' o"N=O, 

it should satisfy 

LN=p" 0 N _ r" p"'pa _0_ N=D 
" ",a oP" ' 

(6.2) 

(6.3) 

where the r~a' s are the well-known Christoffel symbols 
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of second kind. This equation demands the same con­
straints on ~ '" as in the case considered by Chernikov38; 
i. e. , 

(6.4) 

and the only difference comes from the normalization 
constant which leads to a" A = 0, or 

n ~4= const. (6.5) 

Had we also considered a "true" mass spectrum p(m) 
in front of N [i. e., as in Eq. (3.23)], we would have 
obtained the same results essentially because of the 
fact that the quantity m =. [g ,""(x~)p"p"]l /2 is a constant of 
motion. Accordingly, p(m) is also a constant of motion 
and therefore is a solution of Eq. (6.3). Finally, since 
Eq. (6.3) is linear the function p(m)XN(x\p~) is such 
that 

L[p(m)· N(x\P~)] 

=L p(m)· N(x\p~) + p(m)LN(x\p~) 

=0 

provided L N = O. 

The only nontrivial generalization is that for the 
space-time correlations. This requires (i) the com­
plete solution of the geodeSic equations and (ii) extreme­
ly involved calculations. Fortunately, these calculations 
can be performed in the case of a big bang cosmology 
when correlation lengths are small compared with the 
radius of the universe. In such a case, the spatial 
curvature may be considered to be zero and the calcu­
lations (i) and (ii) can be performed. 

Let us also note that the equilibrium distribution 
(2.12) is not a solution of Eq. (6.3) for an expanding 
homogeneous isotropic universe (except perhaps during 
an extremely short duration) since Eq. (6.4) is not 
satisfied. It can however be taken as an initial distri­
bution whose evolution is governed by Eq. (6.3).40 

Finally, it should be mentioned that the inclusion of 
gravitation in the theory is interesting not only in view 
of applications to astrophysics but also to elementary 
particle physics. Indeed, if Hagedorn-Frautschi 
statistical bootstrap has to be taken seriously, this 
theory will provides clues and suggestions as to possible 
tests for equality of gravitational and inertial masses 
etc. ; of course, the latter assertion is true only if one 
thinks that general relativity is valid not only on a 
macroscopic scale but also at a microscopic level. 
These aspects are presently under current investigation. 

(4) The quantum case is treated in a separate 
article32 and does not present particular difficulties. 
Although we could start maximizing the expression for 
the entropy written as a functional of (ns> (n&: number of 
particles in the state S)41 it is preferable to start direct­
ly from the denSity matrix. As an example, the thermal 
mass spectrum is found to be 

(6.6) 

where the upper sign stands for fermions and the lower 
one for bosons (z is linked to n± and ~ through the 
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normalization condition). In the case where the "true" 
mass spectrum is uniform, there exists a Bose­
Einstein condensation on the state P'" = O. When there 
exists a minimum mass, this condensation is on the 
state P'" = (mmln' 0), where mmln is the smallest mass 
compatible with the quantum numbers of the gas. This 
condensation might have interesting properties in big 
bang models. 32 It is also found that Fermi degeneracy 
presents peculiarities which might be used in the study 
of hadron stars. 

APPENDIX A 

In this appendix, we derive the expression of the cor­
relation tensor (6j~(x~) . 6j~(x' ~» for a relativistic 
perfect gas. Let us write 

(A1) 

j~(x~) is the random numerical 4-current18 of the parti­
cles of the gas42 : 

(A2) 

(assuming weak collisions), 

where T j is the proper time of the i-th particle while uf 
is its 4-velocity. Here r;=x~xH' since the particles 
are not interacting. For the same reason particles 
move along straight lines between collisions. 

Let us also recall that the average value of a given 
physical quantity A': is given by18.20 

(A")= 11 
c uuuIJ. =1 

(A3) 

,jJ>0 

(L: spacelilce surface) 

and hence, as an example, we have18 

(j~(~) = j'"(x~). 

In Eq. (A1), we defined 

6j'"(x~) =. j~(~) - j'"(x~). 

Now, Eq. (A1) may be written as 

6j,""(x\x'~)=~f dTdT' ~ u"'dL",(X j ) 

1 0 

x u'tu~ N(x~, un x 6(x~ - x~ - u~ T) 

(A4) 

(A5) 

X6(x'~-~-u~T'), (A6) 

where dL",(x j ) is the 3-surface element relative to the 
ith variables. By using the properties of the Dirac 
distribution, Eq. (A6) reads 

6j '""=6jdTdT' ~ uti< dL (x.)u~u~ N(u~) i U
o 

IX t , J. , 

x6(xP 
- x~ -U~(T- T')) 

x o(x'~ - Xi~- u~ T'). 

The last 6 term of this last expression is 

o(t' - tj - u~ T')' o(x' - Xj - UjT). 

(A7) 

(A8) 
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The T' integration yields 

6(x' - Xi - u i (U
Otl(tj - t' »UO-1, (A9) 

which is next eliminated with the Xi integration [i. e. , 
with u'" d~",(XI)]' Finally, it remains that 

oj"V(x~)= f dT r N(u~)u"uV o(X~-uAT) ~, 
lu"",, =1 uo 

(AID) 

where XA=XA_x'A and T2=XAX A. The integrations oc­
curing in Eq. (AlO) are easily performed, and we find 

(All) 

This expression agrees with the one already given by 
Sytenko43 (in a non covariant form) for the density cor­
relation function. 

APPENDIX B 

In this appendix, starting from the microcanonical 
ensemble, we give a derivation of the distribution func­
tion (3.22) 

(B1) 

The expression for the relativistic form of the 
microcanonical distribution for N free particles has 
been given elsewhere18 and is easily generalized so as 
to take account of p(m): 

(B2) 

where e is the Heaviside step function and where the 
normalization constant depends (i) on the number of 
particles N, (ii) on the total momentum energy P" of 
the gas, and (iii) on the spatial volume occupied. Note 
that N::;~r is normalized throughlB 

f N~~r(P", {pm :~~ dJJi~ 
.•• (N)2N P"lp"2." P"N 

=J"l"';. UN = - N' 
V M 

(B3) 

since P" is the only disposable 4-vector included in 
N~~r' In the preceding equation we have set pAPA =~. 

Instead of using N~~r (P" , {Pi}) we shall rather use the 
conditional distribution18 (xA being fixed). 

N~~r(xA Ipu, {pr})=N~~r(PU, {pn) 
ioN pup. 

XII ~. 
1=1 Mmj 

(B4) 

The reason why we use this conditional distribution 
is the following. It is a true probability density in 
momentum space, while this is not the case for Eq. 
(B2) due to the normalization condition (B3). 

It follows that the one-particle distribution function is 
given by 

N 

N(xA IpA) = J If dJJi' o(P~ - P~)N~~(XA I P", Ipn) (B5) , 
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where we have made clear in the notation for N(XA Ip~) 
the one-particle distribution that we calculate a con­
ditional (xA being fixed; one could also say, a local .. • ) 
distribution, A Simple calculation provides 

(B6) 

where 
ioN 

O~M) = J o(P" -7:r' pf} (B7) 

i=N P"p 
X I~l p(ml)2mie(p~)o(PU>H-m~) Mr::

j

l 
dJJj 

An expression similar to 0N(M) has been evaluated by 
Lurc;at and Mazur33 using the central limit theorem. 44 

Their QN(M) differs from ours by the absence of the 
term 

In the limit N» 1, they found 

o ~M) = q; ~m exp(!3M) 

(B8) 

where ;;;~m is the generating function44 and where !3 may 
be identified44 with (kT)-l. In our case 0N(M)" is given by 
a similar formula except that the generating function is 
different. 

In our case, it turns out that the generating function 
is 

DEF 

cp~a) = J 0N(M)exp(- a U P")d4P (B9) 

--- __ + __ Xa N 
( 

1 ) N ( il
2 

3 il) N 
- 'M m il a 2 a il a [()], (BID) 

where 

4 foo X(a) = arT dm p(m)m2 K 1(ma). 
o 

(Bll) 

(with a2=aUa,,). 

However, the important thing for the derivation of 
Eq. (B1) is the form of O~M) and, more particularly, 
the fact that 

O~M) - exp(!3M). (B12) 

Inserting Eq. (B12) in Eq. (B6), we find 

N(XA IpA) =L(J3, M) exp[ -,BM + (M2 + m2 _ 2PUpu)1 /2] 

Xp(m)xPUp,,(Mm)-l (B13) 

- L(,B, M)p(m) pUPu (Mmtl exp( - ,BpuM-lP,,) 

since for N»l, M»m. 

(B14) 

This is almost Eq. (B1) except that the constant 
factor L(,B, M) has to be determined. In fact, for the 
sake of brevity, it can be determined by the normaliza­
tion condition although it is actually furnished by the 
limit form of O~M). 
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Equation (B14) allows the identification of fjP"M-1 

with ~"= ~u-u. Next, after multiplying Eqs. (B13), 
(B14) by the invariant numerical density n(x~) the final 
form (B1) is recovered. 

In fact, the precise form (B1) could have been re­
covered rigorously from the generating function al­
though the calculations are rather lengthy. 

APPENDIX C: PROOF OF Ea. (2,15) 

Since a number of calculations occuring in this paper 
are typically those leading to Eq. (2.15), this equation 
is proved here. First we start from the normalization 
equation (2.2) which we write as 

f oomdml ¥ ~ N(X\pA)=J"(~). (C1) 
° P~Px =m

2 ° 

Using the fact that J"(xA
) is necessarily proportional to 

~" and a Lorentzian frame where ~u reduces to 
(1,0,0,0) a straightforward calculation leads to 

(C2) 

(C3) 

(C4) 

where the passage from Eq. (C3) to Eq. (C4) may be 
found in Ref. 18 (Eq. (108). Equivalently Eq. (C4) is 
rewritten as 

(C5) 

== foo dx x2 K 2(x) (with x=m~), 
o 

(C6) 

where use has been made of those recursion relations 
for the K;s given in Ref. 18. Now using Cartesian co­
ordinates, the normalization equation (2.2) leads im­
mediately to 

4/
00 of 00 p2pO X = ~ dP dp (p

0
2 _ p2)1/2 exp( _ ~pO), 

° ° 
(C7) 

which reduces to 

x= ~4 1000 

dpO(pO)3 exp(- ~pO) .r:12 
sin2ede (C8) 

with the change of variable p = pO sine. Finally we ob­
tain Eq. (2.15), 

x= 37T/2. (2.15) 

In concluSion, we have evaluated the same quantity in 
two different systems of coordinates in Minkowski 
space: Cartesian coordinates and relativistic polar 
coordinates. 
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We have described a new approach to the Clebsch-Gordan problem for the unitary representations 
of the three-dimensional Lorentz group. We relate the various types of Clebsch-Gordan series to 
problems in the representation theory of four-dimensional orthogonal and pseudo-orthogonal groups, 
and thereby achieve a new and better understanding of the structures of the series. At the same time, 
the Clebsch-Gordan coefficients in a continuous basis are calculated. In this, the first of four papers, 
the case D +@D + is worked out in detail. 

INTRODUCTION 

The problem of constructing the unitary irreducible 
representations (UIR's) of the three-dimensional 
Lorentz group 0(2, 1) was solved by Bargmann many 
years ago. 1 This work was partly motivated by the fact 
that knowledge of these UIR's was a necessary step in 
the construction of all the quantum mechanically ac­
ceptable unitary representations of the inhomogeneous 
Lorentz group.2 For this reason both single- and dou­
ble-valued representations of 0(2, 1), or in other words 
all the single-valued UIR's of the spinor group SU(1, 1), 
were constructed by Bargmann. Following this work, 
many authors considered the Clebsch-Gordan (CG) 
problem for this group. 3 This problem naturally splits 
into two parts. The first is the determination of the 
Clebsch-Gordan series, namely the determination of 
which UIR's are present in the decomposition of the 
direct product of two given UIR's, and each how often. 
The second is the evaluation of the Clebsch-Gordan co­
efficients which effect the decomposition of a direct 
product into irreducibles. 

The UIR's of the group SU(1, 1) can be naturally di­
vided into three classes: the discrete class, the con­
tinuous nonexceptional class, and the continuous excep­
tional class. We shall hereafter be concerned with the 
first two classes alone. The discrete class can be fur­
ther subdivided into UIR's of the positive type, and those 
of the negative type. Let us generically denote these two 
types of UIR's as D+ and D-, respectively; for the UIR's 
of the continuous type we shall write C. (Further dis­
tinguishing labels will be appended in due course. ) 
There is essentially just one nontrivial outer automor­
phism that can be defined for the group SU(1, 1), and it 
has the effect of converting a urn of type D+ into one of 
the type D- and vice versa, while it carries any UIR of 
type C into itself. Consequently, the only essentially 
distinct direct products to be considered are of the 
forms D+O<iD+, D+0D-, D+0 C, and C@C; D-0D- and 
D- 0 C are related to the first and third cases by the 
outer automorphism. The structure of the G-G series 
changes greatly as one goes from one of these four 
cases to another; but this structure has an intrinsic 
meaning in that it does not depend on the ways in which 
the various UIR's are realized. On the other hand, the 
C-G coefficients are always defined relative to a well­
defined way of realizing the UIR's; that is to say they 
depend on the way in which basis vectors have been 
chosen in the spaces of the various UIR's. 

In the three-dimensional Lie algebra of SU(1, 1), one 
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can distinguish three distinct types of elements, those 
of elliptic type, those of parabolic type, and those of 
hyperbolic type. The maximal compact subgroup of 
SU(1,1), [the 0(2) subgroup of 0(2, 1)], is generated by 
an element of elliptic type. In Bargmann's paper, the 
UIR's of SU(1, 1) were constructed in a basis in which 
the 0(2) generator is diagonal. In this basis, the break­
up of a UIR of SU(1, 1) into a discrete direct sum of one­
dimensional representations of 0(2) is immediate. Fur­
ther, the relationship of the representations of SU(1, 1) 
to those of the compact group SU(2), which is quite 
close, can be nicely displayed. In all the work done on 
the Clebsch-Gordan problem upto now, this same 
"0(2)-basis" has been used; so once again the expres­
sions for the SU(1, 1) C-G coefficients are intimately 
related to the SU(2) case, and may be thought of as 
suitable analytic continuations of the latter. 

An alternative basis in which to set up the UIR's of 
SU(1, 1) is that in which the hyperbolic generator of an 
0(1, 1) subgroup is diagonal. 4 We shall refer to such a 
basis as a continuous basis. This form for the represen­
tations has become quite important in recent analyses 
of generalized relativistic partial wave analysis. 5 The 
aim of the work to be described in the present series of 
papers was originally the determination of the C-G co­
efficients of SU(1, 1) in a continuous baSiS, for all pos­
sible direct products of UIR's not belonging to the con­
tinuous exceptional class. We have described elsewhere 
a construction of the urn's of SU(1, 1), in which the 
generators are built up in a simple manner using os~il­
lator operators, and in which a certain degree of um­
formity is achieved in the treatment of the discrete 
class urn's on the one hand, and the continuous class 
urn's, on the other. 6 In this construction a particular 
0(1, 1) generator has a specially Simple structure not 
shared by the other two linearly independent generators. 
Using this construction as the basis for the calculation 
of the C-G coefficients in a continuous basis, it soon 
became apparent that there was a higher symmetry in 
the problem. The structure of the C-G series in each 
of the four cases D+@D., D+0D-, D+0 C, C0 C gets 
related to a problem in the representation theory of a 
four-dimensional real rotation group, the particular 
group depending on the type of direct product involved. 
By fully exploiting this connection, one now unde~stands 
in a new light why the C-G series looks the way It does 
in each case; correspondingly, a certain amount of uni­
fication is achieved among results which might other­
wise appear disjointed. The higher symmetry of course 
also helps us in computing the C-G coefficients in each 
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case. But its greater value is in the explanation of the 
structures of the various C-G series; and these struc­
tures as we have already noted are intrinsic to the rep­
resentation theory of SU(1, 1). It is interesting to note 
that this higher symmetry is not at all apparent in all 
the work done on the C-G problem for SU(1, 1), in the 
"0(2)-basis"; it results directly from the specific way 
in which we have set up the UIR's of the group, and this 
is geared to the use of the continuous basis. 

It is worthwhile describing briefly at this point how 
the higher symmetry comes about. Recall that the dis­
crete class UIR's of SU(1, 1) can be labeled by an index 
k with possible values 1/2, 1, 3/2, ... ; for each value 
of k we have one UIR of positive type, D;, and one of 
negative type, D~. A UIR of continuous type is written 
C~ : E = 0 or 1/2 accordingly as the UIR is of either inte­
gral or half-integral type, and q ranges from 1/4 to 00.

7 

The value q=1/4 is excluded if E=1/2. The label q may 
be parametrized by q=1/4+s2 , with O~s<oo if E=O 
and 0 < S < 00 if E= 1/2. In terms of oscillator operators, 
it is possible to set up three somewhat special unitary 
reducible representations of SU(1, 1), which we shall 
denote by f) +, f) -, and C. B When expressed as a direct 
sum of UIR's, f) + contains the UIR D; /2 once, and each 
D; for k;, 1 twice. Similarly, f) - contains D~ /2 once, and 
each D; for k;, 1 twice. And ( can be expressed as a 
direct integral of the UIR's C~, with each UIR for each 
pair E, q occurring with multiplicity two. (All these 
properties will be explained in the subsequent sections. ) 
Consider now the unitary representation f) + I8i f) + of 
SU(1, 1): It is clear that every direct product of the form 
D;18i D~ is contained in this larger representation. It 
turns out that the generators of the product representa­
tion f)+ I8i f)+ which are just sums of the generators of the 
individual factors, are invariant under a set of trans­
formations that can be defined on the space of the rep­
resentation f)+ ~ f)+ and having the structure of the 
group 0(4), the group of real orthogonal rotations in 
four dimensions. And the Casimir invariant for the 
"total" SU(1, 1) representation is identical to one of the 
two 0(4) Casimir invariants. [The other 0(4) Casimir 
invariant vanishes.] In fact the representations of 0(4) 
appearing here are just those carried by "spherical 
harmonics" in four dimensions. By splitting up the 
space of the representationf)+I8if)+ of SU(1, 1) into sub­
spaces in which distinct O( 4) representations occur, and 
this is relatively easy, we obtain subspaces in which 
distinct UIR' s of the "total" SU( 1, 1) appear. By a fur­
ther suitable choice of baSiS, we can then specialize to 
individual products of the form Dt,18i Dt" contained in 
f)+18i f)+, and easily read off the corresponding C-G 
series. The structure of the C-G series for this type of 
direct product is then seen to be essentially determined 
by the spectrum of 0(4) representations obtained by the 
action of this group on functions on the unit sphere in 
four dimensions. 

In a similar way, the product representations f)+18i f)-, 
f) + I8i C, and C I8i C are associated with the symmetry 
groups 0(2, 2), 0(3,1), and 0'(2,2); and the structures of 
the C-G series for products of the form D;18i D;" 
D; 0 C~, and C~18i C~ are fully determined by the prop­
erties of "spherical harmonics" corresponding to 
0(2,2), 0(3,1), and 0'(2,2), respectively. Here, the 
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same group 0(2,2) describes the symmetry properties 
of both f)+18i f)- and (0 (; however, the "spherical har­
monics" are needed in the two cases in different bases; 
in the former, the 0(2)00(2) subgroup of 0(2,2) is 
singled out, in the latter it is the subgroup 
0(1,1)00(1,1). The construction of the "spherical 
harmonics" for the groups 0(2, 2), 0'(2,2) can again be 
reduced to a simpler problem at the level of the group 
SU(1, 1): This happens because locally 0(2,2) has the 
same structure as SU(1, 1)0 SU(1, 1). And the structure 
of the Plancherel formula for SU(1, 1), as derived by 
Bargmann, yields immediately the required spherical 
harmonics for 0(2, 2); while the same formula written in 
a new basis is adequate for 0'(2,2).9 In dealing with the 
intermediate case f)+ 0 C, we were led to an interesting 
problem in the representation theory of the homogeneous 
Lorentz group 0(3,1), a partial solution to which is 
available in the literature. 10 The problem is to decom­
pose the unitary representation of the (3 + 1)-homo­
geneous Lorentz group 0(3, 1) acting on functions defined 
on the single sheeted space like hyperboloid in real four­
dimensional space with metric +++-, into UIR's of 
0(3,1). (The corresponding problem for the two sheeted 
time like hyperboloid was solved long ago, and the re­
sults will be relevant in our work. ) We have described 
elsewhere a complete solution to this problem, and the 
results will be used in the present work. 11 

We now outline the plan of the present and the suc­
ceeding papers of this series. Even though the spirit 
behind the solution is the same in all four types of direct 
products, the details differ. To avoid confusion, there­
fore, this paper mainly deals with the Clebsch-Gordan 
problem for the products of the form D+0 D., and the 
related case D- 0 D-. In the second, third, and fourth 
parts of this work, we shall take up the cases D+0 D­
(and D-0D+), D+0 C (and D-0 C), and C0 C, respective­
ly. In each case, all the relevant details of the cor­
responding symmetry group and its associated spherical 
harmonics will be developed. In Sec. I of this paper, we 
gather some information on the UIR's of the group 
SU (1,1), and the particular construction of these UIR's 
that we will use later on. Section 2 contains a descrip­
tion of the three unitary representations f)+' f)-, and ( , 
as well as a concise statement of the structure of the 
C-G series in all four cases, and some comments on 
them. The material of Secs. 1 and 2 will be used in the 
succeeding papers as well. In Sec. 3, we describe the 
symmetry properties of the representation f)+ 0 f)+ of 
SU( 1, 1), and show how this leads to the well-known 
structure of the C-G series for two positive discrete 
UIR's. The results of Sec. 3 lead immediately to the 
C-G coefficients in a continuous basis; these are given 
in Sec. 4. Finally, in Sec. 5, the details for the case 
D-0 D- are read off from the previous results using the 
outer automorphism of SU(1, 1). 

1. STANDARD FORMS FOR THE UIR'S OF SU(1,1) 

The group SU(1, 1) consists of all 2x2 complex ma­
trices of the form 

(1. 1) 

In this defining representation, we identify the genera-
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tors as to'3' (i/2)0'2' and - (i/2)0'1' where 0" s are the 
2 x 2 Pauli matrices. In a general representation, the 
corresponding generators will be written J o' Jl' J 2 and 
they will obey the commutation rules 

- i[Jo, J 1 ] =J2, - i[Jo, J2] = - J 1 , - i[J1 , J2] = - J o' 

(1. 2) 

In a unitary representation, the Ja. are Hermitian. Jo is 
elliptic, J 1 and J 2 hyperbolic. When we use a continuous 
basis, J2 will be the preferred generator. The Casimir 
operator Q is defined by 

(1. 3) 

It commutes with all the J a.' The outer automorphism 
T may be defined to have the following actions on a gen­
eral element of SU(I, 1) and on the generators: 

(1. 4a) 

(1. 4b) 

Clearly, both the group composition law and the com­
mutation relations (1,2) are preserved by the mapping 
T. 

A urn of SU(l, 1) is unambiguously specified by giving 
the value of the CaSimir invariant Q, and in addition the 
eigenvalue spectrum of the generator Jo' In the discrete 
UIR's n~, where k takes on one of the values 1/2, 1, 
3/2, "', the value of Q is k(l- k); and the eigenvalues 
of J o are m = k, k + 1, k + 2, ... in the positive discrete 
case, and m = - k, - k - 1, - k - 2, .. , in the negative 
discrete case. Because the eigenvalues of Jo are all of 
one sign, it is trivial to see that the automorphism T 

cannot be unitarily implemented in these cases. On the 
other hand, T preserves the value of Q; so it is equally 
obvious that it converts a UIR n; into n; and conversely. 
In the continuous UIR' s C~, the value of Q is q = 1/4 + S2, 

where s ~ 0 or s > 0 according as to whether E = 0 or 1/2; 
and the eigenvalues of J o are m=O, ±1, ±2, ... if E=O, 
and m =± 1/2, ±3/2, .. , if E= 1/2. Since as we have 
said the value of Q and the spectrum of J o determine a 
urn uniquely, T must be unitarily implementable in a 
urn C~; if we write Is, E;m) for the eigenvectors of J o 
and adopt a suitable phase convention for the matrix 
elements of J 1 and J 2 (the Bargmann choice), 12 then the 
unitary operator A that implements T is given by 

A Is, E;m) =(_l)m-e Is, E; - m). (1. 5) 

Let us now summarize the nature of the eigenvalue 
spectrum of J 2 , and then give the construction of the 
UIR's that will be used later. We will use letters p, P', 
... to denote eigenvalues of J 2 • Then it turns out that in 
a UIR of discrete type, whether it be of positive type or 
of negative type and whatever be the value of k, the pos­
sible values of p are all real numbers from - 00 to + 00, 

and for each value of p, J 2 has precisely one eigenvec­
tor. In a UIR of continuous type, again the possible 
values of p are all real numbers from - 00 to + 00, in­
dependent of both sand E, but now J 2 has two linearly 
independent eigenvectors for each value of p. 13 There­
fore, within a discrete urn, the elements of a con­
tinuous basis can be completely labeled by the eigen­
value p of J 2 , but this is not so in a continuous type urn. 
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However, in the latter case we know that a unitary op­
erator A can be found that will implement the automor­
phism T, and A commutes with J2 • By specifying both 
the eigenvalue p of J 2 , and a = ± 1 of A, we can then 
unambiguously label the elements of the continuous basis 
in a urn C~. Summarizing, in the UIR n~, 11 = ±, we 
have the continuous basis I k, 11; P) obeying 

J2 1 k,lI;P) = pi k,lI;P), 

(k,lI;P' I k,lI;P)=o(P' - p), - 00 <P' ,p< 00. (1. 6) 

And in the UIR C~ we have vectors Is, E; p, a) obeying 

J2 1 s, E; p, a) = pis, E; p, a), A Is, E; p, a) = a Is, E; p, a), 

(s, E; P', b Is, E; p, a)=O(p' - P)Oba' - oo<P',P< "", 

b=±l, a=±1. (1. 7) 

The question of a "phase convention" for such basis 
vectors is much more subtle than in the O(2)-basis, 
because the generators Jo and J 1 cannot be described by 
means of "matrix elements" any more. All we shall 
insist on in a realization of a UIR is that choices of con­
tinuous basis vectors and of A be made consistent with 
the above equations. 

For any chosen value of k, the UIR n; can be realized 
in the following fashion. 14 We define the Hilbert space 
H (k, +) to consist of functions on the positive real line, 
f(r) for 0 "'r< "", with the norm 

11/112 = f r I/(r) 12 dr< 00. (1. 8) 

[Actually the space H(k, +) does not change with k, but 
we keep these labels to remind us of the VIR being con­
structed.] The generators of SU(l, 1) will be written 
J a.(k, +) and are 

1 ( J2 1 d (2k - 1») 
Jo(k'+)=4'r- dr2 -;:dr+ r2 , 

-1 (2 d
2 1 d (2k - 1») 

J 1(k'+)=T r + dr2 +;: dr - .; , 

J2(k, +)= -;i t d~ + 1)- (1. 9) 

The dependence on k lies only in Jo(k, +) and J 1(k, +); it 
can be checked that Q has the value k(l- k) and that 
Jo(k, +) has the correct eigenvalues. The finite trans­
formations generated by J2(k, +) are local but those 
generated by Jo(k, +) and J 1(k, +) are nonlocal. The first 
is easy to construct: 

[exp(itJ2(k,+»f] (r) =exp(l;/2)f[rexp(t/2)]. 

For the others we can write the general forms 

[{exp[iJ,LJo(k, +)] or exp[ivJ1(k, +)]}f](r)=.r r' dr' 

X{L(k.+) (r, r';J,L) or M(k'+)(r, r';v)} f(r'). 

(1. 10) 

(1. 11) 

The kernels Land M can be evaluated, and are given 
in Ref. 6, and will be omitted here. Finally, the vectors 
of the continuous basis, satisfying Eq. (1. 6), may be 
chosen to be 

(1. 12) 

For the urn n;, we define the Hilbert space H (k, -) 
in exactly the same way as H (k, +), but choose the 
generatorsJ", (k, -) thus: 
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Jo(k, -) = - Jo(k, +), J 1(k, -) = - J 1(k, +), J 2(k, -) 

=J2(k, +). (1. 13) 

The action of the finite transformation exp(i?;J2(k, +» is 
unaltered, while the kernels L(k.+) and M(k.+) are re­
placed by new ones, L(k.-) and M(k.-\ which are actually 
easily obtained from the former. Finally, there is no 
change in the continuous basis vectors: 

(1. 14) 

Some subtleties are involved in setting up the UIR's 
C~. Just as the spaces H (k, ±) did not change with k, we 
now have a Hilbert space H (s, e) which actually does not 
change with s or e. It consists of pairs of functions on 
the positive real line, 

f_(f1(r») 0 -'Sr< 00, 
- f2(r) , 

(1. 15) 

with the norm 

IIfIl2=J~ r(lf1(r)12+ If2(r)12)dr<00. 
o 

(1. 16) 

The generators J,,(s, e) will be simultaneously differ­
ential operators in rand 2 x 2 matrices; formally there 
seems to be no dependence on e and we have 

1 ( 2 d 2 1 d 4s2 
) 

Jo(s, e)="4 -r + dr2 + r dr +? 00"3' 

J 2(s,e)=- r-+l @ 1. - i ( d ) 
2 dr 

(1. 17) 

But the dependence on E comes in through the delicate 
dependence of the domains of J O• 1(s, e) on e. In practice 
the value of E will be clear from other considerations, 
whenever we come across a continuous class UIR. An­
other point is that the generators J ,,(s, E) seem to be 
invariant when the phase of f2( r) in (1. 15) is changed 
relative to f1 (r); in other wordS, they would all appear 
to, but actually do not, commute with the operator 0"3' 

which would be absurd since we are dealing with an ir­
reducible representation. Again this is a deficiency in 
trying to identify a UIR C: by merely looking at the 
formal expressions for the generators, but can be taken 
care of appropriately (see below). In Ref. 6 the kernels 
describing the nonlocal actions of exp[if.LJo(s, e)] and 
exp[ivJ1(s, e)] have been listed and the e dependences 
made explicit. We have equations of the form 

{exp[i?;J2(S' E) lfL(r) = exp(?;/2)fj [rexp(?;/2»), 
2 

[{exp(if.LJo(s,E» or exp(ivJ1(s,e»}f)j= L r dr' r' 
k=1 0 

X{Lj~")(r, r'; f.L) or Mj~·e)(r, r';v)}nr'), j= 1, 2, 

(1. 18) 

and the 2 x 2 matrix functions L, M of r, r' arising here 
can be found in Ref. 6. The automorphism T is now im­
plemented by the operator A acting as follows: 

(1. 19) 

Therefore, once the value of e has been fixed by other 
means, we may recognize a UIR of the type C~ when we 
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find the generators to be of the form in Eq. (1. 17) [and 
of course the space they act on to be of the form of 
H(s, e») and in addition if we are either able to show that 
the finite transformations have the form (1.18) or that 
T is implemented in the manner of Eq. (1. 19). [This 
last point takes care of the problem posed by the formal 
com mutability of J ,,(s, e) and 0"3' ] It is now easy to 
choose the simultaneous eigenvectors of J 2(s, e) and A so 
that they obey Eq. (1. 7): 

1 ) 1 ( 1 ) 2;1>-1 1 s, e; p, a =,f2if a r ,a = ± . (1. 20) 

With this, we have specified the standard forms that we 
shall adopt for the UIR's of SU(I, 1). 

2. THE SPECIAL REPRESENTATIONS U, C 

As stated in the Introduction, an important role is 
played in our analysis of the Clebsch-Gordan problem 
for SU(I, 1) by three special unitary representations of 
this group. One of them acts as a generating repre­
sentation or source for all the discrete positive UIR's, 
another for all the negative ones, and the third for all 
the continuous UIR's. We will describe the properties 
of IX first, fT next, and Clast. 

Introduce the Hilbert space H( +) conSisting of com­
plex valued functions square-integrable over the two­
dimensional plane. Elements of H(+) are written 
f(x1 , x 2), with the norm given by 

Ilf 112 = I: dX1 I: dx2 If(x1, x 2 ) 12. (2.1) 

In this space, we can set up two independent oscillator 
operators aj and their Hermitian conjugates aj obeying 
the standard commutation rules 

[aj,a~)=oik' [aj,ak)=[aj,a;)=O, j,k=I,2. (2.2) 

These operators could be expressed in terms of Xj and 
a/ax j by 

(2.3) 

We now define three operators J,,(+) as functions of the 
oscillator operators via 

J o(+) = t(aja j + 1), J 1(+)=t(ajaj+a jaj), J 2(+)=(-i/4) 

(aja; - ajaj)' (2.4) 

A summation over a repeated index is understood. It is 
easy to check that these operators obey the commutation 
rules of SU(I, 1). On the other hand, they are explicitly 
Hermitian, so they generate a unitary representation of 
SU(1, 1) in the space H(+). This, by definition, is the 
representation fX. 15 Since J o( +) is positive definite, fX 
must be a direct sum of UIR's of type D; alone. We now 
analyze fl. 

The basic commutation relations (2.2), as well as the 
generators J" (+) of Il, are invariant under the group 
of all real orthogonal transformations in two dimensions, 
acting on the basic variables in the following manner: 

(2.5) 

We have, therefore, a unitary representation of this 
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group acting in H( +) and all the operators of this rep­
resentation commute with the representation IX of 
SU(1, 1). The full group of the matrices IIOjkll consists 
of the identity component containing the matrices 

II 
cosa 

- sina 
sina II 
cosa ' 

0"" a < 21T (2.6) 

and the component containing the matrix 

(2.7) 

corresponding to the discrete transformation Xl - Xl' 

X 2 - - x2 • The unitary operators representing the ele­
ments (2.6) on H(+) are generated using the Hermitian 
operator M12 given by 

M12 = i(a~ll:! - a;al ). (2.8) 

Let the discrete transformation (2. 7) be represented by 
the unitary operator B, i. e., B acts on a function 
f(x l , x2 ) as 

[BI] (xl' x2 ) = I(xl , - x2 ). (2.9) 

The complete set of algebraic relations involving the 
generators of IX on the one hand, and its symmetry 
operators, on the other, is 

(J",(+),M12 ] = 0, BJ",(+)B-l=J",(+), 

(2.10) 

Now the Casimir operator for [)' can be easily calcu­
lated, and it becomes a simple function of M 12: 

Q = (Jl (+»2 + (J2(+»2 - (Jo( +»2 = ~1-M~2) =K(l-K), 

K =!(1 + IM12 I ). (2. 11) 

We are now in a position to express [)' as a direct 
sum of UIH's of SU(l, 1). Let us introduce in place of 
Xj the polar variables r, cp via 

Xl = r coscp, x2 = r sincp, 0"" r< 00, 0"" cp < 21T, (2.12) 

so that M12 becomes the operator i a/ocp. Breaking up 
H( +) into eigenspaces of M12 is accomplished by the 
Fourier expansion of the cp dependence of a general 
function l(x1 , x2): 

'" exp( - imcp) 
f(xj)=f(r,cp)='E Im(r) (2.13) 

m'-~ ffi 
The mth term here is an eigenfunction of M12 with eigen­
value m, and by definition it is the component of I in the 
eigenspace Hm(+): 

(2.14) 

[For simplicity, the direct sum sign ~ is omitted here. ] 
Since Band M12 anticommute, the action of B on the 
eigenspaces of M 12 is evidently 

(2.15) 

Every subspace H m( +) is invariant under the generators 
J", (+), and so under the action of the representation [)' 
of SU(1, 1). For given m, Hm(+) has the same structure 
as the space H(k, +) set up in the last section [recall 
that H (k, +) actually has no dependence on k]. H m( +) 
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consists of functionsf(r) with the norm (1. 8). Making 
use of (2.3,2.4,2. 12), each J", (+) restricted to H m( +) 
becomes a differential operator in r alone; it is found 
that 

J",(+) I restricted to Hm(+)=JO/.«l+ Iml)/2, +); 
(2. 16) 

the operators on the right are the ones set up in Eq. 
(1. 9) in the course of defining the standard forms for 
the UIH's D;. Putting together all these facts, we con­
clude that the two subspaces H m( +) and H -m( + ) both sup­
port the same urn D(l'lml )/2 of SU(l, 1), and we have the 
direct sum decomposition of [)': 

'" 
[)' = 'E D7l+1 ml ) /2' (2. 17) 

m=-IO 

The discrete positive UIH D;/2 appears once, and the 
UIH's D; for k= 1, 3/2, ••. twice each. 

The generating representation [)- for the negative 
discrete series is obtained from the above by obvious 
modifications. The space H(-) is defined in the same 
way as fI( +), and there is no change in the operators 
ai' aj either. The generators J 0/. (-) of [)- are taken to 
be the transforms under T of J", (+): 

Jo(-)=-Jo(+)' J 1(-)=-J1(+), J 2(-)=J2(+). (2.18) 

There is no change in the symmetry group, it is again 
generated by M 12 and B. The Casimir operator Q for [)­
has the same expression in terms of M12 as previously, 
and the eigenspaces H m( -) of M12 are also unaltered 
from the previous discussion. The necessary equations 
describing H(-), [)-, and JO/. (-) are 

'" 
H(-)= ~ Hm(-)' BHm(-)=H-m(-)' 

m=-IIO 

JO/.(-) I restricted to Hm(-)=J", «(1 + Iml)/2, -), 

'" 
[)-= 6 D(1+lml)/2' 

m=-IIO 
(2.19) 

The standard forms J", (k, -) for the UIH D~ are given 
in Eq. (1. 13). The discrete negative urn D~/2 occurs 
once in [)-, the UIH's D~ for k= 1, 3/2, ... twice each. 

Now we turn to the representation C. Here, in con­
trast to the previous cases, the symmetry group will be 
a pseudo-orthogonal group so it will be necessary to 
use a suitable metric operator that relates upper to 
lower indices and conversely. We take the space H(C) 
of the representation C to be the same as H(±), and 
also define ai' aj exactly as before. But the generators 
J",(() will be 

Jo((} = !(a;al - a;a2), 

J l ((} = t«(a;)2 - (a;)2 + (al )2 - (a2)2), 

J2(() = (- i/4)«(a;)2 + (a;)2 - (al )2 - (a2)2). (2. 20) 

These are of course Hermitian, and they do obey the 
SU(1, 1) commutation rules. To make the symmetries 
of the present construction as clear as the symmetries 
of [)r. were, let us define new basic operators and a 
metric tensor thus: 

(2.21a) 

(2.21b) 

Then the basic relations (2.2) can be rewritten as 
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(2.22) 

the realizations of b, in terms of x, and a/ax, become 

b, = (- i/v'2)(x, + a,), bj = (i/v'2)(x, - a,), 

(2.23) 

If in (2.20) we substitute b, in place of a, appropriately, 
we then find 

Jo(C) = t(gik b; bk + 1), 

J l «() = tg'k(bj b: + b ,bk), 

J2«( )=(- i/4)g'k(b;b; - b,b k). (2.24) 

Equations (2.22), (2.24) must be compared with Eqs. 
(2.2), (2.4), respectively. We see immediately that the 
basic commutation relations (2.22) and the generators 
J ",( C) are all invariant under the group of all real linear 
transformations which preserve the indefinite quadratic 
form 

(2. 25) 

We have therefore a unitary representation of this group 
acting in H(e), and all the operators of this representa­
tion commute with the representation e of SU(l, 1). The 
full group of these matrices II O~ II consists now of four 
distinct components. The identity component contains 
all the matrices of the form 

sinha II 
cosha , - ""< a < ""; (2.26) 

the second component contains the matrix 

(2.27) 

corresponding to the transformation x, - - x" and all 
products of this matrix with the matrices (2.26); the 
third component is similarly generated by the matrix 

(2.28) 

corresponding to the transformation Xl - Xl' X2 - - x2; 

and the fourth and last component is generated by the 
product of the above two matrices. The unitary opera­
tors representing the elements of the identity component, 
on H(e), are built up using the Hermitian generator S12 
defined as 

(2.29) 

Let us write P and B for the unitary operators repre­
senting the discrete elements (2.27), (2.28), respec­
tively; B is the same as before [cf., Eq. (2.9)], while 

Then the full symmetry of the representation e of 
SU(l,1) is expressed by 

(2.30) 

[J",«(),S12]=0, BJ",«()B-l=PJ",«()p-l=J",«(), (2.31) 

B S12= -S12B, PS12=S12P, PB=BP, p2=B2= 1. 

If we compute the Casimir operator Q for e, it becomes 
a function of S12: 

Q =(Jl(e»2+ (J2(e»2 - (JO«(»2 = t+ t(S12)2. (2.32) 
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Having analyzed the algebraic structure of the set of 
operators that commute with the representation e of 
SU(l,l), we can now express e as a direct integral of 
continuous class VIR's of SU(l, 1). [That only such VIR's 
will appear is clear from the form of Q in (2.32). ] 
Since P and S12 commute, we can decompose H(e) into 
simultaneous eigenspaces of these operators. Then, as 
shown in Ref. 6, the eigenspace with a definite value for 
S12 and a definite value for P carries a single urn C~ of 
SU(l, 1): The eigenvalue of S12 fixes q via (2.32), and 
P=+l givese=O, P=-l givese=1/2. l6 To break up 
H(e) into these eigenspaces, we must change from the 
x, to hyperbolic-type variables; this requires dividing 
the Xl - x2 plane into four regions. The new variables 
r, 1) are introduced in each region in this way: 

IX21> IXll: X 2 = (sign of x2)rcosh1), 

Xl = (sign of x2 )rsinh1), 0 <Sr< "", 

- ""<1) < ""; 

IXll> IX21: Xl = (sign of xl)rcosh1), 

x2=(sign of xl )rsinh1), 0 <Sr< "", 

-""<1)<"". (2.33) 

Let the eigenspaces of P be written H+(O and HJO; 
these are made up of functions, respectively, even and 
odd under x, - - xi" We may write for a general 
IE H(O 

I(x,) = 1+ (x,) + f-(x,), n - x,) = ±I.(x,), 

11/112= 111.112 + 111-112= £: dXl 1: dX2 (1/Jx,) 12 + If-(x,) 12
). 

(2.34) 

Within an eigenspace of P, a function f. is fully deter­
mined by its values in the region x2 > I XII (which is half 
of the region I x2 I > I xII), and in the region Xl> I x21 
(which is half of the region I xII> Ix21). Denote these 
functions by 1,1 (r,1) and 1,2 (r,1), respectively; the ± 
refers to the eigenvalue of P, the 1 and 2 to x2 > lXII, 
Xl> IX21, respectively. So after splitting a general func­
tion IE H( C) into its components I. in H .(0 each of 
these components may be represented as a column vec­
tor with two components: 

In both H+(C> and HJ(), S12=-io/(1). Next, to diag­
onalize S12' the 1) dependences of/H(r, 1), 1t2(r,1) must 
be represented by Fourier integrals: 

(
/H(r,1)) =f~ ds exp(2is1) (ftl •5 (r») 
1t2(r,1) _~ {if 1t2,.(r) , 

11/.112 = 2 I: ds f rdr( I/H,. (r) 12 + 1/,2,5 (r) 12).(2.36) 

The integrand here, namely the column vector 

exp(2is1J )(/.1,.( r»), 
1t2 •• (r) 

(2.37) 

is an eigenfunction of P and S12 with eigenvalues ± 1, 2s, 
respectively; and by definition (2.37) is the component 
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off in the eigenspace H",2&(C>' We can write H(C> as 

H(C> = H +(c> + H _ (c>, 
(2. 38) 

thereby exhibiting the breakup into the simultaneous 
eigenspaces of P and S12' The action of B is clearly 
analogous to Eq. (2.15): 

B H",2S«() = H",-2'«()' (2.39) 

And on H ",2'(C), the Casimir invariant Q reduces by 
virtue of Eq. (2.32) to multiplication by (t + S2). 

Each subspace H ",25«() is invariant under action of 
J,,(C) and so under the representation C of SU(l, 1). For 
a fixed choice of s and eigenvalue of P, this subspace 
has the same structure as the space H(s', E) set up in 
the last section [recall that H(s' , E) actually had no de­
pendence on s' , e]; it consists of pairs of functions 
(fl(r),J2(r)}, with the norm (1.16). Making use of Eqs. 
(2.23), (2.24), (2.33), each J,,(C> restricted to H %,2'«() 
becomes a matrix-cum-differential operator in r alone; 
it is found that 

J ,,«() I restricted to H %.2.«() =J,,( I s I, E). (2.40) 

The operators on the right are the ones set up in Eq. 
(1.17) while defining the standard forms for the VIR's 
C~. Putting together all these facts, we see that the two 
subspaces H +,2.(C) and H + -2S(C) both support the same 
VIR C~/4+&2 of SU(l, 1); whiie H -.2&«() and H -,-2/C> both 
support the same VIR q~!..2. We thus have the direct 
integral decomposition of the representation C: 

C = 1: ds c~ /4+.2 + 1: ds C~~!+&2 (2.41) 

Each VIR C~ appears with a multiplicity two in C. 

For the continuous class VIR's of SU(l, 1), one must 
investigate how the outer automorphism T is imple­
mented. Given the generators J" «() for the reducible 
representation (, it is easy to construct a unitary op­
erator A on H( c> which has the effect of implementing 
the mapping T. We just take 

(2.42) 

Then, using Eq. (2.20) for instance, we see easily that 

A J o,I(C>A-1 = -Jo)C>, A J 2(C> A-I =J2(C>· 
(2.43) 

But we see equally easily that A commutes with both the 
symmetry operators S12 and P, while with B we get 

(2.44) 

So in any case, the subspaces H %,2.(C) ;lre invariant 
under A, and, in fact, if an element in H %,2&(C) is 
written in the column vector form (2.37), A has the 
desired effect of interchanging upper and lower com­
ponents. Thus, A leaves each VIR in the direct integral 
decomposition of C invariant, and within each VIR it 
has the form of the operator A of Eq. (1. 19).17 All these 
properties of the representation C will be needed when 
we consider the direct products of the form D+ I8i C, 

CI8iC. 

The description of the representations U, C that we 
have given overlaps partly with the work of Ref. 6; how-
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ever, we have emphasized here the role of the sym­
metries of these constructions in performing the direct 
sum decomposition into irreducibles. It would be fairly 
evident by now how the two-dimensional rotational sym­
metries of fl, ( get enlarged to four-dimensional ones 
when direct products like fYI8i [)., [)+I8i[)-, etc., are 
considered. We conclude this section by recalling the 
structures of the various Clebsch-Gordan series, and 
making some comments on them. Omitting the direct 
sum E+) symbol, the four essentially distinct series have 
these forms: 

(I) D; I8i D;, = 2: D; .. , 
It' =k+k' ,k+k' +1 , ••• 

k,k'=~,l,%, ... , 

(II) D; I8i Dit = 8(k - k' - 1) ~ D+_ 
kH"lor3/2 k 

k'-k 
+ 8(k' - k - 1) .6 D;,,, 

k' '''1 or 3/2 

+ 10
m 

ds C~/4+.2' 
k,k'=~,l,%, ••• , E=O(t) and k'';'ln=l(%) if k+k'=integer 

(half-odd integer); 

(m) D;18i C~/4+&2 = '£ D;H + 1m 

ds' Cr/4+&,2, 
k-"lor3/2 0 

(IV) 

k=tol, ... , E=O,~, O<s<oo, E'=O(~) and 

k:Un = 1m if k + E = integer (half-odd integer); 
m m 

C~ /4+&2 I8i C~ '/4+&' 2 = .6 D~" + .6 D ;., 
k" ==1 or3/2 k"i!Jlor3/2 

+ 2 10
m 

ds" Cr'/4+SH2' 

E, E' =O,~, 0< s, s' < 00, E" =O(~) and ~In= 1(%) 

if e+e' = integer (half-odd integer). 

Wherever there is a sum on k", it is from a minimum 
to a maximum value in integer steps. The step function 
(J used in case (II) is defined thus: 8(x) = 1 for x 
=O,~, 1, %, ... , and =0 for X= -~, -1, -~, .... In cases I 
and III if on both sides of the given equations every D+ is 
changed into a D-, the resulting equations remain true. 
Now a very interesting aspect of these Clebsch-Gordan 
series is this: If we consider the direct product of any 
two VIR's of SU(l, 1), neither of which belongs to the 
continuous exceptional series, then in the decompOSition 
of the product into urn's the particular discrete terms 
Di/2 will never make an appearance. It is well known 
that Di /2 are to be distinguished from D~ for k ~ 1 and 
C~ for q ~ t in another sense; in the regular repre­
sentation of SU(l, 1), only the latter are present, both 
Di/2 and the continuous exceptional VIR's are absent. 
We will show in papers II and IV of this sequence that it 
is the structure of the Plancherel formula of SU(l, 1) 
that is responsible for the absence of Di /2 in the 
Clebsch-Gordan series (II) and (IV) above; the reason 
in the case of series (m) turns out to be a property of a 
particular representation of the group 0(3, 1), as will be 
explained in paper m. The point to be noticed is the 
absence of Di /2 in the decomposition of even those pro­
ducts in which one (or both) factors may itself be Di/2' 
Another point to be noted is that in no series does the 
trivial identity representation of SU(l, 1) appear as a 
discrete summand. 
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3. C-G SERIES FOR THE PRODUCT D+ X D+ 

Let us now take two representations of SU(I, 1) of the 
type f)+' each in a space of the form H(+), and consider 
their direct product f)+ 0 f)+. The space of the total rep­
resentation will be H = H(+)0H(+), the variables of the 
first factor in the product will be numbered 1,2, those 
of the second 3,4. H then consists of functions 
!(xl , x 2 ' x 3' x 4 ) with 

II! 112 = 1: 1: 1: 1: dXl dX2 dX3 dx4 1 !(xl , X2 , X3' X4 ) 1
2• 

(3. 1) 

We will use Greek subscripts /J., v, ••• to go over the four 
values 1,2,3,4; no metric tensor is needed since we will 
be dealing with the group 0(4). The four oscillator op­
erators defined on H fulfill 

a,,=(-i/V2)(x,,+a,,), a:=(i/V2)(x,,-a,..}. (3.2) 

The generators of the first factor in the product f)+0 f)+ 
will involve just the variables numbered 1,2 and will 
have the forms given in Eq. (2.4); we will write 
J",(+, 12) for them. Similarly, the generators of the 

second factor in the product are J",(+, 34) and the ''total'' 
generators for the product f)+ 0 f)+ will be 

J",=J",(+,12)+J",(+,34). (3.3) 

We can express the J", in terms of the a", and then we 
find 

J o = t(a:a" + 2), J l = t(a:a: + au aJ, J 2 = (- i/4)(a:a: 

- a"a,..). (3.4) 

In the summations over the repeated index /J., all four 
values are involved. We see immediately on inspection 
of Eqs. (3.2) and (3.4) that the basic commutation rel­
ations as well as the "total" generators J", are invariant 
when the basic variables are subjected to any real linear 
orthogonal transformation in four dimensions: 

X",-O",vXv' a"-O,,,vav, a:-O",va~, OTO=1. 
(3.5) 

These matrices constitute the full rotation group 0(4), 
and there is therefore a unitary representation of this 
group acting on H, such that the corresponding unitary 
operators all commute with the operators of the rep­
resentation f)+0/)+ of SU(l, 1) which also acts on H. For 
the present, it is enough to consider just the identity 
component of 0(4); its representation on H is clearly 
generated by the six generators 

M "v= i(a;av - a~a,,) = i(x" av - xva ,,). (3.6) 

[The Muv obey among themselves the 0(4) commutation 
relations.] The symmetry properties of the SU(l, 1) 
generators J", are thus expressed by 

(3.7) 

For the individual sets J,,(+, 12) and J,,(+, 34) we have 
only 

(3.8) 

[The discrete symmetries are not needed, as mentioned 
above.] 
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Let us establish next the connections between the 
various Casimir operators. For SU(l, 1), we have the 
Casimir operators Q12' Q34 for the individual factors in 
the product f)+ 0 /)+, and then Q for the total. The first 
two are related to M 12 , M34 via Eq. (2.11). There are 
two Casimir operators associated with the Lie algebra 
of the group 0(4), namely M2=M"vMuv and E"v~.MuvM~.; 
but the particular form (3.6) of Muv that occurs in the 
present realization of 0(4) makes the second invariant 
vanish identically. This of course has the effect of 
restricting the types of UIR's of 0(4) appearing in H. IB 

Q can be now shown to essentially coincide with the non­
trivial Casimir operator of 0(4). All in all, we have 

Q12 = t(l -Mi2)' Q34 = t(l - M;4)' 

Q = (Jl'f + (J2)2 - (Jo? = - iM"vMuv= - i~. (3.9) 

The direct product f)+ 0 f)+ contains within it the indi­
vidual products of the form D;0 n;, for all values of k 
and k'. We want to get at the C-G series for the latter, 
and then compute the C-G coefficients in the continuous 
basis. It is then clear that we must construct two types 
of bases for H, an uncoupled basis and a coupled basis. 
In the uncoupled basis, we want the operators M 12 , M34 
(hence Q12' Q34)' J2(+, 12) and J2(+, 34) to be simulta­
neously diagonal. Such basis vectors are direct products 
of basis vectors drawn one from each factor in a product 
of the form D; 0 n;,. In the coupled basis, the simulta­
neously diagonal operators should be M 12 , M34 (hence 
Q12' Q34)' J2 and M2 (hence Q). By having M12 and M34 
diagonal in both bases, we will be sure we are dealing 
with a single product D;0 D;, and its reduction. The 
coupled basis vectors will belong to definite UIR' s of 
the total SU(I, 1); at the same time they will be basis 
vectors for the UIR's of 0(4) in a definite form, namely 
a form in which M2, M 12 and M 34 are diagonal. The point 
is that UIR's of 0(4) can be built up in more than one 
way, either "diagonalizing" a canonical 0(3) subgroup, 
or an 0(2)00(2) subgroup; what is needed here is the 
latter. By examining the allowed eigenvalues of ~ while 
keeping those of M12 and M34 fixed, in a coupled basis 
vector, we will be able to read off the C-G series for a 
product D;0 D;,; by calculating the overlap between an 
uncoupled and a coupled basis vector, we will obtain the 
C-G coefficients. 

In the place of the xu' let us introduce radial and 
angular variables by 

Xl = r cos({3/2) coscp, x2 = r cos({3/2) sincp, 

X3 = r sin({3/2) cos</!, x4 = r sin({3/2) sin</!, 

(3, 10) 

Then M12 =i a /acp and M34 = i a/a</!. To pick up n;0 D;" 
we choose (nonnegative) eigenvalues (2k - 1), (2k' - 1) 
for M 12 , Mw respectively. Then combining Eq. (1. 12) 
with the analysis of the representation /)+ given in Sec. 
2, we can write the uncoupled basis vector <1>: 

<I> (kp +) (~,.+) = (1/ v'1T) (r cos{3/2)2 iP-l (1/ v'27T) e- i (2k-J) " 

X (1/ v'1T) (r sin{3/2)2/P' -1 (1/ v'2iT) e-H2k' -1l~, 
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MI2=2k-1, M34=2/t-1, J 2(+,12)=p, J 2(+,34)=p'. 

(3.11) 

This is normalized to a Kronecker delta in k as well as 
in k', and to a Dirac delta in p as well as in p'. [See 
Eq. (4. 4).l Before putting down a coupled basis vector 
lJI, we need to know the eigenfunctions of M2, as well as 
what the generators J" of SU( 1, 1) look like when re­
stricted to an eigenspace of M 12 , M 34 , and M2. The 0(4) 
group has, locally, the same structure as 0(3)® 0(3), 
so we can split M,,~ into two independent (i. e., com­
muting) 0(3) Lie algebras. Let us call these Land R. 
We define them as 

Ll = i(M32 + M 14), L2 = i(M13 + M24 ), L3 = i(M21 + M 34), 

R 1=i(M32 -M14), R2=i(MI3-M24)' R 3=i(M21 -M34)· 
(3. 12) 

The 0(4)-commutation relations among the M nowap-
,,~ 

pear as 

[LjOLkl=i€jkZLI' [Ri,Rkl =i€jkZRI' 

[Lj,Rkl=o, j,k,l=1,2,3. 
(3.13) 

The vanishing of the second Casimir operator of O( 4) 
implies that these two commuting 0(3) Lie algebras have 
the same Casimir operator; and this is essentially ~. 
We find quite easily that 

L2 =LjL j=R2 =RjR j = tM2 

0
2 

0 1 (0 2 02 

=- of32 - cotf3 of3 - sin2 f3 o(cp + 1/!)2 + o(cp _1/!)2 

- 2cosf3 O(CP+I/!~:(CP-I/!)). 
For an eigenfunction of M 12 , M 34, and~, the cP and I/! 
dependences are as in Eq. (3. 11), while the f3 depen­
dence is to be obtained by solving the eigenvalue equa­
tion for the differential operator above. The solutions to 
this equation are well known; they are the D functions 
of angular momentum theory. 19 This should be no sur­
prise because these D functions are known to be the 
"spherical harmonics" on the unit sphere in four-di­
mensional Euclidean space. All in all, an eigenfunction 
of M 12 , M34 and Q = -i M2 with eigenvalues 2k -1, 2/t 
-1, and k"(l- k"), respectively, turns out to be of the 
form 

eXP[-:k-1)cpl eXP[-i:-1)l/!l (2k;-ly/2 

(3.15) 
xd kJ~::~~k' (f3)f(r) 

and its norm is 

(3. 16) 

In other words, the eigenspace of M 12 , M 34 , and M2 with 
the stated eigenvalues consists of all functions (3. 15) 
with the norm (3. 16). Apart from the change in measure 
from rdr to tr 3dr, such an eigenspace is seen to have 
the same form as the standard space H(k, +) in which 
the UIR D; was set up in Sec. 1. The next point is the 
form of J" when restricted to this eigenspace. Apart 
from a similarity transformation to compensate for the 
changed measure, this form should be the standard one 
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in Eq. (1. 9). First we check that all dependence of J" 
on the angular variables f3, cP, I/! can be isolated in ~ 
as we would expect; for J o' for example, the steps are 

Jo= 1 + i a~ a" = t(x"x" - 0" 0...) = t(r 2 _ 0
2
), 

2 1 ( ~) 0 0=-2 x·ox·o+2x.0-- x'o=x 0 =r-. 
r 2'"'' or 

(3. 17) 

In a similar fashion, one can see that all the angular de­
pendence of J 1 also can be isolated in ~, while J 2 is 
already a purely "radial" operator. 20 Restriction of J '" 
to the subspace on which Q = kl! (1 - kl!) involves just 

substituting this value of Q in J ",; by following this with 
a suitable similarity transformation, we finally get 

(3.18) 

the operators on the right being given in Eq. (1. 9). A 
further restriction to definite eigenvalues for M 12 and 
M34 has no effect on Eq. (3 18). 

The use of the 0(4) symmetry of the representation 
fF® D+ of SU(l, 1) is now clear. The C-G series for 
D;® D;. is given by a knowledge of the possible eigen­
values of M2 given those of M12 and M34; in other words, 
it is determined by the knowledge of O( 4) spherical har­
monics in the 0(2)® 0(2) basis. Since these 0(4) har­
monics are just the D functions of angular momentum 
theory, we know by reference to Eq. (3.15) that the 
superscript on the d function must be greater than or 
equal to the magnitude of each subscript. Since any way 
both k and k' are ~ i, the C-G series for case (I) given 
in the previous section is now understood. Of course in 
the present case involving D+ ® D+ there are more ele­
mentary ways of arriving at the C-G series, but our 
aim is to relate it to the 0(4) structure since this will 
generalize to all other cases. Next we have seen that if 
we split H into the eigenspaces of the "total" SU(1, 1) 
Casimir operator Q with various eigenvalues k"(l- It'), 
then the restrictions of J" to these eigenspaces are just 
the standard forms J ,,(k" , +) developed in Sec. I (apart 
from a Similarity transformation!). In a given eigen­
space of Q, corresponding to some /t', the UIR D; .. will 
appear many times, corresponding to the various pos­
sible products D;® D;, from which it could have origi­
nated. By next fixing the eigenvalues of M12 and M34 at 
2k - 1, 2k' - 1, respectively, we pick up the VIR D;" 
contained in the particular product D; ® D;". All these 
steps, suitably modified, will occur in the other types 
of direct products as well. 

We conclude this section by writing down the coupled 
basis vector lJI, whose construction is obvious by now. 
It is of the form (3.15), except that the "radial" depen­
dence is determined by the eigenvalue of J 2 : 

,T.lk,+)(k',+Hk",+) _ exp[-i(2k-1)cpl 
,.. p" - ,ff;if 

x (2kl '2 - 1 ) 1/2 

exp[ - i(2k' - l)ll/! 
,ff;if 
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M12 ==2k-1, M 34 ==2k'-I, Q==-iM2=k"(1-k"), 

J 2 ==P" . (3.19) 

This is normalized to Kronecker deltas in k, k', and k", 
and to a Dirac delta in P" [see Eq. (4.5)]. 

4. C-G COEFFICIENTS IN THE CONTINUOUS BASIS 

In this section we will first set up a suitable notation 
for the SU(I, 1) Clebsch-Gordan coefficients in a con­
tinuous basis. Let us use the generic symbol I<. to denote 
any UIR of SU(1, 1) of interest, it could be either (k,1)) 
or (s, E). According to Eqs. (1. 6), (1.14), (1. 20), the 
vectors of the continuous basis in I<. can be written as 

II<.;p,a), _oo<p<oo, a==±; (4.1) 

P is the eigenvalue of J2(1<.); if I<. == (k, 1)), the additional 
label a is to be dropped, while if I<. == (s, €), it is to be 
retained and is the eigenvalue of the unitary operator A 
implementing the outer automorphism T in 1<.. A glance 
at the four C-G series listed in Sec. 2 shows that there 
is one case, namely case (IV), in which the reduction of 
a direct product I<. @I<.' into a direct sum (integral) over 
various R" involves a multiplicity problem. A given 
UIR 1<." may occur twice in the reduction. Bearing this 
in mind, and also notation for basis states given in Eq. 
(4.1), it is easy to see that an adequate and unambiguous 
way of writing down a C-G coefficient in the continuous 
basis for the reduction of I<. @ 1<.' is this: 

C(I<.I<.'I<."y IpaP'b P" c); (4.2) 

pa are state labels within 1<., P' b within 1<.', and P" c 
within 1<.". y is the multiplicity label that distinguishes 
the two (possible) occurrences of 1<." in a given product 
I<. @ 1<.': It is needed only when all three UIR's are of 
continuous type. This C-G coefficient is to be computed 
as the scalar product between an uncoupled basis vector 
<P and a coupled one, >Ir. In all our calculations, many 
distinct direct products are present at the same time in 
one large Hilbert space H; we have seen this in the pre­
vious section. Now especially when the constituent UIR's 
I<. and 1<.' involve one (or more) continuous class rep­
resentations, one must be rather careful in relating a 
C-G coefficient to a scalar product of the form (<p, >Ir). 
Let us first define the symbol a( 1<.' , I<. ): 

a(I<.',P)=altka~.~ ifl<.=(k,1)), 1<.'=(k',1)'), 

=a",a(s'-s) ifl<.==(S,E), P'=(s',e') 

==0 otherwise. (4.3) 

Whenever we construct uncoupled basis vectors <P like 
that appearing in Eq. (3.11), they will obey the 
orthonormality condition 

1<." 1<.'" PI<.' 
(<pP"c P'''d' <PPaP'b)==a(I<.",I<.)a(I<."',I<.') 

x a(jl' - p)a(P'" - p') aea adb • (4.4) 

Similarly, when we construct coupled vectors >Ir, they 
will obey 

(~~"I<.'" 1~,2;\ iJll<. 1<.' I<.p!Y1) == 15(/(',1<.) 15(1<.'" ,1<.') 

x 15(1<. 2'1<. 1) a
Y2Y1 

a(p' - p) aba • 

(4.5) 
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The point we want to draw attention to is the presence of 
the first two delta functions on the right-hand sides of 
Eqs. (4.4) and (4.5), namely those involving the con­
stituent UIR's in a direct product. 21 They are present 
because of the particular way we have solved the 
Clebsch-Gordan problem, namely dealing with all pro­
ducts of a given type (say D+@D+) at once. The other 
factors on the right-hand sides of Eqs. (4.4) and (4.5) 
are standard and would be present in any treatment of 
the problem. For products of the type D+@ D+ or D+@ D­

the factors 15(1<." ,1<.) 15(1<.'",1<.') are quite harmless since 
they are finite; we can in fact choose 1<." == I<. and 1<.'" ==1<.' 
throughout. Keeping these facts in mind, we relate the 
C-G coefficient (4.2) to basis vectors <P, >Ir in this way: 

(<pf.1~:, iJll<.P' ~::)==a(1<.1'I<.)a(I<.~' In 
XC(R, 1<.' P"y I pa P' b p" c). (4.6) 

Once the C-G coefficients have been extracted from the 
scalar products in this way, they become independent 
of the specific method we have used to handle the 
problem. 

Conservation of J 2 implies that in the general C-G 
coefficient (4.2) there will always be a factor a(P + P' 
- p"). So let us set 

C(I<. R,' R," y Ipap'b p" c) == a(P + P' - p") C(I<. 1<.' 1<." y I pap'b c) 

(4.7) 

Generally, only the values of C will be listed. 

Since the orthonormality conditions for <P and iJI are 
specified in Eqs. (4.4) and (4. 5), there are no ambi­
guities in writing down the orthogonality and complete­
ness properties for the C-G coefficients. But we will 
omit the details. The notation and conventions set up 
above will be adequate to handle all the direct products 
we will treat. The multiplicity index y will be relevant 
only in paper IV for the products C @ C, and its choice 
will be explained there. For the present we may drop it 
as well as the indices a, b, c. 

The basis vectors given in Eqs. (3.11) and (3.19) have 
been constructed in accordance with the conditions in 
Eqs. (4.4) and (4. 5). The C-G coefficient in a con­
tinuous basis, for the product D;@D;, - D~" can there­
fore be written as 

C(k + k'+ k" + Ip p' P") == (<p( ;+> (~:>, >Ir(k+)(k' +> ('j;'::» 

==ek';7T- 1/ /2 
a(P + p' 

- p") l~d~(cos~riP ( sin~riP' 
dk~~:_1/k-k' (~). (4.8) 

The simple integrations over r, cp, and I]J have been 
carried out; the first of these produces the factor a(p 
+ p' - P"). In the evaluation of the ~ integral, let us for 
ease in writing set j == kIf - 1, m == k + k' - 1 ~ n == k - k' . 
We can use the formula22 (valid for m ~ n) 

d j (/3) ==(j + m)! (j - n)! )1/2 (cos~/2)-m-n(_ sin(:3/2)m-n 
mn (j-m)!(j+n)! (m-n)! 

X 2 F 1 (j-n+1, -j-n; m-n+1; sin2~/2). (4.9) 
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Substituting t= sin2 f3/2, we are in need of 

[ 
(, f3) -2iP I- f3)-2iP' 

o df3\coS"2 \sin"2 d~n(m 

= (- l)m-n (0 + m)! 0 -n)! )1/2 £1 dt t-W~Cm-n.l) /2 
(m-n)! 0-m)!0+n)! 0 

x (1 - t)'iP-Cm+n+1)/2 2F 1
0 - n + 1, - j - n; m - n + l;t). 

(4.10) 

This can be evaluated using a formula that expresses an 
integral involving a generalized hypergeometric function 
of type pF q in terms of P+1F q+1

23
; the t integral appearing 

on the right-hand side of (4. 10) then has the value 

[rH(m -n+ 1) -ip') r(- t(m + n-1) - ip)/r(l-n- i(P+ p'))] 

x F (j-n+1,-j-n,t(m-n+1)-ip'; 1\ 
32 m-n+1,1-n-i(p+p'); 1;' 

Putting in the values of j, m, and n, and omitting the 
6 function present on the right-hand side in Eq. (4.8), 
we obtain the final form for C for the product 
D;® D;, - D~" : 

~ (_1)2k"1 (2k" _1)1/2 
C(k+ k'+ k"+ Ip p')= (2k' -1)! ~ 

x (k' + k" + k - 2)! (k' + k" - k - 1)! )1/2 
\. (k" - k - k')! (k + k" - k' - 1)! 

x (nk' - ip') r(l - k - iP») 
r(k'+ 1-k- ip - ip') 

(
k' + k" - k k' + 1 - k - k" k' - ip' . ) 

X3
F

2 2k',':'+1-k-iP-ip'; '1. 

5. C-G COEFFICIENTS FOR 0- X 0-

(4.11) 

The C-G series and C-G coefficients for the pro­
ducts D-® D- and D-® C can be related to those for 
D+ ® D+ and D+0 C, respectively, by using the outer 
automorphism T. In general, T(R) will denote the urn 
of SU(l, 1) that is obtained by acting on R with T. SO 
T«k,7))=(k, -7) and T«S,E»=(S, E). If we have the 
relation 

(5. 1) 

certain special "values" of R" appearing on the right 
with corresponding multiplicities, then the relation 

(5.2) 

follows; again R" has the same values as in (5.1) with 
the same multiplicities. Applying this to the C-G 
series for D+® D+ given in Sec. 2 [case (I)], we get 

Di,® Di., = 6 Di.", 
kIt =k+k' , k+k' +1,'" 

k and k' = t 1, %, .... 

(5.3) 

To deal with the C-G coefficients, we remark that 
when a UIR D; is converted into the UIR Di. with the help 

of T, the generator J 2 is unaffected and neither is the 
choice of the continuous basiS [see Eqs.(1. 12), (1. 14)]. 
In the UIR's C~, however, the eigenvalue a of the op­
erator A implementing T will occur. So we can easily 
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~ee that the following general relation must be valid: 

C( T(R ) T(R') T(R")Y IPa P' b P" c) 

=abc6ayy' C(RR'R"y' Ipap'b P"c). 
y' 

(5.4) 

Here, an' is a set of mixing coefficients possibly de­
pendent on R, R', R" but not on pa, etc. We shall use 
(5.4) only in those cases where no multiplicity label is 
necessary. Further, if anyone of R, R', or R" is a 
discrete class UIR, the appropriate one of the symbols 
a, b, c is to be dropped throughout. Using this relation 
in the present case, we easily get 

C(k- kl-k"-Ipp' P")=C(k+ k'+ k"+lpp' p") 

(5.5) 

and the same is then true for the related quantities C. 

6. SUMMARY 

In this paper we have explained a new approach to 
understanding the structure of the Clebsch-Gordan 
series for the unitary representations of the noncompact 
group SU(l, 1), and have applied it in detail for the pro­
ducts of the types D+®D+ and D-®D-. We have also 
computed the Clebsch-Gordan coefficients for these 
cases in a continuous baSiS, and specified the orthonor­
mality and completeness properties of these coefficients. 
In dOing both these things, we have been led to a simple 
problem in the representation theory of the group 0(4). 
While the C-G series is not new, the C-G coefficients 
are new, and so is the relation of the former to the 
group 0(4). 

We have also set up the basic notation and construc­
tions that will be used in treating the remaining kinds 
of products. 

tPresent address: Centre for Theoretical Studies, Indian 
Institute of Science. Bangalore 560012, India 
IV. Bargmann, Ann. Math. 48, 568 (1947). 
2E. P. Wigner, Ann. Math. 40, 149 (1939). 
3L. Pukanszky, Trans. Am. Math. Soc. 100, 116 (1961). M. 
Andrews andJ. Gunson, J. Math. Phys. 5,1391 (1964). W.J. 
Holman and L. C. Biedenharn, Ann. Phys. (N. Y.) 39, 1 
(1966), 47, 205 (1968). s. S. Sannikov, Sov. Phys. Doklady 11, 
1045 (1967). I. Ferretti and M. Verde, Nuovo Cimento 55, 
110 (1968). K. H. Wang, J. Math. Phys. 11, 2077 (1970). 

4N. Mukunda, J. Math. Phys. 8, 2210 (1967); 10, 2086, 2092 
(1969); J. Math. Phys. 14, 2005 (1973). A. O. Barut and E. C. 
Phillips, Commun. Math. Phys. 8, 52 (1968). G. Lindblad 
and B. Nagel, Ann. Inst. Henri Poincare 13, 27 (1970). 

5M. Toller, Nuovo Cimento 37,631 (1965); 53A, 672 (1968); 
56A, 295 (1968). C.E. Jones, F.E. Low, and J.E. Young, 
Ann. Phys. (N. Y.) 63, 476 (1971); 70, 286 (1972). 

6N. Mukunda and B. Radhakrishnan, J. Math Phys. 13, 254 
(1973) . 

1We follow here the notation of Ref. 1. 
8N. Mukunda and B. Radhakrishnan, Ref. 6. 
9N. Mukunda, third paper in Ref. 4. 

I0I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Generalized 
Functions (Academic, New York, 1966), Vol. 5, Chap. V and 
VI. 

iiB. Radhakrishnan and N. Mukunda, J. Math. Phys. 15, 477 
(1974). 



                                                                                                                                    

1331 N. Mukunda and B. Radhakrishnan: Clebsch-Gordan problem. I 

121n this convention, all the nonzero matrix elements of the 
operators (J1 ± iJ2) are real and positive. 

13V. Bargmann, Ref. 1, Appendix. N. Mukunda Ref 4 14 ' ., 
J. G. Kuriyan, N. Mukunda, and E. C. G. Sudarshan, J. Math. 
Phys. 9, 2100 (1968). N. Mukunda and B. Radhakrishnan, 
Ref. 6. 

15This construction of ~. using oscillator operators is quite 
similar to that of Holman and Biedenharn Ref 3 

16 ' •• 
The point is that eigenfunctions of Jo('"e) with integral eigen-
values have P = + I, those with half-odd integral eigenvalues 
have P= -1. These are consequences of the parity properties 
of harmonic oscillator eigenfunctions. 

17The point is that if only Eq. (2.43) were known, then since 
3C •• 2s and 3C •• _2s (similarly 3C..,28 and 3C_._2,,) support one and the 
the same UIR C~(C!/2), in principle ...t'could have connected 
these two subspaces. But in fact this does not happen. 

18The VIR's of 0(4) can be labeled (it,j2) ' where it and j2 de­
note the constituent UIR's of the two commuting 0(3) groups 
of which 0(4) is (locally) the direct product. The vanishing of 
the second Casimir invariant of 0(4) means that only VIR's 
with it = h occur. 

19gee, for instance, A. R. Edmonds, Angular Momentum in 

J. Math. Phys., Vol. 15, No.8, August 1974 

Quantum Mechanics (Princeton U. P., Princeton, N.J. , 
1960), Sec. 4.7. 

1331 

20This isolation of the angular dependences of Jo 1 in M2 is 
quite similar to the fact that the Hamiltonian f~r a nonrelativ­
istic particle in a centrally symmetric potential V(r), when 
expressed in spherical polar coordinates, involves partial de­
r~vatives with respect to the spherical polar angles 6, <p only 

21v1a the operator of total angular momentum squared. 
Actually, Eqs. (4.4) and (4.5) are inadequate in the sense that 
in the decompositions of ~. and "t! into UIR's, each UIR that 
appears does so twice (except Df/2) , and this is to be kept 
track of. But just as in Eqs. (3.11) and (3.19) we agreed to 
choose nonnegative eigenvalues for M12 , M34 , this problem is 
not severe. 

22We have combined Eq. (4.14) of M. E. Rose [Elementary 
Theory of Angular Momentum (Wiley, New York, 1963)] with 
Eq. (9.5.2) of N. N. Lebedev [Special Functions and their 

2/,pplications (Prentice-Hall, Englewood Cliffs, N.J., 1965)1. 
1. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series 
and Products (AcademiC, New York, 1965), p. 849, formula 
(7.512.5). 



                                                                                                                                    

Clebsch-Gordan problem and coeHicients for the 
three-dimensional Lorentz group in a continuous basis. II 

N. Mukundat and B. Radhakrishnan 

Tata Institute of Fundamental Research, Bombay-5, India 
(Received 1 December 1972) 

Following the approach of a previous paper, the Oebsch-Gordan problem for the group SU(l,I) for 
products of the form D +0D - is related to properties of the pseudo-orthogonal 0(2,2). A new 
understanding of the Clebsch-Gordan series for this case is achieved by analyzing the properties of 
0(2,2) spherical harmonics. The Clebsch-Gordan coefficients in a continuous basis are also 
calculated. 

INTRODUCTION 

In a previous paper, referred to hereafter as I, we 
have described a new approach to the Clebsch-Gordan 
(C-G) problem for the unitary representations of the 
group SU(l, 1). I In this approach, the structure of the 
Clebsch-Gordan series in each of the four essentially 
distinct types of direct products gets determined by the 
properties of a suitable four-dimensional real ortho­
gonal or pseudo-orthogonal group. At the same time 
this connection allows us to compute explicitly the 
Clebsch-Gordan coefficients in a continuous basis. 

The method works with three special "generating" 
unitary representationsL)+' IF, andC of SU(l, 1), and 
exploits the symmetry properties of these representa­
tions and their direct products_ In I, the product rep­
resentation.D+0.D+ was analyzed and related to proper­
ties of the group 0(4) and its representations; in this 
way, both the C-G series and coefficients for products 
of the form n;® n;. were obtained. In the present paper, 
the product representation D+0 Lr will be similarly ana­
lyzed. The corresponding symmetry group will turn out 
to be 0(2,2), and the C-G series and coefficients for 
products of the form n;@n;, will be determined by the 
properties of a special class of unitary irreducible rep­
resentations (UIR's) of 0(2,2) set up in an 0(2)® 0(2) 
basis. 

In Sec 1, we set up the unitary representation 
.D+®fr of SU(l, 1) and display its symmetry under the 
group 0(2,2). Section 2 is devoted to expressing the 
connection between 0(2, 2) and SU(l, 1), as well as the 
action of 0(2,2) on real four-dimensional space, in a 
particularly convenient manner. Using the results of 
Sec. 2, we show in Sec. 3 how the problem of setting 
up 0(2,2) "spherical harmonics" reduces to knowing the 
structure of the regular representation of SU(l, 1); by 
this means the 0(2,2) harmonics are set up in the 0(2) 
® 0(2) basis. In Sec. 4 the Clebsch-Gordan series for 
a general product D~® n;. is obtained from the proper­
ties of the 0(2,2) harmonics. Two types of bases for 
the space of the representation D +® D - are constructed. 
With their help the C-G coefficients in a continuous 
basis are computed in Sec. 5. An important phase ques­
tion associated with the occurrence of the UIR's (S,E) 
in the product n;® nit is analyzed in the Appendix. 

1. CONSTRUCTION AND SYMMETRIES OF THE 
REPRESENTATION D +®L)-

Let us take two representations of SU(l, 1), one of 
type D + in a Hilbert space H( +) and another of type n-
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in H ( - ), and consider their direct product.D +®.D -. 2 The 
space of the total representation will be H =H (+) ® H< -): 
The variabkls of the first factor in the product will be 
numbered 1, 2, those of the second 3, 4. H then consists 
of functions f(x l , x2, x3' x4) with 

IIfW = f: f.: f.: i: dXIdx2dx3dx4/f(XI' X2, x 3' x 4) /2. 
(1. 1) 

The four independent oscillator operators defined on 
H fulfill 

[aJ' a;l = 15 ik' [ai' akl = [aj, a;l = 0, 

aJ = r;~j+ o!} aj= ~(xJ- 0:) 
j, k= 1, 2, 3, 4. (1. 2) 

The generators of the first factor in the product repre­
sentation.D +®.D - will involve the variables numbered 
1,2 and will have the forms given in Eq. (I. 2. 4); we 
will write J",(+, 12) for them. Similarly, the generators 
of the second factor in the product, written J",(-, 34), 
have the forms given in Eq. (I. 2.18). And the" total" 
generators for the product Lr® D - will be 

(1. 3) 

Written out in terms of aJ' aj the J", have the forms 

Jo = !(a;:al + a;a2 - a;a3 - a:a4 ), 

J I = t(a;:a;: + a;a; + alaI + a2a2 - a;a; - a4a: - a3a3 - a4a4 ), 

J2 = (- i/4)(a;:a;: + a;a; + a;a; + a;a; - alaI - a2~ - a3a3 

(1. 4) 

To make the symmetries of these generators more evi­
dent, let us define new basic operators and a metric 
tensor thus: 

(1. 5a) 

gU=g22=+ 1, g33=g44=-1, gI2=g13='" =0. 
(1.5b) 

Then the basic commutation relations (1. 2) and the real­
izations of band b r become (greek indices henceforth 
go over 1,2,3,4): 

[b u' b!l=guv, [b u' bJ=[b!. bj]=O, 

bu =(-i/I2)(xu + oJ, b;=(ijl2)(xu - oJ, 0u 

o 
= axU • 

(1. 6) 

Copyright © 1974 American Institute of Physics 1332 
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[Raising and lowering of indices j)., II,· .• is to be done 
using g"v.] The "total" generators JO/ can be expressed 
in terms of b, b+ and they then appear as 

J o = t(g"vb:bv + 2), J 1 = tgUV(b:b: + b "bv)' 

(1. 7) 

We see immediately that the basic commutation rela­
tions (1. 6) and the generators JO/ are all invariant under 
the group of all real linear transformations 

which preserve the indefinite quadratic form 

x. X=XUX .. = (Xl)2 + (X2)2 - (X3)2 - (X4)2. 

(1. 8) 

(1. 9) 

Such matrices constitute the full pseudo-orthogonal 
group 0(2,2). There is therefore a unitary representa­
tion of this group acting on H, such that the correspond­
ing unitary operators all commute with the operators 
of the representationLj+0D- of SU(I, 1) which also acts 
on H. For the present purpose, it is sufficient to con­
sider just the component of 0(2,2) containing the iden­
tity; for Simplicity we will write 0(2,2) for this com­
ponent. Its representation on H is built up using the six 
Hermitian generators 

Muv=i(b:bv-b~b,,)=i(xuav-xvau) (1.10) 

which obey the characteristic commutation relations 

- i[M uv' Mpa]=gv.M ua- g".Mva+ gv~Pu. -gu~pv' 
(1. 11) 

The symmetry properties of the SU(1, 1) generators J 0/ 

are thus expressed by 

[Ja,MuJ=O. (1.12) 

For the individual sets JO/(+, 12) and JO/(-, 34), we have 
only 

[JO/(+, 12) or JO/(-, 34), M12 or M 34]=0. (1. 13) 

We establish next the connections between the various 
Casimir operators. For SU(I, 1), we have the Casimir 
operators Q.2' Q34 for the individual factors in the pro­
duct L';+0 D -, and then Q for the total. The first two are 
related to M 12 , M34 via Eq. (I. 2.11): 

(1. 14) 

The Lie algebra of the group 0(2, 2) possesses two 
Casimir operators, namely M2 =MuvM uv and €uvpp'vMPa. 
But the generators (1. 10) for the representations of 
0(2,2) of interest are such that the second invariant van­
ishes identically, thereby restricting the types of UIR' s 
of 0(2,2) present inH 3

• Q can now be shown to be essen­
tially the nontrivial Casimir operator of 0(2,2): 

(1. 15) 

On comparing the above discussion with Sec. 3 of I, 
the great similarity in the properties ofD+0D+ and 
D +0 D - will be evident. It is just that the symmetry 
group 0(4) has been replaced throughout by 0(2, 2). The 
differences in the two types of C-G series and C-G 
coefficients can therefore be attributed to this 
replacement. 

The product D +0 D - contains within it all products of 
the form D;0 D~ for various values of k and k' . 4 We 
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want to obtain the C-G series and coefficients for the 
latter. So we must construct two types of bases in H, an 
uncoupled basis (4)) and a coupled one (v). The uncou­
pled basis vectors 4> will be simultaneous eigenvectors 
of the operators M 12 , ~4 (hence Q12' Q34)' J 2 (+, 12) and 
J 2(-,34). Such basis vectors are direct products of basis 
vectors drawn one from each factor in a product of the 
form D;'0 Di •. In the coupled basis, the simultaneously 
diagonal operators should be M 12 ,M34 (hence Q12' Q34)' 
J

2
, M2 (hence Q), and where relevant the unitary opera­

tor that implements the outer automorphism T of SU(I, 1). 
(This last because the continuous UIR's C~ will be found 
to occur in the decomposition of any product D;'0 Dj". ) 
Having M12 and M34 diagonal in both bases ensures that 
we will be dealing with a single product D;'0 D;, and its 
reduction. The coupled basis vectors will belong to de­
finite UIR's of the total SU(I, 1); at the same time they 
will be basis vectors for the UIR's of 0(2, 2) in a defin­
ite form, namely a form in which the 0(2)00(2) sub­
group (generated by M12 and M 34) is "diagonalized. " The 
allowed eigenvalues of M2, keeping those of M12 and M34 
fixed, together with the forms of the generators J a will 
determine the C-G series for a product D;0 Di..; the 
overlap between a 4> and a v will yield the C-G 
coefficients. 

Construction of the coupled basis vectors v can be 
seen to involve the breaking up of H into simultaneous 
eigenspaces of M 12 , M 34 , and~. In other words, we 
are faced with the problem of setting up a complete set 
of "0(2, 2) spherical harmonics" in the real four-dimen­
sional space R4 endowed with the metric guv' This in­
volves going over from the Cartesian variables x /J. of 
R4 to new "radial" and "angular" variables. The trans­
formations of 0(2, 2) act on the angles alone. The uni­
tary representation of 0(2, 2) obtained by the action of 
this group on functions of the angles will yield, upon 
reduction, a complete set of "0(2,2) spherical har­
monics. " The choice of the angle variables must be 
such that these harmonics are obtained in an 0(2)00(2) 
basis. We will develop all this in the next two sections 
by first relating the group 0(2,2) back to SU(I, 1), and 
then making use of the SU(I, 1) Plancherel formula as 
given by Bargmann. 5 We will conclude this section by 
putting the generators JO/ of Eq. (1. 7) into a new form. 
The purpose is to isolate all angle dependences of these 
operators in the operator M2 (or Q). The steps are 
similar to those involved in Eq. (I. 3.17), and yield 

1 ( 4Q 1 2 2 ) JO=-r--2 -2(X·a) -"2x·a 
4 x x x' 

J 1 ( 2 4Q 1 )2 2 ) 
1 = - '4Y + 7" + x2 (x . a + x2 X· a , 

J 2 =(- i/2)(x· a + 2), 

2. CONNECTION BETWEEN 0(2,2) ANDSU(1,1) 
AND CHOICE OF NEW VARIABLES 

(1. 16) 

It is well known that locally the group 0(2,2) has the 
same structure as the direct product group SU(I, 1) 
o SU(I, 1), analogous to the relationship between 0(4) 
and SU(2)0 SU(2). It is this fact that allows us to turn 
the construction of the "0(2,2) spherical harmonics" 
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into a problem involving the group SU(1, 1), and more 
especially the regular representation of SU(1, 1). We 
shall express the 0(2,2)-SU(1,1)®SU(1,l) relationship 
in a particular way which will turn out to be suited to the 
choice of angular variables in R4 as well. 

We know that in the defining representation of SU(1, 1), 
each element g of this group corresponds to a complex 
2 x 2 matrix in this fashion: 

(2.1) 

Let us split the complex numbers a, (3 into their real 
and imaginary parts by setting 

(2.2) 

[There is little danger of these real parameters a1• •• a4 

being mistaken for the annihilation operators used in 
the previous section. ] Denote this quartet of real num­
bers by a. Then elements of SU(1, 1) correspond one-to­
one to quartets a obeying 

(2.3) 

by the equation 

g(a) = al - ia2(J3 - a3 (J1 - a4 (J2' (2.4) 

Consider the group multiplication law of SU(1, 1). The 
product g(b)g(a) corresponds to a quartet of numbers c 
which are linear in both band a. In order to express the 
linearity in a, we may write 

g(b)g(a) = g(L(b)a). (2.5) 

Here, on the right-hand side, a is thought of as a col­
umn vector with ai' a2 , a3 , a4 as entries, and L(b) is a 
4 x 4 real matrix that acts on a to give the quartet of 
real numbers corresponding to g(b)g(a). The matrix 
elements of L(b) are themselves linear in b. Using the 
properties of the Pauli matrices, we get 

-b2 b3 

b1 b4 

L(b)= 
b4 b1 

(2.6) 

-b3 b2 

Either from the observation that along with a, L(b)a 
must also obey Eq. (2.3), or by direct verification, it 
follows that L(b) is an element of 0(2,2). From the de­
fining Eq. (2.5) for L(b) it follows that if g(b)g(a)=g(c) 
is an equation holding among three elements of SU(1, 1), 
then L(b)L(a)=L(c) as well. 

In an analogous manner, another set of 0(2, 2) trans­
formations R(a) can be defined by 

g(b)g(a)-l = g(R(a)b) , 

a1 ll:l -a3 

-ll:l a1 a4 

R(a)= 
-a3 a4 a1 

(2.7) 

-a4 -a3 ll:l 

These too form a representation (nonunitary, of course) 
of SU(1, 1). And by comparing Eqs. (2.5) and (2.7) it can 
be seen that any matrix of type L will commute with any 
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one of type R. All in all, then, corresponding to each 
gE SU(1, 1) we have transformations L(g), R(gk 0(2, 2) 
such that 

L(g')L(g) =L(g' g), R(g')R(g) =R(g' g), 

L(g' )R(g) = R(g)L(g'). (2.8) 

These transformations L(g), R(g) together constitute 
the (identity component of the) group 0(2,2); in fact, 
the most general element of 0(2,2) is the product 
L(g)R(g') for some g, If E SU(1, 1). Thus, we have shown 
that, locally at least, 0(2, 2) has the same structure as 
SU(1, 1)® SU(1, 1). 

The six generators M "v of 0(2,2) can also be separ­
ated into two commuting SU(1, 1) Lie algebras. If we 
define 

Lo=~(M12 -M34), L1 =~(M23 +M14), L2=~(MI3 

-M24 ), 

Ro= ~(M12 +M34), Rl = ~(M23 -Ma ), R 2= ~(MI3 

+ M24) , (2.9) 

then the L a obey the SU( 1, 1) commutation relations 
among themselves, the Rot also do so among themselves, 
while each La commutes with each Rs' The Lot are gen­
erators for the transformations L(g) in 0(2,2), the Ra 
for R(g). Since 0(2,2) - SU(1, 1)® SU(1, 1), a general 
UIR of 0(2,2) consists of the direct product of two 
UIR's, one for each factor SU(1, 1) in the product. Thus 
we may denote it by <;<"1,1<.2) where the operators La 
generate the UIR I<. 1 of SU(1, 1), the operators Ra gen­
erate the UIRI<.2 of SU(1, 1) Ii< = (k,'T/) for the discrete 
series, (s, €) for the continuous series J. Now we have 
to deal with the particular 0(2, 2) representation which 
has the generators given in Eq. (1. 10); and we have 
noted that in this case, the invariant €"vp.,M"vMpa van­
ishes. The structure (1. 10) for M "v has the consequence 
that the two commuting SU(1, 1) subgroups generated by 
La and Ra share the same Casimir operator. In fact, 
we have 

L2 = (L 1)2 + (L2)2 - (Lo)2 =R2 = (R1)2 + (R2)2 - (RO)2 

= - tM2. (2. 10) 

Consistent with this, we will find that only two kinds of 
UIR's of 0(2,2) will appear in our analYSiS, namely 
<;<.. ,R) and V? , Tv?'»; I<. is a general UIR of SU(l, 1) and 
T is the outer automorphism on SU(1, 1). 

Now we shall deal with the action of 0(2,2) on the 
variables x" of R 4 , and the choice of suitable angle vari­
ables. The whole of R4 can be expressed as the union 
of two regions, V· in which x2 > 0 and V- in which x2 

<0: 

V': X2~0, R4= V·u V-. (2.11) 

[The lower-dimensional region x 2 = 0 is disregarded.] 
There is a natural mapping P that takes points in y+ 
into V- and vice versas: 

(2. 12) 

So (PX)2 = - x2. Under the action of 0(2,2), points in 
V· remain in V·, those in V- remain in V-. In both 
cases, we define the radial coordinate r as I x211 /2, 

i. e. , 
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XE V'": x2=,.-2, O<r<oo, 

XEV": x2=_,.-2, O<r<oo. (2.13) 

Guided by the forms of Eqs. (2.3) (2.4) and (2.12), with 
each point x E R4 , we associate an element a(x) E SU(l, 1) 
by 

a(x) = (1/r)(x1 - iX2(J3 - X3(Jl - X4(J2) if x E V+, 

=(1/r)(x3-ix4(J3-xI(JI-x2(J2) if XE V-. (2. 14) 

The definitions for the two regions V· are made so as to 
satisfy 

a(Px) = a(x) , any x. (2.15) 

It is clear that the element a(x) in SU(I, 1) depends only 
on the "direction" of the point x in R 4 , not on its radial 
coordinate r, since for any real number p we have 

a(px)=a(x). (2. 16) 

We may now say that the various possible directions 
within V' are labelled one-to-one by the elements of 
SU(l,l), and similarly within V-. [It is obvious that in 
choosing all possible pOints x in V+, a(x) ranges over 
the whole of SU(l, 1); Similarly for V-. ] Radial and an­
gular type variables have to be introduced separately 
in V'" and in V-. We may think of the variable group ele­
ment a(x) E SU( 1, 1) as being the (generalized) angle 
type "coordinate" in both V' and V". That is, in each 
region, we pass from the Cartesian coordinates Xu to 
the radial and angular coordinates (r, a(x» or (r,g), 
gE SU(l, 1). Once a specific parametrization for the 
elements of the group SU(l, 1) is adopted, those three 
parameters will become three numerical angle type 
variables. Since we want to construct 0(2,2) spherical 
harmonics in an 0(2)00(2) basis, the appropriate 
parametrization of SU(l, 1) will be the one given by 
Bargmann. 7 

The manner in which a transformation of 0(2, 2) ro­
tates one direction in R4 into another can now be ex­
pressed as follows: 

h
t . 

x2 =-rcos "2 Slnll., 
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(2. 19b) 

We can split the Hilbert space H into two subspaces H. 
corresponding to functions that vanish in V', respec­
tively. A general function fin H can be written as a 
pair of functions f_, f. giving the values of fin V- and 
V', respectively. Each of these is in the first instance 
a function of r and a variable element g of SU(l, 1), 
f.(r;g); and on using the parameters Il, t, Il' for g, each 
becomes a function of r, Il, t, and Il'. The Jacobian 
for the transformation is easily computed; it is the same 
in both V- and V', and we get 

dx ldx2dxsdx4 = 21T2y3drda(x) , 

da(x) = td cosht(dll/21T)(dll' / 41T). (2.20) 

Here, da(x) is the invariant volume element on SU(l, 1) 
as defined by Bargmann. The structure of H then ap­
pears thuss: 

(

fJ r;lltll')) 
f(X)EH => f= , 0 <sr, t< 00, 0 <S Il, Il' /2 <s21T, 

f.(r;lltll') 

1!f112 = 10" 21T2y3 dr is UCl,!) da(x)( if.( r; Il til') 12 
+ If_(r;lltll') 12

). (2.21) 

H.WJ consists of vectors which have vanishingfJtJ. 

The 0(2,2) transformations, and so the generators 
M uv' leaveH. andH_ invariant. Each Muv can be rep­
resented on each of H. and H _ as a partial differential 
operator in the "angles" Il, t and Il'. We are particu­
larly interested in M12 and M 34, and they have these 
forms: 

H-: MI2=i(o~' - ooJ, MS4=i(o~' + OOIl). 

a(L(g)x) =ga(x) for all x, 

a(R(g)x) = a(x)g-l if x E V', 

=a(x)T(g)-1 if XE V-. (2.17) (2.22) 

We will leave the verification of this to the reader. [The 
action of T on the element corresponding to the quartet 
(ai' a2, a3, a4) is to give the quartet (ai' -a2, as' -a4). ] 

In the Bargmann parametrization for SU(1, 1), a gen­
eral element is specified by three coordinates Il, t, Il' 
by writing the matrix (2. 1) as the product 

(

e iu /2 0 \ (coSht/2 

o e- iu /'l \,sinht/2 

sinht/2 \(eiU' /2 
cOSht/2)~ :.,"',} 

(2.18) 

The ranges for these parameters are O<s 1l<S 21T, 0 
<S t < 00, 0 <S Il' <S 41T. In a genenl representation of 
SU(1, 1), the element (2. 18) is represented by 
exp(iIlJo) exp(itJ2) exp(ill'Jo)' By equating the element 
a(x) to (2.18), we get the equations relating Xu to the 
new variables in V' and V": 
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H.: MI2=-i(o~' + OOIl)' MS4=-i(o~' - OOIl)' 

Quite generally, the expressions for MI2,M2S,MSl'M14' 
M 24 , and MS4 inH_ coincide with those for -MWM14' 
M SI ' M 23 , M24 and -MI2' respectively in H •. Therefore, 
the operator M2 has the same appearance in H _ and H •. 
But we shall not need to deal with it directly. 

3. THE 0(2,2) SPHERICAL HARMONICS 

Complete sets of 0(2, 2) spherical harmonics in both 
V" and V· will be built up via the Plancherel formula for 
SU(l, 1).5 Let us recall this formula. It states that 
every square-integrable function on SU(l, 1), f(g), can 
be expanded in terms of the representation matrices 
d~)(g) of the principal series of UIR's of SU(1, 1) as 
follows: 

(3. 1) 
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Here, the process of "integrating" a function 7u<.) over 
the set of relevant UIR's of SU(I, 1) is defined as 

JfiR7(p)= L; I;7(k,17)+ I; f~ds7(s,€). 
k=1,3/a,··· TJ=i: e=O,1!2 0 

The weight function /-L(R) is given by 

/-L(R) = (2k - 1)1/2 if R = (k, 71) 

= (2s/coth1Ts)1/2 if R = (s, 0) 

=(2S/tanh1TS)1/2 ifR=(s, 1/2). 

(3.2) 

(3.3) 

The coefficients 7 mn(R) that appear in the expansion are 
given by 

Jnm(R)=/-L(R)J dgf)L~)(g)*f(g), (3.4) 

and the Plancherel theorem is the statement 

J dglf(g) 12 = J fiR L; Ilnm(R) 1
2

• (3.5) 
mn 

The invariant volume element dg has already been spe­
cified in Eq. (2.20), using the Bargmann parametriza­
tion. We can define a generalized Kronecker symbol 
o(R ,R') that is appropriate to the definition (3.2) of 
integration with respect to R [see Eq. (I. 4. 3)]; using it, 
we easily establish the orthonormality properties of the 
matrices .0 (R)(g): mn 

J dgj)~~)(g)*.o ~q.')(g) = o{f~' ,R )5m'm5" n!/-L(R' )/-LI./<..). 
n (3.6) 

In all the above, the.o (R)(g) were the representation 
matrices for the UIR's ~f SU(I, 1) in the basis wherein 
J o is diagonal. These functions have been given by 
Bargmann. With the coordinates /-L, ~, /-L' for SU(I, 1), 
we have 

(3.7) 

A relation that we will need is the behavior of these 
functions under the automorphism r of SU(I, 1). This 
is given by 

.oS~)(r(g»=(_l)m.n1):L~!n(g). (3.8) 

The expressions for the "little-d" functions d(R\~) will mn 
be presented when needed. 

Let us now consider the question of setting up 0(2,2) 
spherical harmonics in the region V·. What we need is 
a complete set of functions of the "angle variables" 
a(x) which are bases for UIR's of 0(2, 2), and in terms 
of which we may expand the "angular dependence" 
[Le., dependence on a(x)] of a function f.(x,,) =f.(r,a(x» 
defined in V·. On the basis of Eqs. (2.17) and (3.1), we 
can see that such a set of functions is given by 

(3.9) 

R goes over just those UIR's of SU(l, 1) that appear in 
the Plancherel formula; it is like the "l" in the ordin­
ary three-dimensional spherical harmonics y~(e, cp), 
while the role of m in the latter is played now by the 
composite index (mn). 9 We can determine the UIR of 
0(2,2) carried by the harmonics fj;L~)\x) for fixed R by 
using Eq. (2.17) and the group composition laws for the 
f) matrices: 
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y;<J,,\)(L(g)R(I/)X) = m~,f)~~~(g~L~)(I/)*Y;S«!,)(x), XE V·. 
(3.10) 

Now the matrices.o (R)(g)* give the UIR complex conju­
gate to R, and this in turn is just the UIR r(R). We can 
then say that for fixed R and x E V., the harmonic s 
fj~<JJ,)(x) carry the UIR (R, r(R)) of 0(2, 2). The spectrum 
of UIR's of 0(2, 2) present in H. is then 

H.: (k+, k-), (k-, k+), (se, se), k = 1,3/2" • " 

e=O, 1/2, O .. s< 00. 

Any function f.(r;a(x)) in H. can be expanded as 

f.(r;a(x» = J fiR /-L(R )L;f.~(!J(r)II·(R)(X), 
mn ':J (mn) 

(3.11) 

f+(~ (r) = /-L(R ) Jda(x)1 J+(R)(x)*f.(r;a(x)), (3. 12) 
t ~ (~~ 

with 

1If.ll2 = J ~ 21T2r dr J fiR I; It.<.~( r) 12 • 
o mn 

(3.13) 

In partic~lar, if we have two functionsf(rly"(L~)(x) and 
f'(r)fj(v.\»(x) inH., their scalar product will be 

if' f)=O(B,',R)5m'm5n'nr"21T2rdrf'(r)*f(r). (3.14) 
, /-LU?)/-L(R) J 0 

The spectrum of UIR's of 0(2, 2) occurring inH. dif­
fers from that in H., and this will have important con­
sequences for the reduction of the representation.o· 
(1)' of SU(l, 1). To start with, let us define 

y~(JJ(x)=f)L~)(a(x», XE V'. (3.15) 

Then under the 0(2,2) transformation L(g)R(I/), instead 
of Eq. (3.10) we now have 

-(R) "" (R) (0) -(R) Y (Wln)(L(g)R(g')x) = m~,f)mm,(g~,.:,> (r(g' ))*fj (m'''' )(x), 

XE V'. (3. 16) 

On taking account of Eq. (3.8), we see that now for 
fixed R we have the UIR U~ ,R) of 0(2, 2). If R is a dis­
crete UIR of SU(l, 1), this is not equivalent to (R, r(R)), 
while if R is in the continuous class, it is equivalent to 
{(~, rum. The spectrum of UIR's of 0(2, 2) occurring in 
It" is therefore this: 

H_: (k+, k+), (k-, k-), (SE, SE), 

k=1,3/2,"', e=O, 1/2, O .. s<oo. (3.17) 

Now the UIR (SE, se) is present in both H. and H., and it 
is therefore useful to choose the corresponding spher­
ical harmonics in the two cases so that the transforma­
tion laws under 0(2,2) are not merely equivalent but 
identical. Comparing Eq. (3.16) with Eqs. (3.8) and 
(3. 10), we are led to the following final choice of 0(2, 2) 
spherical harmonics in the region V'10: 

(3. 18) 

E = 0 or i according as n is integral or half-odd inte­
gral. Then, for R = (8, E) we have, uniformly; 

fj~~~)(L(g)R(I/)X)= m~,LJ~~}(g)LJ~~)(I/)*fj7W)(X). (3.19) 

The analogs to Eqs. (3.12) and (3.13) in the case of 
a function f.<x) belonging to H. are as follows: 

. f.(r;a(x» = J fiR /-L(R )LJ,(.!iJ.(r'!!J(~~)(x), 
ron 
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J5,f!l(r) = Jl(R)J da(x)y(~~(x)*f_(r;a(x)), 

Ilf_W= f021T2rdr J dR~ If'<,~(r) 12; (3.20) 

and the scalar product of two elements f(r)y(~f!)(x) and 
f'(r)lj(~8)(x) inH_ will be of exactly the same form as 
in Eq. (3.14). 

The definitions given in Eqs. (3.9) and (3. 18) for 
y<Vi,)(x) and y(~)(x), respecti.vely, constitute a full . 
solution to the problem of settmg up the 0(2,2) spherl­
cal harmonics in an 0(2)0 0(2) basis. Taking account 
of the differences in the forms of M 12 , M34 in H _ and in 
H + as expressed by Eq. (2.22), and also the differences 
between Eqs. (3.9) and (3. 18), we see that we have 
uniformly 

Ml"/j~Vi,)(x) = (m + n)y~~~)(x), 

M3Jj~~f!)(x) = (n - m)y~~~)(x) . 
(3.21) 

We now have adequate information to write down the 
general forms of vectors in H that are eigenvectors of 
M 12 , M34 and also belong to definite UIR's of 0(2,2). 
While M12 as defined in (1. 10) coincides with the opera­
tor used in I in the analysis of the representation /J + of 
SU(1,1), M34 is the negative of that used there in the 
analysis of the representation /J -. To pick out the parti­
cular productD;0D~, in/J+0/J- (which incidentally is 
present four times unless k and/or k' is t), it is con­
venient to choose the eigenvalues (2k - 1) and (1 - 2k' ) 
for M12 , M 34 , respectively. (The former is nonnegative, 
the latter nonpositive. ) For such values of M12 and M 34, 
not all the UIR's of 0(2, 2) listed in Eqs. (3.11) and 
(3.17) can appear. SpeCifically, from (3.21) we have 
m = k + k' - 1 ~ 0, so the UIR's (k" -, k" +) in H+ and 
(k" -, k" -) in H _ will not show up. Given the eigenvalues 
for M 12 , M34 as above, an element in H belonging to the 
UIR (k"+, k"+) of 0(2,2) must lie withinH_; in the nota­
tion of Eq. (2.21) it must have the form 

f./J (k" +) ( I») 
f.( r) JlW )( _1)k' -k+'\" k+k' -1 'k~ -k Jl tJ.1. , (3.22) 

and its norm will be 

(3.23) 

If on the other hand it is to belong to the UIR (k"+, k"-), 
it must lie inH. and have the form 

f+(r)Jl(k"/ (k"+) ° (ll loll'»); \LJ k+k''''1, k-k' ,...... ~,...... 
(3.24) 

its norm will be 

(3.25) 

Both vectors (3.22) and (3.24) possess the eigenvalue 
k"(1- k") with respect to the total SU(1, 1) Casimir 
operator Q; the former vector will exist only if k' ~ k 
+ 1, the latter only if k ~ k' + 1. This is because in the 
Plancherel formula for SU(1, 1) the two UIR's D~/2 are 
absent, so in the above we must have k" ~ 1. 

The third type of vector we are interested in belongs 
to the urn (se, sE) of 0(2,2) (and of course has M12 = 2k 
-1, M34 = 1 - 2k'). Since this UIR of 0(2, 2) is present in 
bothH+ andH_, such a vector involves two radial func-
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tions and has the general form: 

(3.26) 

The purpose of the phase factor cp(s, e) is to ensure that 
when the vector (3.26) is acted upon by the operators of 
the representationL.f0/J- of SU(1, 1), the changes 
brought about in f.( r) and f.( r) will have the standard 
forms explained in I and characteristic of the UIR (s, e) 
of SU(1, 1). It has been evaluated in the Appendix and 
turns out to be rp( s, 0) = 2rp( s, t) = 1T. It is evident that the 
vector (3. 26) possesses the eigenvalue t + S2 with re­
spect to Q. If we take another vector of the form (3.26) 
but with the replacements f~( r) - f: (r), s - s', E - E' , 
then the scalar product of this vector with (3.26) will be 

o(s' - s)o'" ,(0 21T2r(j!( r)*f.( r) + f: (r)*f+(r)) dr. 
(3.27) 

This is the analog of Eqs. (3.23) and (3.25) and has to 
be stated in this way because s is a continuous variable. 
Of course, all the three equations (3.23), (3.25), (3.27) 
are consequences of Eq. (3.6). 

4. C-G SERIES FOR THE PRODUCTS D+0D-

We know that the generators J" of the representation 
iX0iF of 5U(1, 1), commute with the transformations 
of 0(2, 2). Let us consider the action of a finite SU(1, 1) 
transformation on a vector of the form (3.22). This vec­
tor will preserve its property of being an eigenvector 
of M 12 ,M34 and of belonging to the UIR (k"+, kl/+) of 
0(2,2); in other words, under the action of SU(1, 1) the 
sole change will be in the radial function f.( r). Stated 
yet another way, the subspace of H containing all vec­
tors of the form (3.22) for all possible f.(r) is invari­
ant under /J + 0/J -; and the restrictions of J" to this sub­
space yield purely radial differential operators that 
act on f.( r). These radial operators are easy to get, 
since we may use Eq. (1. 16) and the facts that in con­
Sidering vectors like (3. 22) we may set Q = k" (1 - k"), 
x2 = - r. In this way we find 

rJ"r-1/M =2k-1 =J,,(k", -). 
12 

M34=1-2k' 
(k" +,11' +) 

(4.1) 

The operators on the right are the ones defined in Eq. 
(I. 1. 13) in setting up the urn's D- in a standard form. 
The similarity transformation needed on the left before 
achieving the standard form is to compensate for the 
fact that the measure in the radial integration in (3.23) 
is r3 dr unlike the measure r dr in Eq. (I. 1. 8). There­
fore, the subspace of H under consideration carries the 
UIR D~" of SU(1, 1), in the standard form. This UIR oc­
curs in the decomposition of the particular product 
D~0 D~, within/J +0L)", going with the choices M12 = (2k 
-1), M34=(1- 2k'). Since this subspace inH exists on­
ly when k' ~ k + 1, we draw the conclusion that D;0 D~, 
contains Di,,, only if k' ~ k + 1 and k" .; k' - k. In any 
case, k" ~ 1, so all in all 1 .; k" .; k' - k is the condition 
for D~" to occur in D;0 Dit . 

In a similar fashion, the restriction of J" to the sub­
space of vectors of the form (3.24) gives operators in 
the standard form for the UIR D~" : 
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rJ",r-1
I M12 =2k.l =J",(k", +). 

M34=1-2k' 
(k" +, JtI-) 

(4.2) 

In this case, we substituted X2 = r2 and Q = k" (1 - k") in 
(1. 16); the operators J",(k'~ +) are given in Eq. (1.1. 9). 
This subspace of H carries the UIR D~" and since it 
exists only when k '" k' + 1, we see that the product 
D~0 D;, contains D~" under the conditions 1 .., k" ..,k - k' . 

Finally, the restriction of J", to the subspace of vec­
tors (3.26) will yield differential operators in r which 
are simultaneously 2 x 2 matrices; purely formally we 
find 

(4.3) 

where the standard operators on the right appear in 
Eq. (I. 1. 17). The existence of the present subspace 
places no conditions on k and k'; E just gets determined 
by k + k' in the natural way. Of course, establishing Eq. 
(4.3) is not enough to guarantee that we have found the 
UIR (s, E) of SU(l, 1) in the standard form in the subspace 
ofH made up of the vectors (3.26). But it is shown in 
the Appendix, by considering the finite transformation 
exp(iJJ.Jo) and its action on the vector (3.26), that this 
is indeed the case. We can then draw the conclusion 
that within this subspace of H the outer automorphism T 

of SU( 1,1) is implemented by the operation of inter­
changing fjr) and f.(r). 

From all these considerations, the structure of the 
C-G series, 

k-k' 

D;0D~, = ()(k - k' -1) 6 D~, 
kIt ~lor3/2 

k' -k 

+()(k'-k-1) L; D~" 
k"illor3/2 

(4.4) 

k, k' = t, 1,~,"·, e=O(t) and k::Un= 1m if k + k'=integer 
(half-odd integer) 

may be inferred. Here, ()(x) = 1 for x = 0, t, 1,~, ... and 
=0 for X= - t, -1, -~"'" We see that the structure 
of this series is determined by the spectrum of 0(2,2) 
representations in an 0(2)00(2) baSiS, present in H. 

We conclude this section with the construction of the 
uncoupled and coupled basis vectors for H- Suppose we 
had used radial and polar variables separately for the 
pairs X1X2 and X3X4, namely, set Xl +iX2=P exp(icp), 
X3 + iX4 = p' exp(icp'). Then, on the basis of our analysis 
ofO~ in Sec. 2 of I, as well as Eq. (1.1.12) and (I. 1.14), 
apart from numerical factors an uncoupled basis vector 
would be 

exp[-i(2k-1)cp](p)2iP-l exp[i(1- 2k')cp'];(p,)2W -l. (4.5) 

This is an eigenvector of M 12 , J 2(+,12), M 34 , J 2(-, 34) 
with eigenvalues (2k - 1), p, (1- 2k'), P', respectively. 
It is a basis vector for the product D;0 D~,. To express 
this vector in the form of Eq. (2.21), we must relate 
p, cp, p', cp' to r, JJ., /:, JJ.' in V+ and in V". Comparing 
with Eq. (2. 19) we get 

V+: p=rcosh/:/2, Cp=-JJ.+, p'=rsinh/:/2, CP'=7J'+JJ._, 

V": p=rsinh/:/2, Cp=7J'+JJ._, p'=rcosh/:/2, cp'=-JJ.+. 
(4.6) 
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Then the properly normalized uncoupled basis vector <I> 

is 

<I> (~.m~~) = [r2i(P.tll-2/27J'2] exp[i(k +k' - 1)JJ.] 

x( -1)2k-l(sinh/:/2)2iP-l (coshI/2)2W-1 exp[i(k' - k)JJ.'] ) 
(_1)2k'-1( cosh/:/2)2iP-l (sinh/:/2)2W'1 exp[i(k - k' )JJ.'] / 

(4.7) 

These vectors obey 

(<I> (k1+)(ki-) <I>(k+)(k'-»-Ii Ii Ii(P p)"(P' p') (4.8) 
P1 Pi' P P' - kl k ki k' 1 - v 1 - • 

[We are restricting ourselves to nonnegative eigenvalues 
for M12 and nonpositive ones for M34 throughout. ] 

For the coupled basis vectors '11 in all three cases 
namely (3.22), (3.24), (3.26), the radial dependenc~s 
are determined by the fact that we want J 2 to be diagon­
al. In addition, in the case of (3.26), the ratio off_ 
to f+ is given by the eigenvalue a of the operator A im­
plementing the automorphism T. The vectors '11 and their 
normalizations follows: 

x~ k~~+.!l'k~k'(JJ./:JJ.' »), 
k-k' ",k" '" 1; 

'I1(k+)(k'-Hk"w-) = !..(2k" _1)1/2(_1)k'-k+Er W'-2 
P 7J'\ 27J' 

x~ k!;::Lo-k(JJ./:JJ.'») , 

k' - k ",k" '" 1; 

,y(k+) (k'-)(&E) _ JJ.(s, e) r2 W '-2 
P·a - 27J'v1f 

X ( _1)-k' +k+E exp[icp(s, E:)]O k!i.; ~1 ,k' -k(JJ.I:J.l.' ») 
aOk!k;~1,k+k'(JJ./:JJ.') . 

(4.9a) 

(4.9b) 

(4.9c) 

vectors '11 of distinct types are orthogonal. [In any case, 
types (a) and (b) do not exist simultaneously.] For the 
rest 

These results are essentially consequences of Eq. (3.6). 
The normalization conditions (4. 8), (4.10) agree with 
the convention expressed in Eqs. (I. 4. 4) and (I. 4.5). 

5. C-G COEFFICIENTS IN A CONTINUOUS BASIS 

There are three types of C-G coefficients to be cal­
culated, namely C(k+k' -R Ipp'p"a) forR=(k"+), 
(kh_) and (s,e). These three coefficients are the scalar 
products of the uncoupled basis vector <I> in Eq. (4.7) 
with the coupled ones '11 in (4. 9a, b, c), respectively. The 
factor o(P + P' - p") will always be present, its coeffi­
cients in the three cases, written C(k + k' - R I PP' a) will 
be computed. 

From Eqs. (4.7) and (4. 9a) we get 
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C(k+k' -k"+ IpP')=(_1)2k"1e
k
;; ly/2 

x.r d~(cosh~/2)-2iP(sinh~/2>-2W dl!;:.!1,k-If(~' (5.1) 

In arriving at this result, the trivial integrations over 
j.L, j.L', and r have been carried out; the r integration 
gives us the factor I5(P + II - P") and on dropping it we 
get the quantity C. Now the "little-d" function in (5. 1) is 
given by Bargmann; it is the matrix element of the finite 
SU(l, 1) transformation exp(i~J2) between eigenstates of 
Jo with eigenvalues k + k' - 1 and k - k', in the UIR 
(k"+) of SU(l, 1). It can be expressed in terms of the 
hypergeometric function asll: 

d(k"+)W= 1 f(m - k")!(m + k" _1)!\1/2 
mn (m-n)!\(n-k")!(n+k"-I)!/ 

x (cosh~/2)-m-n (sinh~/2)m-n 

m=k+k' -1?-n=k-k'?-1. (5.2) 

Instead of using this directly in (5. 1), it is convenient 
to change the argument of the 2F1 function to tanh2~/2 
using the transformation12 

2F1(k" - n, 1- kIf - n;1 + m - n; - sinh2~/2) 

= (coshd2)2n-2k" 2F 1(k" - n, k" + m; 1 + m -n; tanh2~/2). 
(5.3) 

Then, on further substituting tanh2d2 = t, the ~ integra­
tion in (5.1) reduces to the evaluation of 

.( dt tk'-l- iP'(1 - t)If'+IP+IP'-\F1(k" -n, k" +m;1 +m - n;t), 

(5.4) 

This can be done, the result being essentially a gener­
alized hypergeometric function of the variety 3F2; the 
value of the integral is13 

r(k' - ip' )r(k" + ip + ip') 
r(k' + kIf + ip) 

x F (k" + k' - k, kIf + k' + k - 1, k' - ip' ; 1) . 
3 2 2k~ k' + kIf + iP; (5. 5) 

Putt~ng all the pieces together, the final expression for 
the C coefficient for the product D;@ D~. - D; .. has the 
appearance 

C(k+k'-k"+ IpP')=(_1)21f-1(2k"-1\1/2 1 
27T / (2k'-I)! 

x/(k +k' - kIf -1)!(k + k' + k" - 2)!)1/2 
\ (k-k' -k")!(k+k" -k' -I)! 

x r(k' -w)r(k" +iP+ip') 
r(k' + k" + ip) 

x F (k"+k'-k,k"+k'+k-l,k'-iP';l) 
3 2 2k~ k' + k" + ip; . (5.6) 

In a similar fashion, the C coefficient for the case 
D;0 D;. - D; .. turns out to be 

C(k+k'_k"_lpP')=(_1)2k-l(2k"-1)1/2 1 
27T (2k - 1)! 

x /(k + k' - kIf - I)! (k + k' + kIf - 2) !)1/2 
\. (k' - k - k")! (k' + kIf - k - 1) ! 
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r(k - ip) f'(1t' + ip + iP') 
x r(k+k"+ip') 

x F (k
ll
+k-k"k"+k+k'-I,k-iP")) (5.7) 

3 2 2k, k + kIf + iP; . 

The expressions in (5.6) and (5.7) should be compared to 
that in Eq. (I. 4.11) corresponding to the case D~0 D~ 
- D;' .. In all three cases, the final result consists of 
just a single term, that being the 3F2 function, In all 
other kinds of products, the C coefficients turn out to in­
volve two or more ~2 functions. 

The last case to be treated is D;0 D;'. - C:. Now using 
Eqs. (4.7) and (4. 9c), doing the trivial r, j.L, j.L' inte­
grations and dropping the factor fl"p + P' - p"), we arrive 
at 

C(k + k'- se IpII a)= - j.L~;;'i" ddexp{icp(s, €)}(- 1)k+k'-E 

x (cosh~/2>-2w (sinh~/2)-2il>dk!k~~1 ,k'-kU;) + a( _ 1)2k' 

X(cosh~/2>-2IP(sinh~/2t2W dk!k;~1,k-k'W], (5.8) 

Now, these d functions are the matrix elements of 
exp(i~J2) in the 0(2) baSiS, in the um C;, q=t +S2, 
They are given byll 

d($'E)(~)= 1 (r(m+t+iS)f'(m+t-is»)1/2 
mn (m - n)! r(n+ t+ is)r(n+ t - is) 

x (cosh~/2tm-n (sinh~/2)m-n2Fl( t - n + is, t - n - is; 1 

+m-n;-sinh2~/2), m=k+k'-I?-n=±(k'-k). (5.9) 

It is again preferable to have tanh2~/2 as the argument 
of the 2F1 function, and this is achieved usingl2 

2Fl(t - n+ is, t - n - is;1 + m - n;- sinh2~/2) 

= (cosh~/2)2n-2i$-12Fl(t - n + is, t + m + is;1 + m - n; 

xtanh2~/2) (5.10) 

which is the same as Eq. (5. 3) with k" replaced by t 
+ is. Then (5. 8) becomes 

C(k+k' - selpP'a)=- j.L(S,E) [(_I)k+k'-E exp{icp(s E:)} 2,(; , 

x J(kP, k'lI ;s) + (- 1)2k' aI(k'lI , kp;s)]' 

J(k' P' kP's) 1 (r(k + k' - t + is)f'(k + k' - t - is) )1/2 
, , (2k'-I)! r(k-k'+t+is)r(k-k'+t-is) 

x J'" d~(cosh2~/2'-If-/(I>+$) (sinh2~/2)k"W-1/2 
o 

X 2F1( t + is + k' - k, - t + is + k + k' ;2k'; tanh2d2). 
(5. 11) 

The substitution tanh2 ~/2 = t puts the ~ integral in the 
form 

f 1dt tk'-W'1(I_t)-1/2+/(p'+I>+$) F (1.+is+k'-k _1.+' o 2 1 2 , 2 zs 

+k+k';2k';t). (5.12) 

This is the same integral as appears in (5.4) but with 
the change k"- t + is (and with m =k + k' - 1, n= k - k'). 
Likewise its value is given by setting kIf - t + is in (5. 5). 
All in all, then, the C-G coefficient in the present case 
is given by Eq. (5.11) with the value of J(k'lI, kp;s) 
being 
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[(k'p' kp's)= 1 (r(k+k'-~+iS)r(k+k'-~-iS»)1/2 
" (2k'-1)! r(k-k'+~+is)r(k-k'+~-is) 

X rw -ip')r(~ + i(P + p'+ s» 
r(~+k'+i(P+s» 

X F (k'-k+~+iS,k'+k-~+is,k'-ip';l) 
3 2 2k',k'+~+i(P+s); . 

(5. 13) 

In contrast to the purely discrete case, we see then that 
these C-G coefficients are sums of two terms, each 
involving the generalized hyper geometric function -?2' 

6. SUMMARY 

Following the approach of the previous paper, we have 
related the Clebsch-Gordan problem of SU(I, 1) for 
products of the type D;,61\ V;. to the properties of the 
"spherical harmonics" for the group 0(2,2), and thus 
we have understood in a new way the form of the C-G 
series in this case. Luckily, the properties of these 
spherical harmonics could be gleaned from properties 
of SU(I, 1) itself, since locally 0(2,2) has the structure 
SU(I, 1)61\ SU(1, 1). The C-G coefficients for such pro­
ducts in a continuous basis have been computed and 
again are expressible in terms of the -?2 function. For 
the purely discrete cases, IrIXiD-- V'" the C-G coeffi­
cient is just a single term, but in the case IrIXi D- - C 
there are two terms. The fact that the two urn's Di /2 

are never contained in a product of the form D;1Xi D-". for 
any values of k and k' whatsoever, including the values 
~, is reunderstood in a satisfying manner: it is be­
cause these two urn's are absent in the SU(l, 1) 
Plancherel formula, so we have no "0(2,2) spherical 
harmonics" corresponding to them. 

APPENDIX 

We shall explain here the need for the phase cp(S,E) 
occurring in Eq. (3.26), and then determine it. We have 
explained in Sec. 1 of I the manner in which the UIR C: of SU(l, 1) could be set up in a Hilbert space consist­
ing of pairs of functions f1(r),j2(r); the forms for the 
scalar product and the generators J",(S,E) are in Eqs. 
(1.1.16) and (1.1.17). However, as noted there, the 
expressions for the generators are purely formal; they 
must either be supplemented by precise statements about 
their domains, or alternatively one could directly write 
down the actions of finite group elements. For example, 
we have 

h=exp[itJo(s, E)1!: 

hj(r)= t r 00 dr'r'L~:.E)(r,r';t)fk(r'). 
k=lJo 

(A1) 

The L J~' E) are known, and the value of L1~' E), which is 
all we will need is l4

: 

L~.E)(r r,·t)= :-1 exp[(i/2)(i-r,2)cott/2] 
12 " rr smt/2 

X (exp[ rrs] + E exp[ - rrs]) 

X K2i.( rr' / sint/2). (A2) 

(The E on the right has values ± 1 according as E = 0, t). 
Now consider the representations of the groups 

SU(l,l) and 0(2,2) which were both defined in Sec. 1 to 
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act on the Hilbert space H and which had the property of 
commuting with one another. By analyzing the 0(2,2) 
representation, we were able to define appropriate 
"spherical harmonics" in the two regions V·, V- of 
R4 ; they served the purpose of fully reducing the repre­
sentations of 0(2,2) occurring inH _ andH+, respective­
ly. We are interested in the occurrences of the UIR 
(SE,SE) of 0(2,2) inH_ as well as inH+. By means of the 
definitions of y+«R»(x) in Eq. (3.9) and y-(R)(x) in 

~ ~n) 

Eq. (3.18), we were able to ensure the complete iden-
tity of their transformation laws under 0(2,2), for the 
case R = (s, E); this fact is stated in Eq. (3.19). For any 
set of constants C""" and for a fixed (s, E), let us con­
sider an element f in H of the form 

G
(r)el"("E)L;C .y_< •. E)(X») 

f - - mn (mn) 
- mn 

(r) L;c Y+(··E)(X) 
+ mn (mn) 

mn 

Now the transformations of 0(2,2) can in no way "dis­
tinguish" between the upper and lower components of 
such an f since they are constructed in exactly the same 
way from functions having identical 0(2,2) transforma­
tion laws. On the other hand, since the transformations 
of the representationD +IXiD - of SU(l, 1) commute with 
0(2,2), they can in no way alter the 0(2,2) structure of 
an element f in H. SO for example if h = exp[itJolt, where 
f is the above vector and Jo is one of the generators of 
D +1Xi D -, then h must be of exactly the same form as j, 
with the same set of coefficients C mn; the only change 
can be a replacement of f.(r) by two new radial functions 
h.(r). We have here essentially the urn C: of SU(1, 1) 
acting on the pairs of radial functions f.(r). We must 
now choose the phase cp(S,E) in such a way that the re­
lations that express h.(r) in terms of f.(r) are in exactly 
the standard form corresponding to the UIR C~, namely, 
Eq. (A1). The point is that the only freedom we have is 
in the choice of this phase, and it should be possible to 
choose it so as to achieve the above purpose. 

To fix cp (s, E), it is clear! y enough to obtain the con­
nection between hJr) and j.(r), and arrange matters so 
that precisely the kernel (A2) is required. We must of 
course get the connection between h_ and f. by some 
global means; this is quite easy since Jo involves just 
harmonic oscillator Hamiltonians. In four-dimensional 
Cartesian variables, we have [cL Eq. (1. 7)]15 

Jo=i(x"x" - 0"0,,), 

[exp(itJo)f)(x):; h(x;t) = f ~x, L(x, x';t)j(x'), 

L(x, x';t) = (2rr sint/2)-2 exp[ - i«x2 + X,2) cost/2 

- 2x' x')/2 sint/2] (A4) 

Now suppose f(x') vanishes when x' E V-, while we want 
to evaluate h(x;t) for XE V-. Then we must change vari­
able from x'" to r', IJ.~, t' according to Eq. (2. 19a) and 
from x" to r, IJ."" t according to Eq. (2. 19b), and re­
write Eq. (A4). Now the invariants have the values 
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x2 == _ Y, X,2 == + r,2, 

X' x' == rr'(coshl;/2 sinh I; , /2 cos(tJ.+ + tJ.~) - sinh ~ 

1;' 
xcosh"'2 cos(tJ._ + tJ.:». (A5) 

Writing h-Cr;tJ.I;tJ.') for hex) when XE V-, (A4) becomes 

h-<r;tJ. 1;tJ.') = (27T sint/2t2fo "" 27T2r,3 dr' ~ "" ~d cosh 1;' 

,(2' dtJ.'1 2
• dtJ.' 

xJo t: 0 27T- exp[(i/2)(Y - r,2) cott/2j 

[
. rr' ( hI;· h 1;' ( ')'nh I; xexp t sint/2 cos '2 sm "'2 Xcos tJ.+ + tJ._ - SI '2 

XCOSh; cos(tJ.: + tJ.J)]f.(r';tJ."I;'tJ.'''), tJ.~ 
(A6) 

Let us now put in for f+ an expression like the second 
element in the column vector (A3), namely, 

f.(r';tJ." 1;' tJ.,,,) == f+(r')~C mn exp[imtJ." + intJ.'" ]d!:~' )(1;'). 
mn (A7) 

Then the integrations over tJ. ~ can be explicitly carried 
out using 

ft ] 10 dcp exp[i(a coscp ± mcp)] == 27T exp[im7T/2 J mea), (A8) 

Jm(a) being the ordinary Bessel function. One then finds 

xexp[-in(tJ.' +7T)] 

x fa"" dr'r,3f+(r') exp[(i/2)(Y - r,2) cott/2] ~ "" d cosh 1;' 

Il! == rr' sinh 1;/2 cosh 1;' /2/ sint/2, (3== rr' cosh 1;/2 

XSinhl;,/2sint/2. (A9) 

The phase cp(s, E) must now be chosen so that this has 
just the form of the first element in the column vector 
(A3) and the kernel with which f.(r') is being integrated 
is precisely Li~' ')(r, r';t) (except for the change in mea­
sure rdr to r 3 dr). That is, for appropriate choice of 
cp(S,E), the right-hand side of (A9) must coincide with 

x r""r'71r'xL(s")(r r,·t)r''f(r') Jo 12" + • (A10) 

Since both Cmn andf.(r') are arbitrary, cp(S,E) is to be 
determined from the following equality: 

1"" dcoshl;'d(·,e)(I;')J (O!)J (~ 
1 mn m+n m-n ,...) 

==exp[iCP(S, E)]exp[i7T(2n + 1 +F}] 4 sint/2 d~,'_.':W 
7Trr' 
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This is to be valid for all rr', 1;, t, m, and n. For each 
(s, E), by making particularly simple choices of m, n 
we can determine cP (s, EL 

Take first the case E == 0, when € == + 1. It is then sim­
plest to choose m==n==O, and also set 1;==0. Using, as 
a particular case of Eq. (5.9), 

(A12) 

and also writing u for the combination rr' / sint/2, (A 11) 
simplifies to 

1"" dcoshl;'F( ~ - is, ~ + is; 1; - sinh2 1;' /2)Jo(u sinh 1;' /2) 
1 

t [. ] 8cosh7Ts 
== - exp zcP (s, 0) } K 2i .(U). 

7TU 
(A13) 

But the left-hand side is a known integral,16 and its val­
ue happens to be just what multiplies the factor 
{-exp[iCP(s, O)J} on the right; hence we conclude cp(s, 0) 
== 7T. 

Next, when E =={ and E == -1, choose m == - n == {, I; 
== O. In place of (A 12), now we use 

dif;,~n2(1;') == - s sinh(I;' /2)F(1 - is, 1 + is; 2; 

-sinh2 1;'/2L 

Then (A 11) simplifies to 

(A14) 

.r dcoshl;'F(l-is, 1+is;2; -sinh21;'/2)(sinhl;'/2)J1 

x (u sinhl;' /2) 

==exp[i(cp(s,{) -7T/2)] 8 sinh7Ts K 2i '<U). 
7TuS 

(A15) 

Once again the left-hand side is a known integral, and its 
value coincides with the right-hand side save for the 
first factor. 16 This then yields cp(s,~)==7T/2, so CP(S,E) 
is fully determined. 
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8For a reason that will be clear later, we prefer to listf_ 
first, f+ second. It is so that the urn C~ encountered in the 
reduction of Dj, ® Di. be obtained in the standard form of 1. 

9This statement is not quite correct; the superscript R. does 
not denote a urn of 0(2,2), that is to be denoted by (R., R.) or 
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York, 1965), p. 63. 
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edited by A. Erdelyi (McGraw-Hill, New York, 1954), Vol. 
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Bernouilli's principle of insufficient reason is formulated in a noncommutative C *-algebraic 
generalization of probability theory. This idea is developed here for general quantum systems, and a 
simple illustration of it is given. Subsequent papers in this series will deal with more sophisticated 
models. 

INTRODUCTION 
This paper, the first in a series, is organized in the 

following manner. In Sec. 1 we present the general 
formalism we want to propose. Section 2 is an outlook, 
in which we examine some of the possible applications 
of this formalism. Section 3 contains a most simple 
illustration of the ideas put forward in Sec. 1. 

1. THE GENERAL FORMALISM 

Various generalizations of the related concepts of 
coarse graining a priori probability and conditional ex­
pectation from classical probability theory to the non­
commutative probability theory of quantum mechanics 
have appeared in the literature for the past twenty 
years. 1-3 However, the continuity of the one-particle 
momentum spectrum in infinitely extended quantum 
systems renders their momentum coarse graining at 
once physically desirable and beyond the scope of these 
papers. The present paper offers a general formalism 
which allows, in particular, a proper definition of the 
momentum coarse-graining operation. This specific ap­
plication will be discussed in details in subsequent pa­
pers in this series, for we want to concentrate here on 
the general formalism. For illustrative purposes, how­
ever, we include in the present paper a very simple 
model which we treat in accordance with our formalism. 

A C* -algebraic4 framing of the probabilistic concepts 
referred to above has been suggested by one of us 
(GGE). Recalling the main pOints, let ~ be the C*­
algebra (with unit) of observables of a physical system 
"E, and let @i denote the set of states on ~. By necessity 
or by choice an incomplete set of observables p, as­
sumed to be a C· -subalgebra (with unit) of ~, is 
selected for experimental observation. The experimen­
tal determination, through p, of a state Po of 6 provides 
then only partial information about the state of the sys­
tem; this information is summarized by the restriction 
Po of Po to P. The question now is whether a rational 
choice for Po can be made based on the known informa­
tion given by Po, or, equivalently, whether a "best bet" 
for the remaining expectation values can be placed. To 
answer this question, one must choose among the non­
empty (2.10.1 of Ref. 5) subset Epo C;;;@i of all extensions 
of Po to ~. The states pEE Po, which by definition have 
the same restriction to p, are te rmed P -equivalent. 

Our criterion for chOOSing the bettor's extension Po 
of Po is a refinement of Bernoulli's "principle of insuffi­
cient reason. "In the physical models considered below 
there exists a symmetry group G of automorphisms of 
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~, which is conjugate to P in the sense that P is the set 
of all G-invariant elements of~, p~~G. The existence 
of the conjugate pair (P, G) is expected on physical 
grounds: An observed effect E is experimentally shown 
to depend upon P only by demonstrating that transforma­
tion by G does not affect the result. Considering P to 
be the momentum observables of a one-particle system 
in free space and G to be the group of space translations 
illustrates this point. Now, since G acts trivially on p, 
one possesses "insufficient reason," on the basis of the 
determination of Po, to favor the assignment to <Po: S) 
of any value different from that assigned to <Po :gS) for 
any SE~ or any gE G. Therefore, the bettor's extension 
must be G-invariant. If there should exist a unique G­
invariant extension of Po to ~, it is then the "best bet" 
for Po. It is important to realize at this point that the 
question of whether or not the odds warrant betting at 
all is not conSidered here. In applications to generalized 
master equations, 6 this question must be resolved by 
detailed analysis of the "interference term." We shall 
seek, therefore, to establish that the following property 
holds for some models 6 to be conSidered below. 

Property C: Let (~, p, G) be defined as above. Then, 
each state p on P admits exactly one G-invariant ex­
tension to ~(. 

When this property C is established for a model 6, 
one can define, as we shall presently see: the a priori 
probability assignment conditional upon P; the p-coarse 
graining map; and, with other mild restrictions (Lemma 
1. 5), the p-conditional expectation. 

The a priori probability assignment conditional upon 
p: Suppose that 6 possesses property C. Denote by 
C *(w I P) the unique G-invariant extension to ~ of the 
state w on p. The map C *(. 'P) :@i( P) _@i G, of the set 
@i(P) of all states on P into the set @iG of all G-invariant 
states on il, is an affine bijection called the a priori 
probability assignment conditional upon P. 

The p-coarse graining operator: Let w be any state on 
il and denote by w its restriction on p. The mapping 
1)(., P) : @i-@iG, defined by L)(w' P) =C*(w I P) is an 
affine surjection called the P-coarse graining operator. 
For each wE@i, {*(w' P) is the maximal" coarsening" 
of w which preserves the p-information content of w, 
and it is the "best bet" for w based upon the partial 
information obtainable by observation of P only. 

The P-conditional expectation: The term "p-condi­
tional expectation" shall be reserved for a map 
C (., P) : ~ - P whose dual coincides on@i(fJ) with {* (., P) 

Copyright © 1974 American Institute of Physics 1343 
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and which possesses the following properties: 

(i) [(AS +yTlp) =Ac(SI P) +yC(T Ip) YS, T E ~, YA,y E C, 

(ii) t(s*slp)~OY SE~, 

(iii) c(llp)=l, 

(iv) c(S[(Tlp)lp) ==t(Slp) [(Tip) YS, TE~, 
[C[(T I P)SIP> ==C(T I P) c(S I P). 

It would be consistent with Halmos' nomenclature 7 to 
call our P-coarse graining operator a p-conditional 
expectation. However, we prefer to follow here 
Umegaki's notation. 1 

We shall prove in Theorem 1. 6 that if G is amenableB 

and if (~, G) admits at least one faithful (for ~), covari­
ant representation, Property C ensures existence of 
[(·1 P); uniqueness is inherent to its definition. 

We first examine some of the consequences of amen­
ability of G. 

1. 1 Lemma: Let G be a topological group, let ~ be 
a C* -algebra with unit, and let a : G - Aut ~ be a strong­
ly continuous homomorphism of G into the automorphism 
group of~. Denote by ~G (resp. ~*G) the set of all G­
invariant elements of ~(resp. ~*). Let 1) be a mean on 
CB(G). Then, 

(a) For each continuous linear form cP on~, the map­
ping 1)*cp: ~-C, defined by (1)*cp :S)=1)(cp: a(.)S)Y S 
E~, is also a continuous linear form on ~. 

(b) The mapping 1)* : ~* - ~ * defined in (a) enjoys the 
following properties: 

(0) 1)*(ACP +y1j;) = A1)*CP +Y1j*lj! ";/ cp, 1j; E ~*, ";/A, y E C; 

(i) II1)CPI!,,; IIcpll";/CPE~*; 

(ii) cP ~ O~T/*CP ~ 0 ";/ cP E ~*; 

(iii) (T/*CP : 1) = (cp : 1) ";/ cP E ~*; 

(iv) T/*¢oS=T/*(cpoS), 

SOT/*CP =1)*(So cp), ";/SE ~G, ";/cP E ~*; 

(v) 1)*¢ E Co{a;CP IgE G}-w* ";/rp E ~*; 

(vi) if 1) is an invariant mean, then a:T/*cp =T/*a;cp 
=T/*CP ";/ gE G, ";/ cP E ~*, and 1)* is a parallel projector. 

The proof of this result is analogous to that used by 
Radin. 9 

1. 2 Corollary: Let G be an amenable topological 
group. Then, there exists at least one G-invariant ex­
tension of each state p on ~G '" p. 

Proof: Notice first that Ep is a convex, w*-closed, 
G-stable, nonempty subset of @5. Let T/ be any invariant 
mean on CB(G), and let 1j; E Ep. Then, by (v) T/*'f 
E Co{a;l/JlgE G}-w* \: Ep, and by (vi) T/*l/J is G-invariant. 
To sum up, amenability of G in a model system ~ 
assures existence of a G-invariant extension to ~ of 
each state of p, i. e., guarantees the existence part of 
Property C. Uniqueness remains to be proven 
independently. 

Property C is rather stringent, as illustrated by the 
following result. 

1. 3 Corollary: For any state p on p, let M 
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PrOOf: From Cor. 1.2 we have already that @5n Ep is 
not empty. For the present corollary it is therefore 
sufficient to prove that l/J* cP both in@5G n Ep occurs 
exactly when M is empty, but this follows immediately 
from the proof of Cor. 1. 2 and from the construction 
of M. 

1.4 Lemma: Let G be a topological group, let IV be 
a von Neumann algebra acting on a Hilbert space H, and 
let a : G - AutN be a strongly continuous homomorphism 
of G into the automorphism group of N. Denote by NG 

the set of aU G-invariant elements of N. Let T/ be a 
mean on CB(G). Then, 

(a) For each S EN, the mapping T/bS:N * - C, defined 
by (cf> :'Y/0S) =T/(cf> : a (. ) S) ";/cP EN * is a continuous linear 
form on N*, and therefore defines an element of IV. 

The mapping 1)0 :N - N defined in (a) enjoys the follow-
ing properties: 

(0) 1)b(AS+yT)=A1)bS+Y1jbT ";/A,yEC, ";/S, TE N; 

(i) lIT/bSII,,; IISII ";/SEN; 

(ii) T/b(S*S)~O ";/SEN; 

(iii) T/b(l) = 1; 

(iv) 1)b(ST)==T/bS. T ";/SEN, ";/TE N G
, 

T/b( TS) == TT/b S; 

(v) 1)bS E Co{agSlgE G}-ultraweak; 

(vi) If 1) is an invariant mean, then 

1)bS= a g1)bS=T/b agS ";/ gE G, ";/SE N, and T/b is a G­
invariant, NG -conditional expectation in the sense of 
Umegaki. 1 The proof is analogous to that presented on 
p. 180 of Ref. 10. 

1. 5 Lemma: With the assumptions and notation of 
Lemma 1. 4, suppose further that (i) T/ is an invariant 
mean, (ii) there exists a C*-subalgebra (with unit) ~ of 
N which is stable under the action of G, and (iii) there 
exiSts precisely one G-invariant extension to ~ of each 
state won P'" ~G. Then: 

(a) For each S E~, 1) bS is the unique G-invariant 
element of Co{agSI gE G}-N; 

(b) T/o~= p, and (T/bl~)* p=C*(pIP) ,,;/pE@5(P). 

PrOOf: (ada) Let T/ be an invariant mean on CB(G) and 
let T/* : N* -N* be defined as in Lemma 1.1, and 
1)b : N - NG as in Lemma 1. 4. Now let cP be an arbitrary 
state on N. Then, by vi rtue of Lemmas 1. 1 (iii, iv, vi) 
and 1.4 (iii, iv, vi), cpo1)°I~ andT/*cf>I~ are two 2,­
invariant states on ~ whose restriction to P is cP 1 ~ • 
From the uniqueness assumption of the present lemma, 

/:\ 
cf>OT/bl~=T/*cf>I~=[*(cf>I~ Ip). (1.1) 

Now let {Ma}aEI be a net of discrete means convergent in 
the w*-topology of CB(G)* to T/. 8 Then,l1 for cf> on N, 

(1. 2) 
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Therefore, for each SE! Eqs. (1.1) and 1. 2) imply 

(1)*cfJ :S)=lim(cfJ :M~S)=(cfJ :1) bS). (1.3) 
BEl 

It follows by linearity and the arbitrariness of 1> that 

7JbS = u(;V,;V*) - limM~S 'V S E!. (1.4) 
BEl 

Thus, for each S = ~, rfS E CO{CI'gS I gE G}-weak = Co {CI'gSI g 
E G}-N by Mazur's theorem (V. 3.13 of Ref. 12). Sup­
pose now that S *- S' are two G-invariant elements of 
CO{QlgSlgE G}-N. Choose a state cfJ onN such that 
(cfJ : 51 *- (cfJ : 5'). By G-invariance of 71 and by continuity 
(7J*cfJ : T) = (7J*cfJ : S) 'VT E CO{QlgSI gE G}-N. Thus, we have 
the contradiction: (cfJ : 5) = (71 *cfJ : 5) = (71 * cfJ : 5') = (cfJ : 5'). 
This proves (a). 

(adb) That 7Jb!= P follows from (a) and the stability 
of ! under G. The second assertion then follows from 
Eq. (1. 1). 

The following result then follows immediately from 
the above lemma. 

1. 6 Theorem: Let (!, p, G) be the triple formed by a 
C*-algebra ~ (with unit), a C*-subalgebra (with unit) P 
of !, and a continuous group G of automorphisms of ! 
such that P is the set of G-invariant elements of !. 
Suppose further that 

(0 G is amenable, 

(ii) (!,p,G) satisfies Property C, 

(iii) :3 a covariant representation (1T(!), U.(G)) of 
(!, G) in the set of all bounded operators B(H) on some 
Hilbert space H such that 1T:! - B(H) is faithful. 

Then, the p-conditional expectation (;(·1 P) :! - Pis 
defined and unique. 

Actually, in applications of this theorem to various 
models it is often sufficient to establish a weakened 
form of Property C; we establish the existence of a 
unique G-invariant extension of each state defined on 
some P ~ ! G instead of on ! G itself. When G is amena­
ble' this weakening is of no consequence as seen from 
the following result. 

1. 7 Proposition: Let (!, p, G) be the triple formed by 
a C*-algebra~, a C*-subalgebra (with unit) P of!, and 
a continuous group G of automorphisms of ~ such that 
P ~ ~G. Suppose further that 

(0 G is amenable, 

(ii) each state on P admits a unique G-invariant ex­
tension to ~. 

Then, P=!G. 

Proof: Suppose that P *-!G. Then, by 11. 3.1 of Ref. 5, 
there exist states Wi- W' on ~G such that ('f : SI = (W' : S) 
'V S E p. Thus, by hypothesis (i) and Cor. 1.2 there 
exist G-invariant extensions Ijj and Ijj' of wand 'V, 
respectively, to!. By construction (W :S)=(W' :S) 
'V S E p, and 1jj *- 1)'. This contradicts hypothesis (ii). 
Hence P=!G. 

2. OUTLOOK 

The interest of the results presented in Sec. 1 is that 
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the conditions under which they are valid are satisfied 
in models of physical relevance. Our principal motiva­
tion was indeed to develop a formalism in which the 
momentum coarse graining of infinitely extended quan­
tum systems can be properly defined so that applications 
to nonequilibrium statistical mechanics can be 
envisaged. 

In particular, one of us has shown4 that, in the hereto­
fore available formalism, the generalized master equa­
tion (GME) for momentum observables of quantum sys­
tems in finite volume13 cannot have the semi group or 
Markoff property without being trivial. On the other 
hand, we have shown with a dissipative model14 that this 
no-go result must be bypassed for at least one infinitely 
extended quantum system. Many other authors (cf. 
Ref. 6) have indeed emphasized the necessity of contin­
uity of the one-particle momentum spectrum for expla­
nation of dissipation at the macroscopic level of quantum 
mechanics. 

The advantage of our C*-algebraic formulation is 
demonstrated by its ability to describe the momentum 
coarse graining of infinitely extended quantum systems, 
whereas the continuity of the one-particle momentum 
spectrum was an essential obstacle (cf, Ref. 2, Prop. 
5, and Ref. 3, Cor. 3. 1) in dOing so within the frame­
work provided by the previous von Neumann algebraic 
formulations. 

As an illustration of the physical content of the 
mathematical structure analyzed in Sec. 1, we establish 
in the next section that Property C is satisfied for 
momentum coarse graining of multiparticle quantum 
systems in free space and demonstrate that the p-coarse 
graining operator may be heuristically identified with 
the "diagonal part operator with respect to the basis of 
plane waves. " 

This shows in a most simple example that the consid­
erations presented in this paper do make contact with 
the physical world. More complicated situations will be 
discussed along these lines in subsequent papers15

,16 in 
this series. 

3. MOMENTUM COARSE GRAINING OF 
MUL TIPARTICLE QUANTUM SYSTEMS IN 
FREE SPACE 

Let 6 be a quantum mechanical system constituted by 
a single particle confined to move on the configuration 
space IR. We first describe this system in the C*­
algebraic language of the introduction and show that it 
possesses Property C, where P is the C*-algebra of 
momentum observables and where G is the group of 
space translations. We further show that the additional 
conditions of Theorem 1. 6 are satisfied so that all the 
terms defined in the introduction (i. e., coarse graining, 
a priori probability assignment, and conditional expec­
tation) have unambiguous meaning for this model. 

Let H ~ L 2(R) be the Hilbert space of all square inte­
grable functions on the real line R. Denote by S(R) the 
set of all infinitely differentiable, complex-valued func­
tions on R for which 

limxN ddM~ (x)=O "if N,ME7l,+. 
Ixl-~ X 

(3.1) 
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Let P and Q be the momentum and position operators 
defined on S(R) by 

(Qf)(x)=~x) ~ 
d/ 'I fE S(R). 

(Pf)(x) = - i dx (x) 
(3.2) 

Since P and Q are each essentially self-adjoint on S(R), 
Eqs. (1. 2) define P and Q as self-adjoint operators on 
L 2(R). P and Q generate via Stone's theorem strongly 
continuous one-parameter unitary groups on L 2(R}: 

U(a) = exp( - iaP) 'I a E R, 

V(b) = exp(- ibQ) 'Ib E R. 

U(a) and V(b) satisfy the Weyl form of the canonical 
commutation relations (CCR's). 

(3.3) 

U(a) V(b) = V(b) U(a) exp(iab) 'I a, b E lR. (3.4) 

The C*-algebra ~ generated in B(L 2(lR» by 
{U(a) V(b) 1 a, bE R} describes the momentum and posi­
tion observables of a particle on the configuration space 
lR. The C*-subalgebra P generated by {U(a) la E lR} 
describes the momentum observables. The group G, 
conjugate to p, is identified with the group of space 
translations. This group is represented in the automor­
phism group of B(L 2(lR» by a strongly continuous homo­
morphism ll! defined by 

ll!aS=U(a)SU(-a) 'IaER, 'ISEB([2(R». (3.5) 

For each a E R, ll!a restricts to an automorphism of ~. 

We now recall a result identifying the translationally 
invariant states on ~. 

3.1 Lemma: Let w be a G-invariant state on ~ and 
denote by w its restriction to P. Then, (w: U(a) V(b» 
= o/),o(w : U(a» 'I a, b E R. 

Proof: See p. 232 in Ref. 10. 

Since ~o=L{U(a) V(b)la, bElR}is a dense linear sub­
set of~, Lemma 3.1 implies, by linearity and contin­
uity, uniqueness of any G-invariant extension of w. 
This, with amenability of G (Cor. 1. 2), gives the 
following: 

3.2 Proposition: Let (~, p, G) be as above. For each 
state w on p, there exists precisely one G-invariant 
extension to ~. This established Property C. 

We now investigate the momentum coarse graining of 
the normal states on BtL 2(R~, heuristically identifying 
[) (·1 P) with the" diagonal part operator with respect to 
the basis of plane waves." 

The mapping j : L OO(JR) - B(L 2(JR» of the set of all 
essentially bounded functions on JR into BeL 2(JR», defined 
by 

(3.6) 

where dE is the spectral measure associated with the 
momentum operator P, is (see Ref. 17, 1. 7.3 Th. 2) 
a C* - and W* -isomorphism of L OO(lR) onto the maximal 
Abelian von Neumann algebra to which P is affiliated. 
Let eaEC(R) denote exp[-ia(')]' Since 

j(ea) = f R exp(- iak)dEk = exp(- iaP) = U(a) 'Ia E R, 
(3.7) 
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j establishes a C* -isomorphism of AP(R), the space of 
almost periodiC functions, onto the C*-algebra P. 

Now let Xk be the state on AP(JR) defined by evaluation 
at ko: (X k :j)o=j(ko) 'IfEAP(R). kO=j*-lx. is therefore 

o "0 
a state on P defined by continuous linear extension from 

(kO : U(a» = exp(- iako) 'I a E JR. (3.8) 

Now define ko ={* (ko 1 P). Since ko is translation invari­
ant, dispersion free on P and satisfies (ko : exp( - iPa» 
= exp( - ikoa), ko is interpreted as the plane wave state 
with wave vector ko' 

3.3 Proposition: Let p be a density matrix whose 
Fourier transform has continuous symmetric kernel 
]p].I(k, k') with compact support on 

JR2[i, e., ]pf(k) = f dk']pJ'l(k, k')]f(k')]. 

Then 

(D(p I P) :S) = f lldk]p]·I(k, k)(ii: S) 'ISE~. 

Proof: We first prove that the right-hand side actually 
defines a state on~. Since ]p].I(k,k)?- 0, and since 
f dk]p]'I(k, k) = 1, it suffices to show that the function 
(Ii: S) is measurable for each S E~, but this follows 
from 

(k:S)=(O:V(-k)SV(k» 'IkER. (3.9) 

and the fact that this is a continuous function of k. 
Therefore, the right-hand side defines a state on ~. To 
prove equality, of the rhs with Ihs of the conclusion, it 
is sufficient by Proposition 3.2, to prove that p agrees 
with the right-hand side when restricted to P. It clearly 
suffices to show that 

(p:U(a»=ffldk]p]·I(k,k)exp(-ika) 'IaER. (3.10) 

On the other hand ]p].I(k, k') = L,iA;tf>T(k) tf>i(k'), where 
{tf>;}iEZ. is an orthonormal baSis of L 2(JR) and the sum 
is uniformly convergent by Mercer's theorem. 18 

Therefore, 

(p: U(a» 

=~ f dkdk'(L; A;tf>i(k') tf>;(k~ tf>j(k')exp(-iak) tf>j(k) 

(3.11) 

= f ]p].I(k,k)exp(-iak)dk, 

where Mercer's theorem has been used to interchange 
the sums and integrals. This proves (3.10) and the 
proposition. 

The previous results show the coarse graining opera­
tor D(·I P) :@)_@)G sends, under the assumptions of the 
propOSition, the density matrix p into its diagonal part 
with respect to the "basis" of plane waves. D(p 1 P) is 
however no longer a density matrix. Indeed, there are 
no translation invariant density matrices on L 2(lR). 19 

Now let p be any denSity matrix on B(H). Since the 
restriction p of p to Pis ultraweakly continuous, it 
admits a unique ultraweakly continuous extension to 
P"=jL 00 (R). There exists, therefore, a unique L ,_ 
distribution function fp such that h(k) ?- 0, U-;(k) dk = 1 
and 

(3. 12) 
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or, equivalently, 

(p: S) = f fp(k)(r1S)(k)dk "i/S E p. 

Therefore, by Proposition 1. 2, 

(D(p I P) : T) = f fp(k)(k : T) dk. 

(3.13) 

(3.14) 

By virtue of Proposition 3.3, fp(k) may be interpreted 
as the "diagonal part" ]p](k, k'). 

Denote by @iN the set of all density matrices on 
BCL 2(JR». It is readily established that the mapping 
j* o{*(.1 P)-l is an affine bijection of the "diagonal" 
density matrices D<@iN I P) onto the set of all L I-distri­
bution functions. This fact has been used20 by one of us 
(JeW) to rederive by traditional methods the Pauli-type 
master equation for the model of Ref. 14. 

In closing this section, we want to add that a straight­
forward change of notation suffices to generalize the 
preceeding considerations to N-particle quantum sys­
tems on the configuration space JRM. The case of an 
infinite number of degrees of freedom might be treated 
analogously provided that the test function space is 
complete. 

*Research supported in parts by NSF Grants GU-4040 and GP-
38626. 
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The general C *-algebraic fonnalism developed by the authors for the coarse-graining operations in 
quantum statistical mechanics is shown to be applicable to the case of a Fenni system confined in a 
finite volume. 

INTRODUCTION 

In a previous paper1 the present authors proposed a 
noncom mutative extension of Bernouilli's principle of 
insufficient reason as a possible approach to the prob­
lems concerned with the definition and uses of the vari­
ous notions of coarse graining in quantum statistical 
mechanics. A certain "Property C" had to be satisfied 
for this extension to be most fruitfuL The present paper 
shows that this condition is satisfied for a Fermi system 
confined in a finite volume; this is done in Sec. 2. Sec­
tion 3 contains a comparison of our C* -algebraic 
approach with the W* -algebraic approach suggested by 
the work of Kovacs and Szucs. 2 Section 1 fixes our nota­
tion for Fermi systems. 

1. BASIC FACTS ABOUT FERMI SYSTEMS 

Let,v be the Hilbert space of one-particle wavefunc­
tions for a Fermi system 1:. Denote by ®f=1 ,v i the N­
fold tensor product of copies of~. The permutation 
group of N elements, SN' admits of a unitary represen­
tation, U: S N - B(®t,1 ~i) where for each pES N' Up is 
defined by continuous linear extension from 

N N 

UPi~ Ii'" ?P1/p(/)· 

Denote by A the proj ection (N! )-1 L: PES (- 1) a(p) Up of 
®f=1 ~j onto its antisymmetric subspac~. 

LetHF(~) be the anti symmetric Fock space con­
structed over.o; i. e. , 

where 

{
c if if N=O 

HN = N 
A®~. if N-;.l 

i=l t 

(1.1) 

The creation operator a*(j) [resp. destruction opera­
tor a{j) for a fermion with wave function I E ~ is defined 
onH ~~) by 

[a*(j)<I> IN.l = (v' N + 1)"1 A{j18i <l>N) ,., NEZ·, ,,<I> Eli PO) 

(1. 2) 

[resp. a{j)=a*{j)*j. 

These operators satisfy the canonical anticommutation 
relations (CAR's) 

[a{j),a(g»).=O, [a{j),a*(g)l.={j,g) "f,gE~. (1.3) 

The mapping a*:,v-B(H ~,v) is linear and satisfies 
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Ila*{j)11 ~ Iljll~. (1. 4) 

The C*·algebra ~ (~) of the CAR is the C*-subalgebra of 
B(HF(~» generated by {a*{j)lfE~}. 

The group of all one-particle symmetries of the 
Fermi system 1: is obtained by extension3 to automor­
phisms of ~ (~) of the group of unitary operators on ~. 
Let in fact, V be an arbitrary unitary operator on ~. 
We define Von Bf/! F(~)) by 

N 

_ N {?P1Vi<l>N for N-;.l, V<I>EHF(,v), 
(V<I» =<1> forN=O. (1.5) 

Evidently, the mapping -: tJ( f{) - B (H F(,v» is a unitary 
representation of the unitary group 1J(f{) in B(H F(~»' 
Denote by 0/ :IJ(~) - AutB(H F(f{)) the homomorphism of 
tJ(f{) into the automorphism group of B(H F(~» defined 
for each VEU(~) by 

OI y S= VSV* "SEB(H F(f{)). (1. 6) 

Since OI y a{j)=a(Vf) "fEf{), VVEtJ(~), O!y restricts 
to an automorphism of W(~) for each VEtJ(,v). 

A state of the Fermi system 1: is a positive, nor­
malized, linear functional on the C*-algebra ~(~). De­
note the set of all states by @5(~). By virtue of the CAR 
[Eq. (1. 3)] a state w on ~(~) is determined, by linearity 
and by continuity, by its n-point correlation functions: 

WN,M{jU'" ,fN;g1,··' ,gM) 

'" (w : a*{jN) •.• a*{(1)a(g1) •.• a(gM» 

(1. 7) 

We shall, in particular, be interested in the set of 
gauge invariant generalized free states on ~(~). 

1. 1 Definition: Let Go(f{) = {exp(i<t>)11 0 ~ <t> ~ 27T} ctJ(f{)) 
denote the gauge group of~. Go(~) is represented in 
Aut~(f{) by the extension map. 

Remark: A state w E@5(~) is gauge invariant if and 
only if WN,M=O for N*M. 

1.2 Definifion4
: A state Ws is a gauge invariant gener­

alized free state on ~(,e,) if the n-point correlation func­
tions have the form 

where S = S i is a linear operator on .0 satisfying 0 ~ S ~ 1. 

Copyright © 1974 American Institute of Physics 1348 
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2. MOMENTUM COARSE GRAINING OF FERMI 
SYSTEMS IN FINITE VOLUME 

We specialize the formalism of the preceeding section 
to a Fermi system '6 confined to an N-dimensional 
torus. For the sake of notational simplicity we consider 
explicitly only the particular case of the unit circle S 1 • 

The Hilbert space ~ of one -particle wave function is 
then L 2(SI) and the appropriate fermion algebra is 
~((e(S 1» '" 2l. Denoting by P the C* -algebra of second 

quantized momentum observables and by G the group of 
generalized space translations, we shall prove in this 
section (Proposition 2.2 below) that the central "proper­
ty C" postulated in Ref. 1 is satisfied for the specific 
situation characterized by the triple (~, p, G) considered 
in the present paper. 

The C*-algebra of second-quantized momentum ob­
servables is defined as follows. Let P be the generator 
of space translations on L 2(S 1). Denote by {p k IkE Z} 
the one-dimensional eigenprojectors of P and by {fk I k 
E z} the corresponding orthonormal basis of L 2(SI). Let 
PI be the maximally Abelian von Neumann subalgebra 
of B(~) to which P is affiliated. Since PI is generated 
by {PklkE Z}, there exists, for each SEPu a unique 
fs E L ~(z) such that 

S= I; fs(k) Pk' 
kEZ 

(2.1) 

Since the second-quantization map -:B(fJ)-B(HF(fJ» 
sends 8 to S='ikEZfs(k)Nk , where N~"'atak"'a*{fk)a{fk)' 
it is natural to define the C*-algebra P of second­
quantized momentum observables U{l} to be the C*­
subalgebra of ~ generated by {Nk IkE Z}. 

It is furthermore natural to define the group G of 
symmetries conjugate to P by extension of the unitary 
group G of P 1-

We now establish a result identifying the G-invariant 
states on ~. 

2.1 Lemma: Let w be a G-invariant state on ~ and 
denote by w its restriction to p. Then, for all {flY , 
{gj}M cL 2(8 1 ) and for all N,M E Z+ 1=1 

j=l 

WN MUU" . ,fN;gu··· ,gM) = 15 M N N!II; iii' K~A I; z\ 
, • \i=l 1=1 iJ 

where K~(kH ..• , kN) '" (w : Nkl ••. NkN.> is a symmetric 
multiplication operator on 07=1 L 2( Z) j and where - de­
notes Fourier transform. 

Proof: Let w be any state on ~ and let V = 'i kE Z 
xexp[ifv{k)]PkEG. Then, 

(w'O' la* ···a*a "'a »=(w'a* "'a*a "'a \ • Y\)N )1 k1 kM ')N )1 kl kM' 

(2.2) 

The assull1ptions that w is G-invariant places restric­
tive conditions on the set of correlation functions re­
ferred to in Eq. (2.2) If (w :a* ., 'a:t' ak •. 'a k \*0 

IN Jl 1 AI" 
thenj;*ji, 1.;; Ui'.;;N, andkl*k l, for 1.;;l*l'.;;M. Now 
if for some 1.;; i';; N there existed no 1.;; 1 .;; M such that 
j;=kl we would have upon choosing tj . (k)=1Tl5k,j. the 
following contradiction: • ! 
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(2.3) 

The conclusion is that the correlation functions vanish 
unless the two sets {jl}i=1 and {kJ7=1 are identiCal and 
unless j 1* j; for 1.;; i * i' .;; N. Moreover, in this case 

(w:a* .. ·a* a '''a >=(-i)"(P)(w:N. "·N. > (2.4) ) N j 1 kl k N J 1 J N ' 

where P E SN is the unique permutation such that jf 
= kp- 1!' Hence, if w is a G-invariant state, then 

(w:a* ···a)*ak "'ak >=(0l",K~A0jJ.)OMNN! IN 11M ii' 

(2.5) 

where K~ is the multiplication operator, K~(ku •.• , kN) 
=(w :Nk .. 'Nk >. 

1 N 

By sesquilinearity and continuity, we have, for all 

{f1}~=U {gj }:=1 c e(8 1), 

( ) (
N_ N N_ 

WN,M f1"" fN; gl'" ,gM = 0M,NN! ~lgi'KwA ~JI)' 

(2.6) 

Since any state on ~ is determined by its n-point 
functions, the preceeding lemma together with corollary 
1. 2 in Ref. 1 establishes Property C for the present 
model, namely: 

2.2 Proposition: Let ~ be the CAR C*-algebra 
~(L 2(SI», P be the C*-algebra of second quantized 
momentum observables, and G be the group of gener­
alized translations. Then for every state w on P there 
exists exactly one G-invariant extension of w to ~ . 

3. COMPARISON WITH OTHER APPROACHES 

The aim of this section is to compare our C*-alge­
braic approach to coarse graining with the von­
Neumann-algebraic approach suggested by the work of 
Kovacs and Szucs. 2 In order for the latter to be at all 
applicable to the present model we first must check 
that ~"=B(H F) is G-finite. 

Denote by r the family of all finite subsets y of Z. 
Let N(y) denote the number of elements of y. In each 
subset y we impose an arbitrary but fixed ordering 
y = {k I}~=i.'); we define the corresponding anti symmetrized 
product of normal modes <1>" 

M [N( ) ]1/2 N(r) 
<1>, =OM N(') y! A ~ fk.' 

• 1=1 t 
(3.1) 

It is well known that {<I>r},Er composes an orthonormal 
basis of H F' For each y E r, denote by P, the projector 
onto the one -dimensional subspace spanned by <I> ,. 

Now, for any V E G, lett v: Z -tR be s,9 that V 
='iKexp[ifv(k)]P •. It is easily seen that V<I>,=IIf=<,t> 
Xexp[ifv(k,)]<I>y, where y={K" ... ,KN(rJ. Therefore, the 
state whose density matrix is P, is G-invariant. 
Furthermore, since the support of P r in B(H F) is just 
P r and since 'irErPr=1, B(HF ) is a G-finite von 
Neumann algebra. 2 Let T - TG be the corresponding 
G-canonical map. 
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We can now exhibit the relations between the two 
approaches. Indeed, since TG is the unique G-invariant 
element of Co{ O'y T I V E G} -uJ trawea!< V T EB(H F), and since 
since by Lemma 1. 5 in Ref. 1 (;(TI P) E CO{O'y TI VE G}-N 
VTE~, we have that (;(TIP)=TG VTE~. Since T-TG 

is normal, it follows from this and the weak operator 
density of . ~ in B(H F) that the G-canonical map is the 
unique normal extension of [(·1 P) to B(H F). This im­
plies in particular that, for every ultraweakly continu­
ous state p on ~ cB(H F)' f)(pIP) is also ultraweakly 
continuous. Further, (Cor 4.1 of Ref. 2 each normal 
state fj on B(H F)G admits a unique normal, G-invariant 
extension to B(H F) which, by virtue of Property C, 
must agree with [*(p' P) on if. Thus, every aspect of 
our C*-algebraic formulation has its von Neumann 
algebraic counterpart for this model, and the two for­
mulations are equivalent provided that only normal 
states on B(H F) are conSidered. 

The fact that our C* -algebraic formulation is not 
limited, in more general cases as well, by this restric­
tion could be used to sharpen some heuristic features 
of tenS alluded to in the physical literature. 

In the literature of nonequilibrium statistical mechan­
iCs, D(·I P) is called the diagonal part operator with 
respect to the basis of anti symmetrized products of 
"normal modes" since, as the reader may easily verify, 
for any density matrix p we have 

J. Math. Phys., Vol. 15, No.8, August 1974 

1350 

(3.2) 

D(·IP) is commonly used to derive the generalized 
master equation (GME) for a mechanical system of 
fermions in finite volume. We suggest that the C*-alge­
braic formulation of momentum-coarse graining can 
accomplish van Hove's aimS when he restricts the GME, 
for purposes of taking the thermodynamic limit, to his 
loosely defined "smooth observables." This point of 
view is supported by the fact that the C*-algebraic for­
mulation admits a generalization for a Fermi system in 
infinite free space 6 whereas the von Neumann-algebraic 
formulation does not. 

*Research supported in parts by NSF Grants GU-4040 and 
GP-38626. 
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The C *-algebraic formalism developed by the authors for the coarse-graining operations in quantum 
statistical mechanics is adapted to the case of an infinite -Fermi system in free space. 

INTRODUCTION 

The present paper is the third in a series in which we 
propose a C*-algebraic formalism for coarse graining. 
Our motivation is to obtain a mathematically well-de­
fined theory which would incorporate the following two 
features: (a) It should transpose to quantum mechanics 
the familiar Bernouilli prinCiple of insufficient reason, 
basic to classical probability theory, and (b) it should 
provide a way to treat physical situations such as 
momentum coarse graining, which escaped from the 
scope of previous theories. 1-3 Part (a) has been dis­
cussed in the first paper4 of this series, whereas a 
first step in achieving part (b) has been described in a 
second paper. 5 The aim of the present paper is to 
extend the results previously obtained5 to the case of 
infinite Fermi systems in free space. For sake of con­
Ciseness, we use freely in this paper the definition and 
notations used in our previous4

,5 papers. 

We shall thus consider in the present paper a Fermi 
system in the N-dimensional free space RN. For the 
sake of notational Simplicity we specialize to the case 
N = 1, the generalization to arbitrary N being straight 
forward. Let ~ = L 2( R) be the Hilbert space of one­
particle wavefunctions and denote by,f;)= ~((L 2( IR» the 
corresponding fermion algebra. For the basic facts and 
notation concerning Fermi systems, the reader is 
referred to Sec. 1 of our previous paper. 5 Let P and Q, 
respectively, denote the one-particle momentum and 
position operators. In particular P is realized here as 
the self-adjoint operator associated with the multiplica­
tion operator defined on S( IR) in L 2( IR) by (P>J1) (x) 
= x >J1 (x). The obvious obstacle in extending directly to 
the present case the considerations developed previous­
ly,5 when L is confined to a finite volume, is that the 
one-particle momentum observable P now has con­
tinuous spectrum, thus making it necessary to resort 
to a limiting procedure to define the C*-algebra P of 
second quantized momentum observables. Yet the 
choice of the group of p-trivial symmetries is still 
clear. Let indeed G be the unitary group of the maxi­
mally Abelian sub-von Neumann algebra of B( L 2( IR» to 
which the one-particle momentum is affiliated. To be 
specific, we define for every essentially bounded func­
tion 5 r=: L ~(/RN) on IRN the bounded operator T s on 
L 2( IRN) by 

(T sf) (Xl' ..• , x N) =S(xl' ..• , X N)/(x1, •.. , x N) 

VIr=: L 2(1R1. 

The mapping 5 - T s is a W*- and C*-isomorphism of 
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L OO( RH) onto the maximal Abelian von Neumann algebra 
of "diagonalizable operators" on L 2( /RH). 6 Hereafter we 
shall Simply write 5 for T s (whether 5 is meant as an 
operator or an essentially bounded function will be clear 
from the context). Consequently the von Neumann 
algebra of "diagonalizable operators" on L 2( IRH) will be 
identified with L ~(JRH). For N = 1, L OO( tRN) is the maxi­
mal Abelian von Neumann subalgebra of B( L 2( R» to 
which the one-particle momentum operator is affiliated. 
The unitary group G of this algebra is represented in 
Aut ~ by the natural extension described for instance in 
Sec. 1 of Ref. 5. Similarly the group of momentum 
translations is given by a strongly continuous, one­
parameter automorphism group on ~ {a '" a I V 

• ' b Vb b 
=exp(-tQb) Vb E IR}. We now outline the argument to be 
presented in this section. 

In Sec. 1, we introduce the approximate, operator­
valued, momentum correlation densities and use them 
for the definition of the set fOP of momentum-mea­
surable states and of the notion of momentum equiva­
lence. Once again amenability of G implies existence of 
at least one G-invariant state in each equivalence class. 

In Sec. 2, we characterize (Theorem 2.10) the n­
point correlation functions of an arbitrary G-invariant 
state on ij, and thereby obtain the principal tool of this 
investigation. 

In Sec. 3, we use the characterization of Sec. 2 to 
establish two lines of inquiry. On the one hand, we 
establish (Theorem 3.3) existence and uniqueness of a 
G-invariant state in each p-equivalence class. In line 
with the argument presented in Ref. 4, we then define 
the p-coarse grained representative of a class to be 
its G-invariant state, thus defining the p-coarse 
graining operator D(. I P). On the other hand, we define 
(Theorems 3.7 and 3.8) a von Neumann algebra 
p; C 11 .,(ij)" acting on the GNS representation space H 
associated to an arbitrary G-invariant state w on ~. We 
then investigate momentum-coarse graining on the 
island fO., of normal states on 11.,( ~)". In particular, we 
show (Prop. 3.10) that normal states if! on 11.,(ij)" are 
p-equivalent if and only if they have the same restric­
tion Rwif! to pr;.,. Moreover, Prop. 3.11 establishes that 
every normal state ~ on fY~ admits a unique, normal G­
invariant extension C w(~ I P)* to 11 w(!:)" and, further, 
thatD(if!lp)=Cw(R.,if!IP)* for allif!EfO.,. Finally, 
Theorem 3. 13 establishes the existence of a normal 
G-invariant, P.," -conditional expectation C.,(· I P) o~ 
11 w( !:)" to which c .,(' I P) * is dual. 

Copyright © 1974 American I nstitute of Physics 1351 
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In Sec. 4, we prove, using P: as a tool, that the set 
of all G-invariant states@SG on I is a (Choquet) simplex. 
Denoting by S the set of all extreme pOints of eG , we 
show that J coincides with the set of all space transla­
tion and gauge invariant generalized free states on ~. 
We call the reader's attention to the sharp ergodic 
Theorem 4. 1, and to the last remark in that section, 
which indicates how and why our C *-algebraic formalism 
goes further than the usual von Neumann-algebraic 
formalism, thus sustaining our last conclusion in 
Ref. 5. 

In Sec. 5, we define the C*-algebra p of second­
quantized momentum observables as the set of all con­
tinuous functions on the compact (Prop. 5.1) phase 
space S. We prove (Theorem 5.2) that J is homeomor­
phic to the compact space L .. ( IR); of all essentially 
bounded functions F on IR such that 0 "" F .;: 1. For each 
WE S, the corresponding function F w is interpreted as 
the' momentum number density of the state W on the 
Fermi system considered. Once p is defined, we can 
recover, in only slightly modified form, the structure 
described in Ref. 4: (i) There exists a generalized con­
ditional expectation t(. 1 P) mapping ~ into p; (ii) each 
p-measurable state admits (Theorem 5. 12) a unique 
generalized restriction to p; (iii) each state p admits 
(Theorem 5.13) a unique G-invariant extension 81/1 1 P)* 
to ~ with [(. 1 P)* dual to [(. 1 P). Finally, we discuss 
the implementability of [(. 1 P), thus making contact 
(Theorem 5.16) with [w(' IP) defined in Sec. 3. 

1. P·MEASURABLE STATES 

The purpose of this subsection is to introduce the 
second-quantized momentum observables in a language 
appropriate to our investigation. We first define the 
approximate, operator-valued, momentum correlation 
densities K~(Xl' ••. ,x N); we then indicate suitable cir­
cumstances under which sharp correlation densities 
are obtainable by taking the limit 6 - O. 

For each interval Ii = [- 6/2, 6/2], denote by Xo the 
characteristic function of Ii and let ~x =Xo (x - xo)/ o 
li l

/
2 (~o= ~). Since the automorphism group {CI!%IXE R} 

of momentum translations is strongly continuous, the 
operator-valued function 

KN(X X ) = CI! (a*(~» .. • CI! (a*(~)a(~» ... CI! 6 1'···' N - x N Xl % N 

(a(~» on (RN 

is strongly continuous. Let K( R) be the space of con­
tinuous functions with compact support. Bochner's 
theorem7 ensures that, for every fi' gj E K( R), i 
= 1, ... ,N, N finite, the integral 

N 

Kf(fl"" ,jN;gl"" ,gN)= J N dNx II fj(xl)gl(x l) 
R /-1 

XKf(Xl , ..• ,X N) 

exists as a norm convergent limit of a sequence of 
simple functions. Therefore, 

{!(.f(fj"" .fN;gl'· .. , gN) Ifi' g. E K( R); i= 1, ... , N;N 

finite} c ~. 

Let us now give a heuristic motivation for what we 
want to achieve. If the following limits were to exist, 

J. Math. Phys., Vol. 15, No.8, August 1974 

1352 

we would expect them to satisfy 

lim Kf(xl , ..• , x N) = for all i, j = 1, ... , N, lNxl ." N%N' if i*j implies Xi *X j 

o~o 0, otherwise. 

We would therefore interpret these limiting observables 
as the second-quantized momentum correlations gen­
erating p. It would then be natural to generalize the 
notion of restriction of a continuous linear form to p 
by computing 

~(Xl' •.. ,x N) == lim (1/1 : Kf(xl , ••• ,X N»' 
O~ 

We will therefore define the set eP of all the states on 
1 for which the idealization 6 - 0 makes sense. We 
show in Lemma 3.6 that this set is indeed quite large. 

1. 1 Definition: A continuous linear form 1/1 on 1 is 
said to be p -measurable if, for each NEZ· and for 
arbitrary but fixed {II }f.l and {gl }f=l c K( IR) 

Ve>O :16. )6,6'<6. 

.. 1(1/1: Cl!y{K:(fl"" ,fN; gl" o. ,gN)} 

- Cl!y,{Kf·(f1' .. • ,j N; g1' ••. , gN)}) I < E, 

independent of V or V' E G. 

Denote by ~*P the set of all p-measurable continuous 
linear forms on 1 and by eP the set of all states in 
~*P. 

1. 2 Definition: For each 1/IE ~*P, the restriction $ of 
1/1 to P is the form ~ defined as 

~ NUl' •. • ,j N; g1' ... , gN) 

= lim (1/1 : Kf(f1' •.. ,/ N; gl' ... ,gN» 
0-0 

for all NEZ·, and aU {fi }f.1' {gi }f.l c K( IR). Two 
states 1/1 and 1JI on 1 are said to be p-equivalent (which 
we denote by 1/1 "" 1/1') if their restrictions to p coincide. 

Remarks: (i) p itself will only be defined later on in 
this section (see Sec. 5), but its definition is clearly 
not a prerequisite for the above definition. (ii) The 
relation"" on eP is clearly an equivalence relation. 

1. 3 Proposition: ~*P is a norm-closed, G-stable, 
linear subspace of 1*. 

Proof: I*P is clearly a G-stable, linear manifold. To 
show that 'ti,*P is norm closed, choose a Cauchy se­
quence {1/JM}MEZ+ c fJ.*P convergent to 1/J, say. Clearly, 

I (1/J: Cl!y{Kf(f1"" ,jN;g1' ... , gNH 

- Cl!y,{Kf,(f1"" ,jN; g1"" ,gN)}) I 
"" 1(1/JM: Cl!y{KN(f1"" ,iN; g1"" ,gNH 

- Cl!V'{K:'(fl"" ,jN; g1"" ,gN)}) I 
N 

+2111/J-1jJMII II IIf.1I2 1Ig1 112 • 
/-1 

Now, for any E > 0, 
N 

:ilM.3M;'ME -II1jJ-1jJMII II IlfiIl2I1giI12<E. 
i-1 

Since 1jJM.E fJ.*P, there exist li
ME 

•• / 2 such that 

(1. 1) 

1i,IY<6M ./2 .. 1(1/JM :CI!y{Kf(f1'···'/N;g1,···,gNH 
E' • 
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These remarks, together with Eq. (1. 1), imply that 
/j!E!*P. 

With a view toward establishing Property C, we 
prove the following: 

1. 4 Proposition: Let /j!E@5P and cP E Co{a y*/j! I V E G}-w*. 
Then CPE@5P and CP""/j!. 

Proof: There existsB a net {M araE I of discrete means 
on CB( G) such that w*-lim M a * /j! = cp. By virtue of the 
hypothesis that !JJE@5P, we have, for fixed {f,}f.l' 
{gj}f.l cK( R), 

Ve>O :10.>0 ~o,o' <0 .... 

I (M'a*!JJ: ay{K~(fl" .. ,/ N; gl' .•. , gNH 

- aV'{K~·(fl'··· '/N; gl"" ,gN}> I <e, (1. 2) 

independent of ra E I or of V or V' E G. By continuity, the 
same is true for cP replacing Ma*/j!. Hence CPE@5P. 
Similarly, 

Ve>O :10, ~o<o, 

I <Ma*/j!: K~(f1"" ,fN; gl"" ,gN» 

- ~N(f1' ... ,/ N; gl' ... ,g N) I < e, 

independent of ra c I. By continuity the same is true 
with M B */j! replaced by cp. Thus cP "" /j!. 

(1. 3) 

1. 5 Corollary: There exists at least one G-invariant 
state in each p-equivalence class. 

Proof: Choose /j! from an arbitrary p-equivalence 
class. Since G is amenable, there exists (Lemma 1. 1 
in Ref. 4) a G-invariant state CPE Co{ay*l/! IVE G}·w*. By 
Prop. 1. 4, cP "" /j!. 

To establish uniqueness, and hence the central 
"Property C" of Ref. 4, we must investigate the set of 
G-invariant states. This will be done in the next 
sections (see in particular Theorem 3. 3). 

2. THE DIAGONAL FORM OF THE 
G·INVARIANT STATES 

The principal result of this section is Theorem 2.10 
where the form of the n-point correlation functions of 
a G-invariant state is characterized. Comparison of 
this result with Lemma 2. 1 in Ref. 5 and its subsequent 
interpretation demonstrates that the set of G-invariant 
states provides a mathematically consistent definition 
for what one would heuristically refer to as the set of 
states which are diagonal with respect to the basis of 
antisymmetrized products of plane waves. Unless ex­
plicitly given, the proofs pertaining to results of this 
section will be found in Appendix A. 

2.1 Definition: Consider the dense linear manifold in 
L 2( RN) consisting of all finite linear combinations of the 
form 

J N 
/= L ~j @ X~ VJE Z., V{>CJ }/;'1 C C 

j=l m=! 

and {X~}~==\':::.',JN are characteristic functions of Lebesgue 
measurable subsets of R with finite measure. Denote 
this set by L ~( RN). 
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The (N,N)-point correlation functions W N,N of a state 
w on ! were defined in formula (1. 7) in Ref. 5. The 
following lemma shows that any such function extends 
by linearity to a positive, sesquilinear form on L~( RN). 

2.2 Lemma: Let w be a state on!. For each pair 
/, gE L~(RN), that is 

f=t >"J(~ X~\, g=£ y (~ y~). 
j=l m-l Y k=l k\.. mal 

form 
J K 

L: L: >../Yk WN,JXL· .. ,X~; y:,· .. ,yt)=WOJf,g). (2.1) 
J 01 k=l 

This expression depends on f, g only, not on the parti­
cular decomposition used. We have 

(i) W~(V1+f2' yg1+g2)=>"YW~(f1,gl)+>..W~(f1,g2) 

+YW~f2,gl) + W~(f2,g2) 

'tI f 1'/2' gl' g2 E L ~(RN), 'tI>C,y E ( 

(ii) W~f,j) ~ 0 

We furthermore notice that the extension W~ of the 
(N, N)-point correlation function of a G-invariant state 
on ! is continuous; specifically: 

2.3 Lemma: Let w be a G-invariant state on~. Then 

vf, gE L ~(RN). 
As a consequence of this lemma we obtain by continuity 
that for every G-invariant state w on~, the (N, N)-point 
correlation functions define uniquely a continuous, 
positive, sesquilinear form WN over L 2( RN) whose 
restriction to L ~( RN) is W~. 

2.4 Lemma: Let w be a G-invariant state on ~, and 
let WN be the corresponding continuous, positive, 
sesquilinear form over L 2( RN). There exists a unique 
bounded linear operator B".,E B(L 2( RN) such that 
WJf,g)=(g,B~f) 'tIf,gE L2(RN). Moreover, 

(i) WNN(f1"" '/N;gl"" ,gN)=WN( ~ fm' /j; gm) 
mEl mal 

VUm}!!' {g}:'l C L 2( R), 

(ii) 0 ~B: ~N!, 

(iii) [B~, Up]=O VPESN" 

Proof: The existence and uniqueness of B~ as well as 
(ii) follows directly from Riesz theorem (i) follows from 
the sesquilinearity and continuity of the ~N' 

To prove (iii), it suffices to prove that 

since the linear span of {@;:'=l fm I f mEL 2( R)} is dense 
in L 2( IRN) and since B: is bounded and linear. 

By use of (i) and the anticommutation relations we 
have 
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= WNN(fP(W ... ,!P(N); gP(l)' ••. ,gP(N) 

= (- 1)2a(P) WNJfl , .•. ,f N;gl' ... ,g N) 

This completes the proof of the lemma. 

2. 5 Notation: We have seen in Lemma 2.4, that for 
each G-invariant state w on ~, and each NEZ· there 
exists a unique continuous sesquilinear extension WN to 
L 2( RN) of the (N, N)-point correlation functions WNN 
defined by w. Denote by {W N}NC z. the set of all such 
extensions. Denote by {B!rNr- z~ the set of correspon­
ding bounded, symmetric, positive, linear operators_ 

We begin our investigation of the family {B!}NE z. of 
bounded operators associated to a G-invariant state w 
with the following statement: 

2.6 Lemma: Let B! be the bounded operator on L 2( RH) 
associated by Lemma 2.4 with a G-invariant state w on 
~. Choose a family {Y m}!l of disjoint measurable sub­
sets of R. Denote by {p m}~=l the corresponding family of 
orthogonal projections in L "'( R) [i. e_, P mf(x) 
= Y m(x)/(x) "If E L 2( R)]. Let P Y=®~'l Pm be the projec­
tion on L 2( IRN) associated with the measurable rec­
tangle Y= Yl X ••• X YN in RN. Then 

PyB:'Py E L "'( RH). 

We now patch together the PyB~Py: 

2.7 Lemma: LetpN={PyIY=Y1x",xyN; Y i mea­
surable; Y i n Y i' = r:j;, i '" i'}. Denote by r the directed 
set of all finite subsets of pN, ordered by inclusion. 
For eachyE r, define P(y)=lub{P[P<=:y}. Then the net 
{P(Y)}r<=:r converges to 1 in the weak operator topology. 

For the purposes of the next lemma we make the 
following definition. Let y = {P Yi }t:<;') E r. A set of pro­
jectors {p k}:=l will be said to be a disjunction of y in 
L "'( IRN) if 

(a) {p k}~=l C L "'( IRH), 

(b) P~k' =0, 1 :;;;k",k' :;;;K, 

(c) For each 1 :;;;k :;;;K, there exists an 1 :;;;i :;;;N(y) such 
that P k C PYi' 

K 

(d) P(y) = 6 Pk. 
k=l 

We remark that there exist many disjunctions of y in 
L "'( R~. We, however, have: 

2.8 Lemma: Let B~ be the bounded operator on 
L 2( RN) associated with a G-invariant state w on ~. 
Choose y<=: r and let {PkK=l be a disjunction of yin 
L "'( RH). Then, F:'(y) =L~=l PkB~Pk depends on y only, 
and not on the particular disjunction chosen to define 
it. Moreover, 

(i) F:(y) <=: L "'( RN
), 

(ii) 0:;;;F:(y),,;1, 

(iii) y C y' ~ F~(y) = P(y) F~(y'), 

(iv) ycY'~F~(y) ";F~(y'). 

We now patch together the F:'(y): 

2.9 Lemma: Let {F:'(y)}y<=:r be the net in L "'( RH) de-
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fined in Lemma 2.8 for an arbitrary G-invariant state 
w on ~. Then {F:(y)}rEr converges in the weak operator 
topology on B(L 2( RH) to an operator F~ E L "'( IRH). 
Moreover, 

(i) F~ is the unique operator in L "'( IRH) such that 

F:'P=PB:P V p<=:pN, 

(ii) N! F:'A = B~, 

(iii) 0 ";F~ ,,; 1, 

(iv) [F~,Up]=OVP<=:SN" 

We are now equipped to give a sharp characterization 
of the n-point correlation functions of a G-invariant 
state. 

2.10 Theorem: Let w be a G-invariant state on ~. 
There exists a unique family {F~Nr- z. such that 

(i) WNM(fl"" ,IN; gl"" ,gM)=15M~NN! (m~l gm' 

F:'A ~ 1m) 
mol 

V{in}:=l' {gm}~=l C L 2( R). 

(ii) F~EL"'(RN) "INEZ·. 

Conversely, if w is a state on ~ and if there exists a 
family {F~N<=: z. satisfying (i) and (ii), then w is G­
invariant, and 

(a) 0,,; F:' :;;; 1 V NEZ., 

(b) [up,F~l=o Y P<=:SN' 

Proof: Assume that w is G-invariant. Since the gauge 
group is contained in G, w is gauge invariant. Existence 
is given by Lemmas 2.4 and 2.9 and the fact that w is 
gauge invariant. To prove uniqueness, let F~, F~ 
satisfy (i), (ii) above. From Lemma 2.4, N! F~A = B:. 
Choose P<=: PN. Then 

P B~P=N! PF~A P=PFZ ( 6 (_1)a(p) U)p 

~<=:jN / 

= L: (_1)O<P) P FNUpPU:Up 
p<=:IN 

= 6 (_l)a(p) PU ~U: F~ Up by (ii) 
PESN 

=PF:' since PE pN. 

Similarly PB~P=PF~. Lemma 2.9 (i) gives F:'=F~. 
This proves uniqueness. The converse part of the 
theorem is obvious. For (a) and (b), see Lemma 2.9 
(iii) and (iv). This completes the proof of the theorem. 

2.11 Corollary: Let w be a G-invariant state on ~. 
Then w is a generalized free state iff F:'=0~=1F~.m 
for all NE Z·. 

Proof: If w is quasi free, FZ=0~=lF~.m satisfies (i) 
and (ii) of the theorem. Hence F:' =0~=l F~.m' The 
converse is obvious. 

3. MOMENTUM OBSERVABLES AND COARSE 
GRAINING 

Unless explicitly given here the proofs for results of 
this subsection will be found in Appendix B. 

3.1 Definition: Let w be a G-invariant state on~. and 
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let {F!} NE z+ be the essentially bounded functions as­
sociated to w by Theorem 2.10. For each M, N E Z+ and 
for {lnf=I' {g;'}f=1 cK( R), define 
F~·M(N, . .. J;;~, •. . , g;,) EL .. ( RN) by 

F~·JI(f~, ... J~;~, ... , G;)(x1 , ••• ,X N) 

M 

== fRM dx N+l'" dXN+M Rl f'J(x N+i)l!j(x N+i)FN+M(X1,···, 

x N"'" X N +M) 

Clearly, 
M 

ess sup IF~·M(fl, ... J;; ~, ... ,g;,) I "'" n Ilftl12l1gjll2' 
i-I 

We remark that since the F~ are symmetric, the 
labeling in this definition is not critical and the F~·M 
are also symmetric. 

The relation between the associated functions F~,M 
of a G-invariant state wand its sharp momentum-cor­
relation densities is described in the following lemma: 

3.2 Lemma: Let w be a G-invariant state on ~, 
{F:·M}N.M E z+ be the associated family of essentially 
bounded functions. Let 

(i) lim (w:a*(fN)'" a*Ul) Ciy{K:(f~, ... J~; g~, ... ,~H 
6 ~O 

Xa(gl) ... a(gN) 

-N'( N FN.M(fO fO. ° O)A N f\ 
- • i~ gi> w l' ••• , M' gl' ... ,gM i~ iJ' 

(ii) The convergence of (i) is uniform in V E G. 

Remark: In view of the uses to which we intend to put 
this lemma, it might be appropriate to point out here 
that the special case N=O reads: 

lim (w: Ci,,{K:(f~, ... J;; g~, ... ,gMH> 
6 ~o 

= F?,;M (f~, ... , f;; g~, ... ,g;) 
}.I 

;: 1, M d}.lx II n(Xi)g'j(xj)F~(Xl"'" x}.l)' 
R i=1 

The existence of the p-coarse graining operator is now 
established: 

3.3 Theorem: Every G-invariant state on ~ is p~ 
measurable and there exists precisely one G-invariant 
state in each p-equivalence class. For each 7.{!ErroP, 
denote by D( 7.{! I P) the unique G-invariant state p-equiva­
lent to 7.{!. D(· I P) : rroP-rro G, called the p-coarse 
graining operator, is an affine surjection. 

Proof: The special case N = 0 of Lemma 3.2 
establishes that rroGc rroP. Theorem 2.10 then guaran­
tees uniqueness. Existence was proven in Corollary 
1. 5. The remainder is obvious. 

Now let w be a G-invariant state on ~ and let 
(lIw,H w'U w' n) denote the GNS covariant representation 
of (~, G) associated with w. Denote by ~! the set of all 
continuous linear forms on ~ which are ultraweakly 
continuous on nw(~) c B(H) and by P )resp. rro) those 
which are, moreover, positive (resp. states). For each 
7.{!E ~!, denote by If! its ultraweakly continuous extension 
to lIj~)". Denote by P~ (resp. rro~) the set of G-in­
variant elements of P w(resp. rro). 

3.4 Lemma: Let if}, {lnf=1' {g;'M'=1 cK( IR). Let'- be 
a continuous linear form on ~. The following are 
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equivalent: 

(i) (X :a~(f)Civ{K:(f~, ... J;;g~, ... ,gM)}) converges 
uniformly in G as 15 - 0 to a limit which is independent 
of VE G. 

(ii) (X: a y{K:(f~, ... J;;~, ... ,~)}a~(f» converges 
uniformly in G as 15 - 0 to a limit which is independent 
of VE G. 

Moreover, when these limits exist they are equal. 

We now prove the more general result: 

3. 5 Lemma: Let w be a G-invariant state on~. Let 
{f;}f=I' {gi}/':I' {lm=!> {g'M=1 c K( R). Let {hi H~ be an 
arbitrary ordering of {Ii} /':IU {gi} /':1' Define 

a*(h j) if hiE {li}f=I' 

a(hj) if hi E{gi}f=I' 

Then, for arbitrary 1 ,,;;; j ,,;;; 2N, 

(w :a~(hl)'" a4(hi )Ci y{K:Ut,··· ,f; ;g~, ... ,gMH 

x a4(hi+1)··· a 4(h2N) 

converges as 15 - 0 to a limit which is independent of 
VE G. Moreover, the convergence is uniform in G. 

Proof: Formally commuting the a4(hi )with 
avK:Ut, ... , f;;~,.·· ,gM) the problem is reduced to 
the case given by Lemma 3.2. Commuting back by 
Lemma 3.4 gives the following result. 

3.6 Lemma: ~!c~*P. 

Proof: Denote by 

H:; ={lIw(a~(hl)'''a4(hN))nl NE Z+, {hj}/':lcK(IRH 

and by 

~!o= {w~.<P 0 lIw 17.{!, q, E H:;}. 
By gauge invariance of wand Lemma 3. 5, ~!Oc ~*P. 
By Proposition 1. 3, L (~!O).,y c~*P, and by cyclicity 
ofn, L(~!O)"N=~!. 

3.7 Theorem: Let w be a G-invariant state on ~, and 
let (lI w ' U w,H w' n) be the cyclic, covariant representa­
tion of (~, G) associated via the GNS construction to w. 
Let Zw = lIw(~Y n nw<~)'. Then: 

(i) lIjK:(ft, ... , f;;g~, ... ~)) converges in the 
weak (resp. ultraweak) topology of B(H) as 15 - 0 to an 
operator K~U~, . .. , f;;~, ... g;k B(H) '1{1nr'l> 
{g;'}f=1 cK( R). 

(ii) K~U~, ... , f;;g~, ... , gMk Zw n {u jG)}'. 

(iii) The convergence of 
Uw(V)*nw(K:(N,··· J;;~, ... ,gM))Uw(V) to 
K~(f~, .. . , f;;~, •.. gM) as 15 - 0 is uniform in VE G 
in the weak operator and in the ultra weak operator 
topolOgies. 

(iv) K~(f~, ... , f;;g~, ... ,gM)=nr=lK~(ft;g;'). 

Proof: Since 
}.I 

IInw(K:(f~, ... , f;; g~, ... ,gM))II,,;;; n lin 11211 g~ 112 
j= 1 

and since the weak operator and ultra weak topologies 
coincide on bounded sets, it is sufficient to prove our 
statements for the weak operator topology. 
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Since for each Ii> 0, the sesquilinear form 

(Ib, 4» - (Ib, TIw(K:(f~, .•. , t;;~, ... ~))4» 
fromHwXHw to C isboundedbynr=111/~1121Ig~II2' its 
limit, which exists by Lemma 3.6, is bounded as well. 
Riesz' theorem then gives (i). (ii) follows from Lemmas 
3.4 and 3.6. (iii) follows from Lemma 3.6. Now we 
prove (iv). It is sufficient to prove that 

(1/J, K~(f~, ... , I~;~, ... , ~)4» 

V4>, 1/JE H~. 

However, since K!(flo, ... , I;;~, ... ,g;) E Zw n {U JG)Y 
and since w is gauge invariant, it suffices to show the 
result for 

1/J=TI W{a(fl)··· a(fN)}S1 V{lih~1' {gj}f=1 cK(R), 

4> = TIw{ a( gl) .•• a(gN)}S1. 

We prove the result by induction. It is trivially true 
for M:::;: 1. Assume 

We will show that 

K~(g, ... ,I;; g~, ... ,~) 

=K!-1(f~, ... , I;-l;~' ... ,g;_1)K~(f~;g;). 
In fact 

(1/J, K~(f;; ~)K~-l (f~, ... '/;'1;~' ... ,g~_1)4» 

= lim (1/J, TIw{K~(f; ;~)}K!-1(f~, .•• '/;-1 ;g~, .•• g~_1)4» 
6 -0 

= lim i1/J, [ f dx f; (x) g~(x)nw {a(~x) a(~)}] 
6 -0 \1 

XK~-1(f~, ... , 1;.1; g~, •.. ,g~'I)4», 

where, due to continuity of TI w ' the integral converges 
as a norm limit of simple functions on B(H). Since 
K!-1 is bounded, we have 

= lim f dx I;(x) g~(x) 
6-0 

X(1/J, TIw{a*(~Ja(~x)}K~-I(f~, .. . , 1;-I;~' ... , ~.1)4»· 

Since K~-1EZ w' we have 

= lim f dxf;(x) g~(x) 
6-0 

x (TIw {a(~x) ••• a(f N)} S1, K~-1(f~, ... , IM"..1; g~, ... ,g~'1) 

XTIw{a(~x)'" a(gN)}n)· 

And, by Lemma 3.2, 

= lim (N + 1)! f dx I;(x)~(x) 
6-0 

X(A N FN+1,M-1(/0 fO.rr> gO)A 
U x j~l gj' w l' ••• , M-l' 51' •• • , M-l 

X~X j~ Ii). 

And, by the argument of Lemma 3.2, 

=N! (~ gj' F~'M(f~, ... ,I;;~,··.,~)A ~ Ii) 
M i~ 

= (Ib, K~(f~, ... , I;; g~, ... ,g;)4». 
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This completes the proof of (iv). 

The heuristic remarks made in the beginning of Sec. 
1, embodied as they now are in the Kw(f, g), provide the 
motivation for the following definition. 

3.8 Delinition: Let Pw denote the C*-algebra gen­
erated by {K.!(f, g) I I, g E K( R)}, where K1(f, g) are the 
elements of Z wn {U w(G)}' defined in Theorem 3. 7. fY~ 
is called the von Neumann algebra of momentum ob­
servables attached to the G-invariant state w on ft. 

In the next theorem we show in which sense fY~ is 
naturally associated with a number density on the 
momentum space R. 

3.9 Theorem: Let w be a G-invariant state on ft, 
P'~ the von Neumann algebra of momentum observables 
associated with w. Consider the mapping K~ :K( R) 
XK( R) - B(H ) defined K~(f Xg) '= K~(f, g). Then: 

(i) K~ : K( R) XK( R) - B(H ) admits a unique exten­
sion to a norm-continuous, operator-valued, positive, 
sesquilinear form over [2( R). 

(ii) K~(f;g) E P w VI, gE [ 2( R) 

(iii)K~(vI;Vg)=K~(f,g) V/,gE[2(R), VVEG. 

(iv) There exists a unique operator-valued, weak-
operator measurable function K Jx) such that 

Kw(f, g) = f dxl(x)g:(x)KJx). 
R 

Moreover, 

(a) 0 ~Kw(x) ~ 1 ~ 
(b) Kw(X)E P:' ~ 
Prool: 

a.e. -dx. 

(adi) We first remark that for each 
Ii> 0'/1'/2' gl' g2 E K( R), X,y E C. 

(1) TIw{Kl(f1 +X.f2;g1 +")%)}=TIw{K~(fl,gl)} 

+ yII)Kl(fl' g2)} 

+ XTIw{K~ (f2;gl)} 

+ WIIw {Kl(f2;g2)}' 

(2) IITI w(KlU1 ,g1»II ~ IIf1 11 2 11g1 11 2 , 

(3) II w{K~ (VI; V g)}= TIw{Kl(f;g)}, 

(4) IIw(Kl(f ;/» ~ o. 

Therefore, K~U; g) = w -lim6 -0 IIw{K~(f;g)} enjoys all 
these four properties. 

(i) and (iii) then follow trivially from the continuity of 
K~ over the dense subset K( R) of [2( R). (ii) is im­
mediate since, for f, gE [2( R), K~(f; g) is the limit of 
a norm convergent sequence in P w which is, a fortiori, 
norm closed. We now prove (iv). For each 1/J, 4> E H w ' 

Riesz' theorem defines a unique bounded operator 
N)1/J, 4»E /3([ 2(R» such that 

(g, N w(1/J;4»/) = (</!, K~(f; g)4». 

The invariance (iii) implies that N w(4);Ib) commutes with 
the maximal Abelian von Neumann algebra [ e( R). 
Hence N J </!; 4» E L e( R) and there exists an a. e. unique 
essentially bounded function N J</!;4» (x) such that 
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ess sup IN w(l/!, <1» (x) I = sup I (g, N w(l/!;<I»f) I, 

Ilf 112 = 1, II gl12 = 1, 

= sup I(l/!, K~(f,g)<I»I.sIIl/!IIII<I>II, 

11/112=1, IlgIl2=1, 

Moreover, since Nj>j), <1» is clearly a positive sesqui­
linear operator-valued form on B(H), N j l/!, <1» (x) is a 
positive, and by the previous remark, continuous, 
sesquilinear form for a. e. XE: 'IR. Hence, again by Riesz' 
theorem, there exists an almost everywhere unique, 
bounded, weak operator-measurable density K:"(x) such 
that(l/!,Kjx)<I»=Nw(l/!,<I»(x)a.e. -dx. It is clear, by 
construction, that ° .sK (x) .s 1 a. e. and that 

Kl (f; g) = J' K (x)f(x) g(x) dx_ 
w R w 

To prove b, let T E: P'w; then 

(l/!, [T,K~(f,g)]<I»= J
R 

(l/!, [T,Kw(x)]<I» f(x)g(x)dx=O_ 

Thus K w(x) ~ P'~ a. e. - dx. This completes the proof of 
the theorem. 

To sum up, we have shown that, in the representation 
associated with any G-invariant state w, one may define 
a number denSity operator Kw(x) on the one-particle 
momentum space of the Fermi system. In the center 
Z w of the representation canonically associated with w, 
we have isolated the algebra of momentum observables 
P'~, it is the von Neumann algebra "generated" by the 
number density operator referred to above. We shall 
see in the next subsection that P~ is rich in information 
about the state w. 

The following proposition establishes the role of 
P"w in connection with the concept of p-equivalence 
introduced in 1. 2. 

3.10 Proposition: Let w be a G-invariant state on ~. 
For each >j) E: P w denote by R J the restriction of 'if5 to 
p;. The two states >j) and >j)' r=:@)w are P -equivalent if 
and only if Rw~=Rw~'. 

Proof: By Theorem 3.7, for each l/!E:P w we have 

~M(f l' ... '/M; gl' .. - ,gM):; lim (l/!: Kf(fl' ... '/M; gl' ... ,gM» 
6-0 

=(~: K~(fl' . - . '/M; gl' ... ,gM» 

=(Rw~ :K~(fl"" ,k ;gl"" ,gM» 

v{fi}L, {g;}f=l cK( R). 

Therefore, if >j) "" >j)', we have, by the ultraweak density 
of the linear span of the {K~} in P"w and the ultraweak 
continuity of Rw~ and Rw~', that RJ{I =R){!. The con­
verse is immediate. 

We are now ready for the next step outlined in the 
introduction, namely, the assignment of a p';,,-a priori 
probability. We shall also indicate its relation with the 
p-coarse graining operator, defined in Theorem 3.3 
and now restricted to @)w. 

3. 11 Proposition: Let w be a G-invariant state on~. 
Let Ew be the projector on Hw defined by Ewflw = [p)e]-. 
Then: 
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(ii) For each l/! E: P w denote by Rw~ the restriction of ~ 
to p~. The mapping Rw : P~ - {Pc,,}~ is an order iso­
morphism. Denote its inverse by C w(· I P)*· cj· I Ph 
is called the p'~-a priori probability assignment. 

(iii) For each cJ>E: {JZ;}*, there exists a vector 
~E:EwHw 3 Cw (cJ> I P)*=W~,~o Ilw' 

(iv) D(>j)1 P)=cW<Rw~1 P)*E: @); Al/!E:@)w' 

Proof: (adi): Since Ew{[EwSEw' T]}Ew =OV Sr=: fY~ by 
Theorem 3.7 (ii) and since Ew r=: p~, Ew SEw commutes 
with the maximally Abelian von Neumann subalgebra 
(see Cor. 2, p. 89 In Ref. 6) P% lEw of B(EwH w~ there­
fore, there exists SE: P% such that EwSEw=EwS, How­
ever, since the central support of Ew in fY~ is the pro­
jector upon [p~PwQb [Ilj~)Q]-=Hw' the mapping 
P% - P::' IE is an isomorphism (Prop. 2, p. 19, of 
Ref. 6). Hence S is unique. 

(adii) Rw is clearly order preserving. Injectivity: It 
clearly suffices to show that pr;" separates @)~. This is 
immediate from proposition 3.10 and Theorem 3.3. 

Surjectivity and (iii): We have seen that the mapping 
P : pr;" - pr;" lEw is an isomorphism. Consequently, the 
dual map gives a positive linear bijection P*: 
(fY~ I E)* - { P w }*. Let cJ> be a positive normal form on 
pr;.,. Since all the normal forms on the maximally 
Abelian von Neumann algebra P%IEw are vector forms 
(see, for instance, exercise 4, p. 120, in Ref. 6), there 
exists a ~ EO EwH w such that (~, S~) = «p*)"lcJ> : S) 
=(cJ> :p-lS)VSr=: P'~IE • Suppose that T(r=: P~)=p-lS. 
Then, (~, T ~) = (~, E;TO = (~, S~) = (cJ>: polS) = (cP : T). 
Clearly, the vector form w~;~ °Ilw F P~ and its 
restriction to P':., is cJ>. 

(iv) Since l/!""D(l/!IP) and by Prop. 3.10 Cw(Rwl/!IPh""l/!, 
and since both are G-invariant, equality follows from 
Theorem 3.3. 

Our final task in fulfilling the program of the intro­
duction is to define the P~ -conditional expectation, and 
this can now be done: 

3.12 Definition: Let w be a G-invariant state on~. 
For each S E: Ilw(~)"' let Cw(S IP) denote the unique ele­
ment of pr;., such that EwS Ew=cjSIP)E w' cj· IP): 
Ilj~)" - P~ is called the p;-conditional expectation on 
nw(~O". 

We now establish that the p':.,-a priori probability as­
signment is dual to the P; -conditional expectation, and 
we detail the properties of C w( • I P). 

3.13 Theorem: Let w be a G-invariant state on ~ 
and C J'I P): nj~)" - P% be as above. Then, 

(i) Cw(\S +yT I P) = ACw(S I P) + YCw(T I P) 

(ii) cw(1lp)= 1, 

(iii) Cw(SCw(T I P) I P) =Cw(S I P)Cw(T I P) V s, T r=: nw(~O", 

(iv) Cw(S*S I P) ~ ° VS E: nj~)" , 

(v) IlcjSlp)II.sIISIl 
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V5E II.,(!O" and [.,(. Ip) is normal. 

(vi) [Jil.,(v) SU~(v) Ip) =[.,(5 Ip) 'IS EII.,(V)", 

VVEG. 

(vii) (</J:c.,(SIp)=(c.,(</Jlph:S) VSEII.,(~)II, 

v</JE(P.,h 

Proof: Properties (i)-(vi) are immediate from the 
definition. 

(ad vii) Since </J°C.,(· Ip) and [.,(</Jlp)* e:: P~ have the 
same restriction to p~, they are identical by 
Proposition 3.11 (ii). 

3.14 Corollary: 

(i) [.,(a*(fN)·" a*(f1)a(gl)··· a(gM) Ip) 

VUi}!':l' {gjH=l C K( R). 

(ii) C.,(II.,(~) I p)c p., (not only p:). 

Proof: (ad i) Follows from Theorem 3.13 (vii), G­
invariance of [.,(</J Ip)*, Theorem 3.7 (i) and (iv), and 
Theorem 2.10. 

(ad ii) Follows from (i) and linearity and continuity of 
C.,(· I P)· 

4. G-ERGODIC STATES AND THE GEOMETRIC 
STRUCTURE OF GG 

The principal aim of this section is to prove that @SG 

is a (Choquet) simplex whose extreme points coincide 
with the set of all translation invariant, gauge invariant 
generalized free states. 

4.1 Proposition: Let w be a G-invariant state on ~, 
and let E., be the projector onto the closed subspace 
[p wO]-. The following are equivalent: 

(0) P: ={VlAE C}, 

(1) E., is one dimensional, 

(2) w is extremal G-invariant, 

(3) w is a factor state (i. e., Z w = {AI I A E C}) 

(4) w is a generalized free state. 

Proof: (0)~(1): trivial. 

(1)~(0): If Ew is one dimensional, then P:IE., 
= {CI} IE' But since the map P;; - p~ I E is an isomor­
phism [cf. proof of Prop. 3.11 (i)], this"implies that 
p~={cI}. 

(i) ~ (2): <Ji G-invariant and dominated by ¢ would im­
ply <JiE P~. 9 By Prop. 3.11 (iii) and (i), this implies 
</J= ¢. 

(2)~(1): If w is extremal, we have 

(0, SII.,( T)O) = (0, II.,(T)O) 

VTE~, VSE p; 0 ";S, and (0, SO)= 1. 

Hence due to the density of {II.,( T)O I T E ~n in H." SO 
= O. Since every operator S e:: p;;, may be written as a 
linear combination of positive elements of 
P'~, :I As e:: C :3 SO = AsO "IS E p;. Therefore E w is one 
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dimen sional. 

(3)~(0): Since P':"cZ., (Theorem 3.7). 

(4) ~ (3): This follows from the result of Dell' Antonio10 
and Rideau, 11 

It remains to show (0)~(4): Let p;={CI}. Then by 
Lemma 3.2, Theorem 3.7 (i) and (iv), and assumption 
(0), we have 

C~ g~, F! i~ f~) =(w:K!(f~, .•• ,j;;~, ... ,g;) 

M 

=(w: IT K~(fj;gj) 
1= 1 

M 
= n (W:K~(fi; gj) 

1=1 

(
M rrO M F1 M f •. o) = 181 51,.181 w,1 181 
i=l .=1 1=1 

Thus F/!,=®f=l F~,i for all Me:: Z+ and, by Corollary 
2.11, w is a generalized free state. This completes the 
proof of the proposition. 

4.2 Theorem: The set of all G-invariant states @SG is 
a simplex whose extreme points coincide with the set of 
space translation and gauge invariant generalized free 
states on ~. 

Proof: The proof that @SG is a simplex is done along 
classical lines, It must be proven that the cone p G of 
G-invariant positive linear forms on ~ is a lattice (cf. 
p. 218 of Ref. 9) i. e., that aU ¢1' ¢2 E pG have a 
unique 1. u. b., ¢1 V¢2. and g.l. b. ¢1 1\¢2)' As ¢1' ¢2 
are dominated by the G-invariant state 
« ¢1 + ¢2 : 1) t1 (¢1 + ¢2);: wand hence are ultra weakly 
continuous on 7T .,(~), it suffices to show that P~ is a 
lattice. This is the case since P~ is order isomorphic 
to the set of positive normal forms on the Abelian von 
Neumann algebra p':" by Proposition 3. 11 (ii). 

The characterization of extreme points follows from 
Proposition 4. 1, and the result of Balslev and 
Verbeure. 12 

Remark: Consider the Fock representation of W, 
(7T F,HF, OF)' Since TTF is irreducible 7TF(~)" =B(H F); EF 
is one dimensional; p':" = {CI}; and @S;={w F}. Let 
f?- OE L ~ (R) and define (Af<l»N= 0, N* 1; f<l>\N= 1. 
Clearly, AjE 7T F (W)" n U ~G)', yet (wF:A j ) = 0 so that 
7T F(W)" is not G-finite. This remark should be contrasted 
with Kovacs and SZliCS'13 assumptions which are thus too 
restrictive from the physical problem considered here. 

5. THE C*-ALGEBRA OF SECOND QUANTIZED 
MOMENTUM OBSERVABLES P AND THE 
P-CONDITIONAL EXPECTATION 

5.1 Proposition: The set S of extremal G-invariant 
states is a w*-closed (hence compact) subset of @S. 

Proof: By proposition 4.1, S is the intersection of the 
w*-closed set @SG with the w*-closed14 set of gauge in­
variant generalized free states. 

Theorem 2.10 defines for each G-invariant gen­
eralized free state w a unique operator F w <=- L ~( IR) 
such that 
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(w : a*(f) a (g) = (g, F wf) V f, gE L 2( R). 

5.2 Theorem: The mapping T: w - F w of (5, a(5, !» 
to (L .,( R);:, a(L"( R);, L 1( R» is a homeomorphism. 

Proof: T is clearly injective. 

T is surjective by the construction of Araki and 
Wyss15 and Theorem 2. 10. 

T is continuous. In fact, let {wa}",EI be a net in 5, 
convergent in the w*-topology to w, say. Then 

lim (w", : a*(f)a(g) = lim (g, Fw f) = (g, F wf) 
"'EI aEI '" 

Vf, gE L 2( R). 

Therefore T is continuous. T is a homeomorphism since 
any continuous bijection of a compact space onto a 
Hausdorff space is a homeomorphism. 16 This proves 
the theorem. 

Proposition 5.1 defines a classical phase space 5 
which we shall interpret below as the spectrum of the 
C*-algebra of momentum observables. Theorem 5.2 
gives a physical description of 5. To see this, we 
recall (:r. 9): 

(w : K w(f, g) = f R f (x)g(x)F )x)dx 

= f f(x)g(x) (w : Kw(x)dx; 

therefore 

Fw(x)=(w:K)x) a.e. -dx 

Therefore, F w(x) is the number density on the one­
particle momentum spectrum of the state w of the 
Fermi system. 

5.3 Definition: (i) Denote by p the C*-algebra of all 
complex-valued, continuous functions on the compact 
Hausdorff space (5, a(5, !». 

(ii) For each pair f, gee L 2( IR), define K(f, g) E P by 
K(f, g)[<p] = (<P : a*(f) a(g) V <p E 5 

5.4 Remark: K(f, g) [<p] = (<P : a*(f)a(g) = (g, F,J) 
= ('iii: K¢(f, g), where the last equality results from 
Theorem 3.7 (i) and Lemma 3.2. 

5.5 Theorem: Define [(. IP): C(@5)-Pby 

[(T Ip)[<p]=(<p: T) V<p ee 5, VTc: C(@5). 

Then, [(. IP) enjoys the following properties: 

(i) [(AS +yT I P) = A[(S I P) +y[(T I P) 

VA,yc:C, VS,Tc:C(@5). 

(ii) [(T*Tlp)?O Tc: C(@5). 

(iii) [(11 P) = 1. 

(iv) [(ayS Ip)=[ (S Ip) VVc: G, Sc:!. 

(v) 11[(Slp)ll.:;; liS II VSc:!. 

The proof is immediate. 

The following lemmas aim toward proving that 
[(!: P)-N = p. (Proposition 5. 8). 

5.6 Lemma. Denote by Po the sub*-algebra of p 
generated by {K(f, g) If, gE K( R)} U 1. Then Po is norm 
dense in p. 
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Proof: It suffices, by the Stone-Weierstrass theorem, 
to show that Po separates 5. To that end, let </J * <p c 5. 
By Theorem 5.2, F ~ * F •• Hence, there exists 
f, gc: K( R) 30 *(g, (F</J - F<P)f) =K(f, g) [</J] - K(f, g) [<p]. 
This proves the lemma. 

5.7 Lemma: Let {fi}f.l' {gi}f.1 cK( R). Then, 
N 

w-lim [(Kf/M (fl"" ,fN;gl"" ,gM)lp)= nK(fj;gj)' 
~- td 

Proof: For each <PE 5 we have, by Theorem 3.7 (i) 
and (iv), Theorem 4. 1, and Remark 5.4. 

= lim (<P :K1/M (f1"'" f N;gl"" ,gN) 
M--

N N N 
=($: n K.(fj; gj»= n (iIi :K,,(fi; gil = n K(fj; gj) [<p]. 

i=1 i =1 i=1 

Therefore, the bounded sequence 
{[(Kf/ M(fl' •.. ,IN; gl' ... ,g N) I P)}Mc Z' converges point­
wise to the continuous function nf.l-K(fj; gil. From Ref. 
17, Theorem 6.11 and its Corollary 6.12, we get the 
weak convergence. 

5.8 Proposition: [(!I p)"N =p 

Proof: [(! I P) is clearly a convex subset of p, weakly 
dense by Lemmas 5.6 and 5,7. By virtue of Mazur's 
theorem (V. 3. 13 of Ref. 17) [(!I P) is also norm dense. 

We remark that [( I p): - p may be viewed as a 
generalized conditional expectation. Indeed, there 
exists, by 5.16 (taking direct sums if necessary), a 
Hilbert space which supports faithful *-representations 
n and IT of ! and p, respectively, such that [( I P) is 
implemented by a normal conditional expectation of 
n(!)" onto ti(P)". Query: Is [(!I P) = P? 

The following lemmas aim toward showing how each 
p-equivalence class is associated to a unique state on 
p and toward defining the a priori probability assign­
ment conditional upon P (Theorem 5.13). 

Denote by B(@5) Crespo B(S» the a-ring of Borel sets 
of @5 (resp. 5). Since 5 is w*-closed (Prop. 5.1), the 
a-ringB(@5)n 5 ={.:In 51.:lee B(@5)}is a sub-a-ring of 
B(@5) and isomorphic to B(S). Therefore, if Il is a 
regular measure on C@5, B(@5», its restriction 
IlR (cf. III. 8, Ref. 17) with respect to B(@5)n 5 defines 
by Riesz representation theorem a continuous linear 
form on p. 

Now, since @5G is a (Choquet) simplex (Theorem 4.2) 
there exists (p. 218, Ref. 9) for each state WE @5G a 
unique, normalized, positive regular measure Ilw on 
@5 such that 

(a) (w:A)=f@5(</J:A)d ll w(</J) 

(b) Il w is concentrated on 5. 

Thus, Il~ defines a state on p. 

VAE !. 

5.9 Definition: Let w be a G-invariant state on !, 
Il w the measure on @5 associated to w by Choquet's 
theorem, and let I.I.~ denote its relativization with 
respect to B(@5) n 5. Denote by Rw the state on P de­
fined by Rw : t> = ~ (</J :/) dll~ (</J) vfc: p. 

5.10 Remark: Evidently, 
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= (Rw: [(A Ip)) 

5.11 Lemma: Let w be a G-invariant state on W, and 
let {Ii }f.I' {gi WI C K( R). Then, 

(w:K!(fI,···,fN;gl'···,gN))=<Rw: n K(fj;gj~ 
1=1 V 

Proof: By Remark 5.10 and Lemma 5.7, we have 

(w : K~(fl' ... ,jN; gl' ... , g N)) 

= lim (Rw: [(Kt', M(fl' ... , f N; gl' ... , gN))) 
M~" 

N 
=(Rw: n K(!;;gj))' 

i=l 

The nE':rt theorem identifies the "restriction" of a 
p-measurable state to p. 

5.12 Theorem: Let 1/J be an arbitrary p-measurable 
state. 

There exists a unique state ~ on p, such that 

¢N(fI,···,jN;gl,···,gN)= (¢ P.1 K (fj;gj) 

VNE Z', 

V{li}f.1' {g;}f.1 cK( R) 

Proof: By virtue of Theorem 3.3, there exists a G­
invariant state p-equivalent to </I. Existence then follows 
by Lemma 5.11. Uniqueness follows by linearity and 
continuity from Lemma 5.6. The next theorem gives 
existence of a unique G-invariant "extension" to ~ of 
every state on p and thus defines the a priori probability 
assignment conditional upon p. 

5.13 Theorem: Let ~ be a state on p. There exjsts 
a unique G-invariant extension "J; of ~ to W (i. e., J =~. ) 
Denote by [* (. IP): @5(P)- @5G, the mapping defined by 
t*(~IP)=JV$E@5(P). Then, 

(t*(~/P):A)=(~:[(A/P)) VAEW, ~E@5(P)· 

PrQ.of: Existence: Define ~=$o [(. Ip).j3y Theorem 
5. 5, ~ is a G-invariant state on~. Since ~ is G-in­
~riant, t=R1i (see proof of 5.12). By 3.10, 
(~:A)=(R$:[(AIP)) VAE~. Thus, 

(0: [(A I P)) =(~:A) = (R~: [(A /P) 

= <$: [(A I P) VA EW 

Hence, by 5. 8, ~=~. 

Uniqueness follows from Theorem 3. 3. The last 
assertion follows from the existence argument. Finally, 
we discuss the implementability of [(. I p). 

5. 14 Lemma Let w be a G-invariant state on W, 
(1T ." H." 0) the GNS triple associated to w, and let E., be 

as in 3.11. Let 
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where M, N,iNE Z' and {f~}, {gn cK( R). 

The expression 
M IN N A 

E.,{Ao+ L: 6 A. n K (f.i.gi.)}=IIO(q) 
N=l i =1 'j=l W J' J w 

depends on q only, not the particular decomposition 
used to define it. 

Proof: Choose ~ E E., H., and compute; 
11 INN 

(*) <w~,~: Ao 1 + 6 ~ Ai n K.,(f/; g}) 
N-l 1 =1 ;=1 

=(R(wt,~onJ :q), by Lemma 5.11. 

Independence follows by polarization. 

5.15 Lemma: The mapping q-7r~(q) of Po into 
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B(E Ji.,) admits a unique extension to a*-representation 
of p. 

Proof: Clearly, 

(1) ii:(AS + yT) = Arr:(S) + yrr:(T) VA, y E C, VS, T E Po, 
(2) fr~(ST) = II:(S)II~(T) VS, T E Po, 
(3) ri~(K(f; g)*) = ri~(K(g;f)) =E.,K.,(g;j) 

=n~(K(f;g))* Vf,gEK(R), 

(4) IJn:(S)1I2 = sup (w t . t : ii~(s*S) 
~EE.,H., 

ilt 11=1 

= sup (R(wuOII.,):s*S).;;lIsW 
~E E.,Hw 
II ~ 11=1 

VSE Po' 
The result then follows by continuity. 

5.16 Theorem: Let w be a G-invariant state on W, let 
(H." 1T." 0) be the GNS triple associated to w, let p., be 

as in definition 3.8, let c..,(. I P) be as in definition 3.12. 
Then: 

(i) The mapping K(f; g) - K.,(f; g) vf, gE K( R) ad­
mits a unique extension to a representation w., of 
pin B(H.,). 

(ii) 1TjP)=P., 

(iii) IT., ° [(. IP)=[.,(· IP)oII., 

Proof: (adO Since P., - P., I E is an isomorphism (cf. 
proof of Prop. 3.11) the existence of the extension of 
assertion (i) follows from Lemma 5.15. Uniqueness is 
trivial. 

(adii) It is clear that ir .,(P) is norm dense in P.,. Since 
;., ( P) is closed, (ii) follows. 

(adiii) It suffices to show that E.,II., ° [(. IP) 
=E .,[.,(' I P) ° II.,. By polarization it suffices to show 
that, for each ~ E E.,H w' 

(wL~: ii.,([(AI pm=<wl,~: c..,(II.,(A)lp) VAE~ 

By virtue of remark 5. 10, we have 

(w~ ,I : [ .,(II.,(A) I P)) = (WI,~ : E., II.,(A)E.,> 

= (Wt,l: II.,(A) = (R(WI,~ ° II.,): [(A I P). 

Further, by continuous linear extension from Equation 
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(*) of Lemma 5.14, it follows that (R(wl,1 0 II): [(A I p) 
= (w 1.1: llw (£(A I pm. 

This proves the theorem, 

APPENDIX A: PROOFS FOR SEC. 2 

Proof of lemma 2.2 

We first prove independence of decomposition. Due 
to linearity of W~U; g), it suffices to consider the two 
cases, f=O and/or g=O. Since taking the complex con­
jugate of Eq. (2.1) interchanges f and g, it suffices to 
choose g=O and show that each addend of Lin Eq. (2.1) 
vanishes. Choose a finite family {Z I }f.I of charac­
teristic functions of disjoint measurable subsets of R 
with finite measure such that 

L 

y~ = L: 'y! Zl' 1 ~k ~K, 1 ~m ~ N, ly!=O or 1. 
1=1 

(AI) 

Substitution into Eq. (2.1) yields 

g= kti Yk 21 (ti 'y~ z) 
N N 
IT Imy~ 0 Z'm 

m=l m=l 

K N N 

L: Yk IT Imy~ m~-I Z'm=O. k=I m=I 
(A2) 

Since Z ,Z I' = ° for 1 * l', the vectors 0;:'=1 Z'm are 
orthogonal for distinct n-tuples (lI' ... , 1 N)' Taking the 
scalar product with 0 ~d Z'm for fixed (lI' .•. , 1 N) yields 

(A3) 

Consider for fixed 1 ~j ~J the corresponding addend 
in Eq. (2.1). We show it vanishes when g=O: 

=0 by (A3). (A4) 

This proves independence. Property (i) is immediate. 
To prove (ii), choosef=L;=II\./0~=IX~), Define AU) 
= L;=I ~j a(Xi) .. • a(X~). Evidently, W~~f,j) 
=(w :AU)*AU»;' 0. This proves the lemma. 

Proof of lemma 2.3 

By virtue of Schwartz' inequality, 
I W; U, g) I ~ W~U, f)I /2 W~g, g)I /2, it suffices to prove 
that W~U,j)'~ N! Ilf II~ V f E L ~(RN). 

We simplify as in Lemma 2.2. Choose a finite 
family {X Itt=I' of characteristic functions of disjoint 
measurable subsets of R with finite measure such that 
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[compare (A2)]. 

Clearly, 
L 

W~U,j)= L: I\.jI .... 'jN "'1"'" 'N WN.~Xir'· .. ,XJN; 
1
1

, ••• ,1 N=l 

h, ... ,j~l 

X,!"" ,X,N). (A5) 

We investigate WN,N(Xh "" ,XJlj;X'I"" ,X 'p)' Notice 
that since the {X l}t=I are mutually orthogonal one has, 
by straightforward application of the anticommutation 
relations, WN.N(Xir , ... ,XJN ;X l1"" ,XI)=O if either 
X. =X. or XI =XI for 1 ~m *m' ~N. Moreover, 

Jm Jm' m m' • { 1 N r IN 

w".N(X, ' ... , X, N; XII' .•• ,X IN) = ° If ~m (m=1 * 1X l m (m=1 
due to G-invariance. Indeed, assume the converse: 

(i) WNN(X ir ' ... ,X'N ;X l1"" ,XI)*O, 

(ii) For some ° ~m ~N there exists no 
l~m'~N jm=lm" 

Assumption (i) implies that X'mX'm' =0, 1 ~m *m' ~N, 
while assumption (ii) implies that X'mXlm' =0, 
1 ~m' ~N. Choose V=exp(i7TX'm) E G. Since w is G-in­
variant we have 

WNN(XJ1 ' ... 'Xj ;X, , ... ,XI) 
N N N 

;: (w : a*(X. ) ... a*(X. ) a (X ) ... a(X ) IN JI '1 IN 

= (CI'tw : a*(Xj ).,. a*(Xh ) a (X 11)'" a(X 'N) 

= (w : a*(Xj N) N, a*(ei·Xj ) ... a*(Xh)a(XII ) '" a(X IN) 

= - WNN(XJ. , '" ,XJ. ;X, I)' 
1 N 1· .. ·' N 

contradicting hypothesis (i). Therefore 

WNN(Xh '··· ,XjN ;X'1"" 'XIN)=O if {Xj):=1 

* {X')~=I' 
In the event that WNN(Xir ' ... ,XjN;X'1 ' ... , X I) * 0, 
there exists a unique permutation PES N such that jm 
=lp(m) 1 ~m ~N. Moreover, 

=(-I)'(P) WNJXj , ... 'Xj ;Xj , ... ,Xj ). 
1 N 1 N 

Define the symmetric operator F~ on L 2( RN) by 

F;;:. t. (IT IIXlll~)-1 WNN(X i , ... ,Xi ;Xi , ... ,Xi) 
'I '0.0 JI N=l m-l 1 N 1 N 

(A6) 

where Pi is the projector on L 2( R) associated to the 
characte;'istic function X; . Since 
O~WNN(Xj , ... ,X; ;X; "~,,Xj )~IT~_IIIXi II~, 

1 N 1 N - m ° ~F~ ~ 1. We compute N! (0!IXI ,F~A(9)~=I Xj ): 
m m 

N! L: IT !IX; II~ WNN(X;, •.• ,Xi ;Xj , ... ,Xi ) L ( N )-1 
il' • •• I iN =1 m-l mIN 1 N 

X 0 X, , 0 Pi A 0 Xj (
N N N) 

m=l m m=l m m=l m 
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where Z",=jjp(ml' 1 ~m ~N, otherwise. 

Collecting these results, we have 

WNN(Xjl"" 'XjN ;X/1 , ••• ,X/)=N! (~ X, ,F; A ~ Xj , 
m=l m m&ll 1ft) 

(A7) 

Substituting of this result into Eq. (A5), we have 

W~(f,J)=N!(f, F; A/)=N!(f,AF~A/) ~N! 11/11; 
(AS) 

This completes the proof of the lemma. 

Proof of lemma 2.6 
It suffices to prove that P yB~P y E L OO( IRH)' since the 

von Neumann algebra, L OO( IRH), is a maximal Abelian 
subalgebra of B(L 2( IRH). Moreover, 

L OO( IRH) ={ m~l 1m 1 {tm}~=l e L OO( IR)}" 

=={.~{ Vm I{Vm}~=leG}' 
It therefore suffices to prove that 

[PyB:Py, m~l V",]=O \t{Vm}~=leG. 
Since the linear span of {@:'l/ml{tm}:'l eC( R)} is dense 
in L 2( R N), it suffices to show 

(~hm'{£ V!PyB~Py~ Vm-P.;B:Py} ~/)=O 
~~ md m~ ",~ ~ 

V {tm}' {hm}s=e(l:~), v{V".}e G. (A9) 

In fact, 

( 
N h N V* N n BN N P N V N f. ~ 

181 m' 181 m 181 .e", w 181 m 181 '" ml8l=l m m-! 1n:llii! m_! m_! m= 1 

= WNN(V PJl' ... , V PNI N; V PI hI' .• " V PNhN) 

=WNN(PJl"" ,PNIN; P1h1,··· ,P0N) 

This proves (A9) and the lemma. 

Proof of lemma 2.7 

Since {P(Y)}YEr forms an increasing bounded filter in 
the von Neumann algebra L OO( RH), it converges in the 
weaks operator topology of B(L 2( RN» to its least upper 
bound P. 
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Since P(y)P(y') = P(y) for y e y', P(y) 15 
=w-op limr'Er P(y)P(y')=P(y). Thus J52 
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=w-op limyEr' P(y)P=w-op limyEr15(y)==P. Moreover, 
since 15* =w-op limyErP(y)* =]5, ]5 is a projector in 
L OO( R N

). To prove that 15 = I, first notice that 1 = P aN -pH, 

where IDN = {X E IRNIX i = XI" for some 1 ~ i *i' ~N}, 
since [)N is a set of measure zero. But it is clear that 
IRN - [)N = u{y = Yl X ••• X YN I Yi n Yi' = cP; Yi measurable; 
VI ~i*i' ~N}. 

Thus ]5 :::J P RN _ pH = 1. This completes the proof of the 
lemma. 

Proof of lemma 2.8 

Choose two disjunctions {p k }f.l' {OJ };=l of y in C( IRH). 
Notice that P~: P k' 0 j ~ OJ E L 00 (IRH). Indeed, if 
Pke p y. E y, say, PkB:Pk=PkPy.B: Py.PkE L OO(!RH). 
Thus, • • , 

This proves independence of the chosen disjunction. 

(adi)PkB~PkE L OO( RH) VI ~k ~K. 

(adii) We first remark that liP B~PII ~ 1 Vp,=pN. In­
deed, it suffices to prove that 

1([, PB: PI) 1 ~ III II~ ViE L ~(RH). 
Since PIE L ~(RH), there exists by the explicit con­

struction of Eqs. (A6) and (A 7) an operator 0 ~ F; ~ 1 
on L 2{JR N) such that 

1 (f,PB~PI)1 =N! l(f, P F; API) I. 

By construction P F~ == F;P; therefore 

1([, PB~PI)I = l(f, F; PI)I ~II/II~. 
Thus, 

O~6PkBNPk~~ Pk~1. 
k W k 

(adiii). Let y e y' and let {P k}f=l be a disjunction of y' 

in L OO( RH). Then P(y)F:(y')=P(y)L:k P"B:Pk 
= L:kP(y)PkB:PkP(y)=F:(y) since {PkP(y)}:=l is a dis­
junction of y. 

(adiv) F~(y') - F:(y) = [1- P(y)] F~(y/)[l - P(y)] ~ O. 

Proof of lemma 2.9 

By Lemma 2. S (iv) {F:(y)}yr-r is an increasing, 
bounded filter in L OO( RH) and therefore converges in the 
weak operator topology of B(L 2( IRH) to its least upper 
bound F~. Since L OO(!RH) is weakly closed, F: E L OO( RH). 

(adi) Suppose that F: E L 00 (IRN) is such that F~ P 
==PB~P VPE pN. Choose yE r and let {Pk}f.l be a dis­
junction ofy inL OO(IRH). ThenF:Pk=P F~(y)Pk' Indeed 
suppose that P k e P E y. It follows that 

F:Pk =F~PPk =PkPB~PPk==PkB~Pk=PkF~(y). 

Thus, 

F~P(y)=~ F~Pk=6 F~(y)Pk=F:(y) 
k k 
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Hence 

=w-op lim P('Y)F~('Y')=P('Y)F~. 
y'ET 

F:=::w-op lim P('Y)F~=w-op lim F~P('Y)=F:. 
y'E r y'E r 

This proves uniqueness. 

(adii) Consider the operator N! F: A - B~ on L 2( RH). 
Since L ~(IRH) is dense in L 2( IRH), it suffices to show that 

(h,(N! F!A-Bt)f)=O Yf,hEn(RlI). 

By virtue of the decomposition (A3), it suffices to show 
that if {X kK=1 is a disjoint family of measurable sets 
with finite measure, then 

(~l X kj , N! F~A ~l X ki) =C~l X kj , B~ ~l XkJ 

The left member vanishes by inspection if {kj}*{k'j}, 
while the right vanishes by the invariance argument of 
Lemma 2.3. On the other hand, both sides vanish if 
k j = ki for 1 ~ i * i' ~ N by anti symmetry . It remains to 
be shown that 

181 Xk.,N.FwA 181 X k. = 181 Xk.,B w 181 A; 
(

N INN) (N NN) 
i = l ' i =1' i =1 1 • =1 i 

since the other permutations follow trivially. But, this 
last equation is true by part (i) of this lemma and the 
fact that F: E L ~(IRN). 

(adiii) The intersection B(L 2( RlI)1 n B(L 2( !RlI)+ is 
closed in the weak operator topology of B(L 2( R». 

(adiv) ChoosepESN' ClearlyUtF:Up,=-L"'(RlI). For 
each PE pN, u: PUp E pN. Therefore 

UpF:UpP=U: F:(Up PU:)Up 

=U:(ljpPU:)B~(ljp Put >Up 

=PB~P. 

Hence, by the uniqueness of F~, UtF~Up=F~YPESN' 
This completes the proof of the lemma. 

APPENDIX B: PROOFS FOR SEC. 3 

Proof of lemma 3.2 

(adi) 

(w : a*(f N)'" a*(fl) <lv[K:(f~, •.. , ko;ftt, •.. , ~)] 

a(gl)'" a(gN» 

= IBM dMj rr. f/(Xj)i'j(x i )\ \J-I J 

( 
M N+M N M M N+M ~ 

X 181 VLl.x 181 gi' F w+ Up ,181 VLl. x , 181 f i , 
Jel j j=N+I J= I J J=M+I 
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where we have relabeled with j - j + M. This expression 
splits into a sum over permutations of three types: 

Type 1: P(j)=j, 1 ~j ~M; 

Type 2: p(j) ~M for some j:;. M + 1; 

Type 3: j ~M=>p(j) ~M but p(j) *j for 1 ~j ~M. 

First consider a type-1 permutation characterized by 
PESN : 

(_l)a(p)j dMx(n r(x.)gO(X.») 
aM j= I J J i J 

X ® LI. 181 FN+M 181 LI. 181 (
M M+N M M+N ) 

i=l Xj i=M+I gi' w j=l Xj i=M+I Jp(j) 

Changing variables xj = xi' yj = Y j - Xj and changing the 
order of integration by Fubini's theorem, one obtains 

=(_l)a(P) ( dMy' ~ L\.2(Yj) 
llRM i-I 

X ~~l fjOg~ ° F~·M(fp(l)"" ,fp(N);gl"" ,gN») 

(- Y~, ... , - y~), 

where 0 denotes convolution. 

Since the second term in the integrand is a continuous 
function on RM, the expression converges as 15 - 0 to 

(_l)a(p)(~ {jOgio F:·M(fp{l)""'/P(N);gl, ... ,gN) 
i=l 

(0,0, ... ,0») 

=(_l)a(p) (.~ g;, F~,M(fp(ll"'" fp(N);gl"" ,gN) 
J= I 

Ji fi) 
=(_l)a(p) 0~1 gj' F~'N(f~, ... , f;;ftt,··· ,g;) i~Jp(j~ 

since FN+M is symmetric. 

Now consider type-2 permutations. We will show they 
converge to zero as 15 - 0 uniformly in V. We consider 
for the sake of notation the special, but typical, case 

P(M+l)=l, P(1)=M+1, P(j)=j Yj*lorM+1. 
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Y Y+N ) 1 I8i VAxJ I8i VA I8i f j 
J-2 Xl j=M+2 

= 11.2 dX1 dy fIO(XI)g~(XI)(VAryY)fl(Y) 

X ff#-1 dx2'" dXyg(X2)g~(X2)'" f;(xy)g;(Xy ) 

XF~'N+y-I(VAx2' ... , VAxy, VAX1 ' f2,o •. ,fN; 

XVA"2"'" VAxM ,gl, •.. ,gN)(y)1 

.;; Ilf~11211 ~112 ···lIf;1I2 11 ~1I2I1g1112"'lIgNII2I1f2112 ..• IIfNII2 

X~2 dxdYlf~I(X)I~I(X) IVAxll(y)lfll (y). 

Since V,-:: L ~(IR), I VAxl(y)=Ax(y)=Ao(y -x)a. e. -dx 

Finally, calling X the (V and 0 independent) constant 
preceding the last integral, we have 

=XOI/2 J If~1 (x) Ig~1 (x) J dy IfII(y)X6(y -x)/o 

.;; XOI/2I1f~11211~1I2I1fl ° X6 /0 II ~ 

";XOI/21If~IIII~lIlIfll1~· 

Thus as 0 - 0, terms of type 2 converge to zero, uni­
formly in V EG. 

.-

Now consider type-3 terms. Again we consider for 
the sake of notational simplicity a special but typical 
case: 

p(1)=2, p(2)=1, p(j)=j yj*l or 2. 

We have 

X( VAx) I (y)(VA"2) (y) 

X ( dx3 '" dxy IT hO(x)g;(xj ) JIR M-2 j-3 

X JJt3 dydxldx2If~I(XI)lg~I(XI)lf; l(x2)lg;l(x2) 

x A(Y - Xl) A(y - X2 ) 
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X X6 (Xl - X 2 )/ 0 

.;;oxllf~1I21Ig~11211If~g~1 ° x6/oll~ 

';;oX Ilf~ 112I1g~1I2I1f~lI~ IIg~II~. 

Thus expressions of type 3 converge to zero as 0 - 0 
uniformly in V E G. 

Collecting these results, we have 

lim (w: a*(fN)'" a*(fl) av[K~(f~, .•. , f;;g~, ••. , g;)] 
6 -0 

X a(gI)'" a(g N)} 
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" ( l)a(p) (N FN,y (fO fO. ° 0) = LJ - (j9gi' wI"'" M,gl,· .. ,gM 
PES

N 
I=l 

N ;:Jp(j)) 

=N! (~ gj, F~·M(f~, •.. , f;;g~, ... ,g~)A ~ fJ\' 
Jc1 i-I ~ 

which proves (i). Moreover, since the first expression 
is a finite sum of terms uniformly convergent in V E G, 
this limit is reached uniformly in VE G. This completes 
the proof of the lemma . 

Proof of lemma 3.4 

We prove the result for a~ (f) = a(f); the argument for 
a*(f) is similar. Since X is continuous and linear, we 
have 

(X: a(f)a v[K:(f~, ... , f;;~, ..• , g;}]) 

(X:a(f)a*(VA ) .. ·a*(VA )a(VA )"'a(VA ») 
xM Xl xl xM 

1 M -
= dMx n f?(x)g~(Xj) 

aM j=1 J } } 

f(A: a*(VAx ) ... a*(VA x )a(VAx ) ... a(VA )a(f» r l!f I I xM 

M 
+~(_l)N+i(f, VAx'> 

1=1 ' 

(X :a*(VA ) .,. a*(pA ) ... a*(VA )a(VA ) ... a(VA »)} 
xM Xi xl xl "M 

by use of the anticommutation relations. The lemma will 
be proven if we can show that the commutation terms 
converge to zero uniformly in V E G. We consider the 
term i = 1 without loss of generality: 

X(X:a*(VA )· .. a*(VA )a(VA ) .. ·a(VA »)1 
xM Xl xl :eM 

.;; IIxll ~ 1It;1I211gj1l2 J 2 dx dy 1 n I (x) Ig~ 1 (X) A(y 
j=2 R 

-x)lfl(y) 
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M 
~ IIAII n IIf/1I2I1g~1I21Ifll ~ 0112 • 

j=l 

Therefore the commutation terms converge to zero 
uniformly in V r=: G. This proves the lemma. 
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Rigorous derivations are given of two time-independent formulas for the multichannel scattering 
operator for nonrelativistic charged particle systems. The derivations are based on Dollard's 
time-dependent theory and use techniques of spectral integration. The formulas involve a complex 
power of the resolvent operator, in contrast to short-range formulas. Bilateral Laplace transforms are 
used to derive a generalized multichannel resolvent equation and to prove existence and uniqueness of 
the solution. The formulas are applied to recover the well-known two-body Coulomb scattering 
amplitUde. 

I. INTRODUCTION 
A substantial body of literature (see Refs. 1-6 and 

references cited therein) exists on how to employ the 
Faddeev-Yakubovskil7.8 equations to study the scattering 
of systems of charged particles. Most papers on the 
subject have been restricted to situations in which there 
are at most two charged bodies in the open channels. 
In such situations the asymptotic effects of the long­
range Coulomb interaction can be treated exactly, thus 
avoiding the prinCipal complication of the problem. At­
tempts to treat more general processes have not been 
satisfactory. 1-3 

Remarkably, none of these papers seriously pursues 
the question of whether the time-independent scattering 
theory represented by the Faddeev-Yakubovskil equa­
tions is appropriate for charged particles. This is 
especially noteworthy in the face of evidence to the 
contrary. 

For example, when the interactions have short range, 
the time -independent theory is justified on the basis of 
the physically more transparent time-dependent theory 
(see Ref. 9 and references cited therein). For some 
reason such a procedure has not been repeated for mul­
tichannel scattering involving Coulomb interactions. 
This omission is especially remarkable, since inclusion 
of Coulomb effects is known10

- 12 to require modifications 
of the time-dependent short-range theory. One would 
expect the time-independent theory to require similar 
modifications. 

There is also evidence from relativistic theory. Re­
cent workl3- 15 demonstrates that the relativistic prop­
agator for "free" charged particles is a momentum­
dependent complex power of the usual free propagator. 
Such complex powers do not appear in the multiple 
scattering expansions 16 corresponding to the Faddeev­
Yakubovskii equations. 

Even in the thoroughly studied two -body Coulomb 
problem one finds evidence that the basic equation, the 
Lippmann-Schwinger equation, needs modification. 
Calculations based on this equation are plagued by 
divergences, 5,17-19 which are usually absorbed into con­
veniently ill-defined normalization factors. Statements 
abound l8- 20 that the transition amplitude defined by the 
Lippmann-Schwinger equation vanishes, or at least is 
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not unitary. Yet such statements are known 10- 12 to be 
false for the two-body Coulomb amplitude. 

In this paper we propose to take this evidence serious­
ly and to reinvestigate the foundations of the time -inde­
pendent scattering theory for charged particles. We 
begin in Sec. II by recalling the essential elements of 
the well-established multichannel time -dependent theory 
of Dollard. 10-12. This formulation was chosen, instead 
of alternative ones, 21-24 because of its Similarity to the 
familiar short-range theory. The theory is then recast 
in a more convenient two-Hilbert space setting. In 
Sec. III two time-independent formulas for the multi­
channel scattering operator S are derived with the aid 
of techniques of spectral integration. 9 It turns out that 
these time-independent formulas involve a complex 
power of the resolvent of the Hamiltonian. This is in 
marked contrast to the standard short-range theory 
where the resolvent appears only to the first power. 
An elementary theory for complex powers of the resol­
vent operators is developed in Sec. IV. SpeCifically, 
bilateral Laplace transforms are used to derive a gen­
eralized multichannel resolvent equation and to prove 
existence and uniqueness of the solution. The formulas 
of Secs. III and IV reduce, in the absence of Coulomb 
interactions, to familiar short-range formulas. We 
turn to the two -body problem in Sec. V to demonstrate 
that the well-known Coulomb scattering amplitude is 
recovered from our formulas in a straightforward, 
albeit tediOUS, way. The calculation is rigorous and 
no divergences need to be explained away. Concluding 
remarks are found in Sec. VI. 

II. TIME-DEPENDENT FORMULATION 

In Dollard's formulation10- 12 of time-dependent multi­
channel scattering one contemplates a system of N dis­
tinguishable spinless charged particles interacting via 
Coulomb-like potentials. Asymptotically the particles 
are in a particular channel {3 which consists of an ar­
rangement of the particles into n, 2 :5 n:5 N, clusters, 
each of which is in a specific quantum mechanical 
bound state. The basic assumptions of the theory are 
the following, collectively called assumption (D). 

Assumption D: 

D1. The total Hamiltonian H is of the form H=Ho 

Copyright © 1974 American Institute of Physics 1366 
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+ V + V c' where H 0 denotes the free Hamiltonian, V the 
short-range potentials, and Vc the potentials for the 
Coulomb interactions. The operator H is self-adjoint 
with domainD H in a separable Hilbert space H • 

D2. The "distorted" free channel Hamiltonians Ha(t) 
are of the form Ha(t) = Hat+ (lIE(t)H~(t), where the Ha 
are the free channel Hamiltonians and the H~ (t) repre­
sent the "anomalous" behavior. The symbol O! denotes 
the fine structure constant, and E(t) is equal to + 1 for 
t> ° and equal to - 1 for t < 0. The H~(t) are of the form 
H~ (t) = FaIn I t I + Aa for certain time -independent onp.r::t­
tors Fa and Aa [cf. Eq. (71) of Ref. 11]. The Ha(t) and 
HW) are, for any t, self-adjoint operators with domains 
in separable Hilbert spaces Ha eH and with absolutely 
continuous spectra. The Hilbert space Ho, correspond­
ing to a clustering with only one particle per cluster, is 
the entire space H . 

D3. The "modified" channel wave operators 
n~): s-limeIHte-iHa(t) Pa (2.1) 

t ... ± 00 

exist on It for all channels {3, where Pa are the orthogo­
nal projections of H onto H a. If the channels (3 and y 
have the same clustering but possibly different bound 
states, then 

(2.2) 

where 0ay is the Kronecker delta function. The orthogo­
nal projections E~a) of H onto the ranges of n~a) satisfy 

(2.3) 

fo r all channels {3 and y. 

In order to work most effiCiently with the multi chan -
nel problem, it is desirable to place the theory in a 
two-Hilbert space setting. Proceeding as in the short­
range case9 one defines the direct sum Hilbert space 
H': tfJafr a and the bounded injection operator J :It' - H 
by JtfJa¢a:'La¢a' Then the adjoint of J is J*lj!=tfJaPalj!. 
Define the multichannel "distorted" HamiltOnian HD(t) 
for q,:tfJa¢a in its domainu(HD(t» eft' by 

(2.4) 

The decomposition of Ha(t) in Assumption D2 implies 
the decomposition 

HD(t) =H't + o!E(t)H~(t), (2.5) 

where H'q,: tfJaHa¢a and H~(t)q,: tfJaH~(t)¢a. Furthermore, 
the time-dependent part of the operator H~(t) may be 
isolated by a decomposition of the form 

(2.6) 

The operators H', F, and A are all self-adjoint and 
commute with each other on properly restricted (dense) 
domains. 10-12 The "modified" multichannel wave opera­
tors n±: H' - H are defined by 

(2.7) 

and the multichannel scattering operator s: H' -H I by 

(2.8) 

The properties of this two-Hilbert space formulation 
that are important for this paper are contained in the 
following propOSition. 
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Proposition: Let Assumption (D) be true. Then the 
following statements are valid. 

(1) The wave operators n. defined by Eq. (2.7) satisfy 

(2.9) 

and the adjoint wave operators n:: fr -H' have the rep­
resentations 

n: = w-lim eiHD(t)J*e-IHt. 
t .. : .0 

(2.10) 

In addition, the wave operators satisfy the equations 

n~n.=I and n.n'! = E., (2.11) 

where I is the identify on H' and E.: 'LaE~a). 

(2) The scattering operator S defined by Eq. (2.8) 
satisfies 

S= w-lim eIHD(t)J*e-2IHtJeiH D(t). (2.12) 
t- 00 

As in the short-range case, the weak limits in Eqs. 
(2.10) and (2.12) may not, in general, be replaced by 
strong limits. 

Proof: The propositions follow from the corresponding 
single channel properties in essentially the same way 
as the short-range analogs. 9 QED 

III. TRANSITION TO TIME-INDEPENDENT THEORY 
A. Lemmata 

Lemma 1: Suppose the following statements are true. 

(i) There exists a strongly measurable, essentially 
bounded25 mapping f:R+ - H, where R+ is the (open) posi­
tive real line and It" is a Hilbert space, such that 

f",: limf(t) (3.1) 

exists. 

(ii) There exists Eo> 0 and a measurable function 
k: (0, Eo] X R+ - R+ that for each E in (0, Eo] is integrable 
with respect to t on R+. Moreover, the conditions 

lim 1'" dtk(E, t)= 1, (3.2) 
E -0+ 0 

limfoTdtk(E,t)=O (3.3) 
E "0+ 

are satisfied for all T, 0 < T < 00. 

Then, the vector 

Kef: f" dtk(E, t)f(t) 
o 

is well defined (in H) for all E in (0, Eo], and 

f.,=limK.J. 
e"'O+ 

(3.4) 

(3.5) 

Proof: The integrability (for fixed E) of k( E, t) and the 
measurability and boundedness of f imply the existence 
of the Bochner integral K.J (Theorem 3.7.4 of Ref. 26), 
To prove Eq. (3. 5), consider 

K.J - f., = f" dtk( E, t)[j(t) - f.,] + f.,{ 1" dtk( E, t) - I}. o 0 

(3.6) 
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The second term on the right in Eq. (3.6) vanishes in 
the limit £- o· by virtue of the assumed boundedness of 
I .. and by Eq. (3.2). It remains to prove that the first 
term also goes to zero. Let 0> 0 be given and let 11·11 

.denote the norm onH. Then, Eq. (3.1) implies the 
existence of T> 0 such that 11/(t) -I .. II < (0/2) for t? T. 
For t < T the bound 11/(t) -1 .. 11 :s 2/0 < 00, where 10 is the 
essential supremum of II l(t) II, is valid. The inequality 

II f" dtk( £, t)[j(t) - I .. JII < (0/2) f" dtk( £, t) + 2/0 f T dtk( £, t) 
o T 0 

(3.7) 

follows. It is clear from Eqs. (3.2) and (3.3) that there 
exists £lE(O, £oJ such that the right side of Eq. (3.7) is 
less than 0 if £ < £1' Since 0 was arbitrary this proves 
that the first term on the right of Eq. (3.6) also van­
ishes in the limit £- o· and hence that Eq. (3.5) is true. 
QED 

Lemma 2: Assume the following. 

(il Spectral families E~l) and E~a) are defined on re­
spective separable Hilbert spaces H 1 and Ha' 

(ii) There is a family of essentially bounded25 linear 
operators B t:ft1-Ha that are labeled by a parameter t 
that varies over a (finite or infinite) interval A of the 
real line. 

(iii) There exists on A x II, where A is an interval 
(finite or infinite) of the real line, a measurable com­
plex-valued function u(t, X). 

(i v) There is a real-valued Lebesgue integrable func­
tion v(t) defined on A with the property that lu(t, x) I 
::; v(t) for almost all tEA, XEA. Then the following state­
ments are true. 

(l) Suppose that the integral JAu(t, X)dE~l)¢ exists for 
almost all tEA and all ¢ Eft l' Then the existence for 
some 1/JEH 1 of one of the integrals 

f dtB t ( fAu(t, X)dE~ 1) 1/J) or 1. (f dtBtu(t, X))dE~ 1)1/J 
6. A 6. 

(3.8) 

implies the existence of the other and their equality. 

(2) Suppose that the integral hu(t, X)dE~a)¢ exists for 
almost all tEA and all ¢EHa. Then the existence for 
some 1/JEH 1 of one of the integrals 

fAdt( fAU(t, X)dE~a»)Bt1/J or fAdE~a)( fAdtu(t, X)Bt 1/J) 

(3.9) 

implies the existence of the other and their equality. 

Remark: Lemma 2 is but a minor modification of pre­
viously published results 9 and hence will not be proved 
here. The modification is necessary because HD(t) is 
not defined at t= O. 

Lemma 3: Assume the following: 

(il A spectral family E~ 1) defines a self -adjoint linear 
operator H 1 = J AdE~ 1) with domain u (H 1) dense in a 
separable Hilbert space H l' 

(ii) A family of (possibly unbounded) linear operators 
U ~ is defined on u (U x) C H 1 and has range in a separable 
Hilbert space Hz' The labeling parameter X varies over 
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an interval A, finite or infinite, of the real line R. At 
each point X E A the domainu (U~) contains LJ (H 1), and 
for each finite subset K c A there exists a nonnegative 
integer m and constants bk = bk(K), k = 1, ... , m, such 
that for all XEK the inequality 

IIU~q,lIa:S t bk llHiq,11 1 (3.10) 
k.O 

holds for each ¢ Eu(Hi). By convention H~q,;; q,. In Eq. 
(3.10) the subscripts 1 and 2 indicate that the norms 
are to be taken in the spaces H 1 and H a, respectively. 

(iii) There is a complex-valued function w(71, X) de­
fined on Rx A such that the integral 

w(Hb x)¢;; fa W(71, X)dE~l)¢ (3.11) 

exists for all X E A and all ¢ ELJ(H 1)' For every finite 
subset K c A there are nonnegative constants L = L(K) 
and y= y(K), with y> t such that the inequality 

IW(71, X) -w(71', X) I::; L I 71 - 71'1'1' 

holds for all 71,71', X EK. 

(3.12) 

Then, the existence for some 1/J EH 1 of one of the 
spectral integrals, 

f U~W(H1' X)dE~1)1/J or f U~w(X, X)dE~1)1/J, (3.13) 
A A. 

implies the existence of the other and their equality. 
Further, if 1/J EH2 belongs to LJ ([!!) for all X E A, the 
existence of one of the spectral integrals, 

fa dE~l)w*(Hb X)U*1/J or LdE~l)w*(X, X)[!!1/J, (3.14) 

implies the existence of the other and their equality. 
Prool: The proof of a similar previous result applies 

with the exception that inequalities (3.10) through (3.12) 
of Ref. 9 are to be replaced by the following: 

m 

IIr.1/Jlla:>6 0 bkIIH~B/1/J111' 
I k.O 

(3.15) 

m 

::;L6 bk0Ix/-Xi-lI Y IlHiE(l)(A/)1/J11 1 , 
k .0 / 

(3.16) 

m 

:s LIlT I '1'-1/2 (b - a) 1/2k2?o bkIIH~E( 1) «(a, b J) 1/J11 1 • 

(3.17) 

B. The scattering operator 

In this subsection time-independent formulas for the 
multichannel scattering operator S= W.O_ are given. 

The first formula is a multichannel Coulomb analog 
of a short-range result that was discovered for individu­
al channels by Hunziker. (See Theorem 3 of Ref. 9.) 

Theorem 1: Let Assumption (D) be true. Then the scat­
tering operator S has on H' the representation 

S=w-lim[£y/r(y)Je/O<A JdE~J fdFo!L(y+ia[CJ+T], 
e'" 0+ ~ 1.£ 0 T 

[X+ J..L+i£Jl2)dFTdE~eiO<A. (3.18) 

Here y is any positive number, and r(·) is the gamma 
function. The operator L(v, z) is defined, for complex 
v and z, by 

L(v, z) '" (i/2)"r(v)J* (z - Hrv J. (3.19) 

The integral in Eq. (3.18) is a repeated spectral inte­
gral which may be evaluated in any order of integration. 
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Proof: Define 

C
t 

0: eiO/Hb(t)J*e-2iHtJeiOlHj/t). (3.20) 

The operator Ct is strongly measurable and bounded in 
norm by IIJI12. Thus for <PEH', (>0, andxERo:(-oo,00) 
the Bochner integrals 

Q <P =" r~ dte-Ett,-leiH'tC eiH't<p (3.21) 
e Jo t, 

C(x)<P:; fo~ dtei(x+ie>trr-Ict<p (3.22) 

both exist and define bounded linear operators Qe and 
C(x), respectively (Theorem 3.8.1 of Ref. 26.) The 
properties of Ct , the fact that H' commutes with H~(t) 
on a dense subset ofH', and Lemma 1 with k(E, t) 
=" [E' /r(y) It' -le-'t, y> 0, imply that the asymptotic limit 
of Eq. (2.12) may be replaced by an Abelian limit to 
obtain 

(3.23) 

The limit S is independent of y. Now replace the factors 
eiH ' t in Eq. (3.21) with their spectral representations, 
and use Lemma 2 to interchange the order of the t­
integration with the spectral integrations (cL the proof 
of Theorem 3 in Ref. 9). The result is 

Qe<P = j dE~ j C(A + iJ.)riE~<P, 
\ It 

(3.24) 

where C is defined by Eq. (3.22). 

It remains to compute C. Recall that A commutes 
with F on a dense subset of H'. Then, by Eqs. (2.6), 
(3.20), and (3.22), and by the boundedness of Ko: e iOlA , 

(3.25) 

Replacing the factors eiOlFlnt in Eq. (3.25) by their spec­
tral representations and using Lemma 2 to interchange 
the order of the t-integration with the spectral integra­
tions yields 

C(x)<P=KjdF jL(v,(x+iE)/2)dFTK<P, (3.26) 
a a T 

where v = y + icy(a + r) and 

L(v, z):; l~ dW-Ie2i<tJ*e-2iHtJ. (3.27) 
o 

In order to find a formula for L(v, z), first take the 
bounded operators J and J* outside of the integrand in 
Eq. (3.27). Second, replace the factor e-2iHt by its 
spectral representation. Third, use Lemma 2 to inter­
change the order of spectral and t-integration. This 
gives 

L(v, z) = J* 1 dE:D(v, z, 7])J, 
~ 

(3.28) 

where E~ (- 00 < 71 < 00) is the spectral family for H. The 
function D(v, z, 71) is defined by 

D(v, z, 7]) 0: 10 ~ dUV-1e2i (".~>t = [ - 2i(z -7]) j""r(v) (3.29) 

for Re(v) > 0 and 0 < Arg Z < 1T. By the functional calcu­
lus27 Eq. (3.28) can therefore be rewritten 

L(v, z) = (i/2)"r(v)J* R"(z)J, (3.30) 

where R" (z) is the vth power of the resolvent of H. Com­
bining Eqs. (3.23), (3.24), (3.26), and (3.30) yields 
Eq. (3. 18)~in the indicated order of integration. To 
obtain a different order of integration, apply the spec­
tral representations to the factors in Eq. (3.21) in a 
different order. The proof then proceeds in essentially 

J. Math. Phys .• Vol. 15, No.8, August 1974 

the same way as before. QED 

The main point of Theorem 1 is that the time -indepen­
dent theory of charged particle scattering is deter­
mined by a complex power v of the resolvent (Z-H)-l. 
This is in contrast to short-range theory in which v is 
strictly real. The consequences of v having a nonzero 
imaginary part in charged particle theory seem not to be 
widely appreciated, as will be discussed in more de­
tail in Sec. VI. 

It is also worth noting that the parameter y in Theo­
rem 1 is always set equal to unity in short -range cal­
culations. The desirability of using a different y for 
Coulomb scattering will become apparent in Sec. IVB. 

Before discussing these matters, however, a Cou­
lomb generalization of the usual transition operator will 
be presented. Define for all <P = Ef!a<Pa in It a "Coulomb 
identity" operator Ie :H' -H' by the equation 

(3.31) 

where 0a is zero if channel {3 has two or more clusters 
with nonzero charge and is one otherwise. If all of the 
channels have only neutral clusters, as is the case in 
short-range scattering theory, then Ie is the identity 
operator. Coulomb transition operators are then pro­
vided by the following theorem. 

Theorem 2: Let Assumption (D) be true. Then the 
operator S - Ie has on H' the representation 

S - Ie = w-lim(- 21Ti)[ e-1/r(y)leiOlA j dE~ J 1 dFaJ R,(A - J.l) 
e~ 0+ ~ /.L C1 T 

(3.32) 

where 

(3.33) 

for all real x, 

T(v, z)o: (ti)v-1r(v)[(z -H')J*R"(z)J(z -H') - (z _H,)2-v] 

(3.34) 

for all complex z with nonzero imaginary part, v 0: y 
+ia(a+ r), R(z) 0: (z -H)"\ and r(·) is the Gamma func­
tion. The limit (3.32) is independent of y, y> O. The 
integral in Eq. (3.32) is a repeated spectral integral 
which may be evaluated in any order of integration. 

Proof: It is easily seen by an integration by parts 
that 

w-lim exp[2aiH~(t)1 =Ie 
t-~ 

(3.35) 

(cf. Ref. 12, p. 29). Therefore, the operator (S -Icl 
has the representation 

S -Ie=w-limeiH't(Ct - C;)e iH ' t , 
t-'" 

(3.36) 

where C t is defined by Eq. (3.20) and 

(3.37) 

Proceeding as in Theorem lone obtains 

S-I =w-limeio<AJdE' X(E X)eiO/A (3.38) e e- 0+ \ \' , 
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(3.39) 

The operator L(II, z) is defined by Eqs. (3.27) and 
(3.30), and the operator Lo(v, z) is similarly defined by 

Lo(v, z);;; .r dftv-leZWe-ZiWt = (i/2)Yr(II)R~(z), (3.40) 

where Ro(z);;; (z _H,)-l. Comparing the operator T(v, z) 

defined in Eq. (3.34), one notes that 

L (v, z) - Lo(v, z) = (i/2)R o(z) T(v, z)Ro(z). (3.41) 

The proof now proceeds in the same manner as the 
proof of Theorem 4 of Ref. 9. Consider the operator 

Y(E, A);;; 

[- 2c/r(y)]fo~ dte<n-.lt(A -H')(Ct - C:)RO(A -iE)eiH't 

(3.42) 
and show that 

S - I = w-limei"AJ dE' X(E A)el<>A c ._ 0+ ~ ~, , (3.43) 

where X(E, A) ;;;X(E, A) + Y(E, A). The operator X can be 
written in the form 

X(E, A)= (- 27Ti)[ Ey-l/r(y)]j 1 dFal O.(A - fl) 
It a T 

x T(v, [A + fl + i E]/2) dFTdE~ 
(3.44) 

[cf. Eqs. (3.38) through (3.45) of Ref. 9]. In order to 
duplicate these steps in the present case, one needs to 
know that the operators H'Ro(z)T(II, z)Ro(z) and T(II, z) 
satisfy the conditions of Lemma 3. This may be proved 
as follows. Consider the operator 

D(II, z);;; 1~ dttV-leZizte-2iHt = (i/2)yr(v)RV(z) (3.45) 
o 

for Re v> 0 and 1m z> 0 [cf. Eqs. (3.27) through (3.30) 
above]. Since 

!ID(v, z)!1 s fo~ dft Rov-le-Ztlrnz = r(Rev)(2Imz)"Rov, 

(3.46) 

D(v, z) is a bounded operator for Rev> 0 and Imz> O. 
Now consider the operator 

(z -H')L(II, z)(z -H')= (z -H')J*D(v, z)J(z -H'), 

= {(z - H')J*R(z)}D(v, z){(z - H) 

(3.47) 

The operators in braces in Eq. (3.47) are bounded for 
Imz> 0 by Lemma 1 and Proposition 1 of Ref. 9. Hence, 
the operator (z - H')L(v, z)(z - H') satisfies inequality 
(3.10) with m=2. Similarly, the operator (z -H') 
XLo(v, z)(z -H') satisfies inequality (3.10) with m =2. 
Therefore, for Rev> 0 and Imz > 0, inequality (3.10) is 
satisfied by T(v, z) for m = 2 and by H'Ro(z)T(v, z)Ro(z) 
for m = L The steps leading to Eqs. (3.43) and (3.44) 
may now be carried out by using Lemma 3 of this paper 
in place of Lemma 5 of Ref. 9. QED 

Remarks: Some remarks regarding Theorems 1 and 2 
are in order. 

(1) Theorems 1 and 2 make use of a general Abel 
limit which contains a parameter y> 0 rather than the 
usual Abel limit (y= 1). The reason for this generaliza­
tion is that Theorem 3, below, requires O<y< 1. The 
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fact that a general Abel limit may be used in place of 
the usual one is no doubt well known, but apparently 
has not previously been exploited because no one had 
reason to do so. 

(2) In two-body theory the operator F may be con­
Sidered as a function of H'. 28 This is not true in many­
body theory. Thus the operators H' and F must be given 
equal status, as is done in Theorems 1 and 2. 

(3) Note that the resolvent operator appearing in 
Theorems 1 and 2 is raised to a complex power v. The 
presence of this complex power serves to eliminate cer­
tain mathematical divergences which arise when Cou­
lomb potentials are present (see also the remarks in 
Secs. I and VI). 

(4) Theorems 1 and 2 reduce to the usual short-range 
results (cf. Theorems 3 and 4 of Ref. 9) if y= 1 and if 
all channels have only neutral clusters. In this case 
v = 1 and F =A == 0, so that K =1 c =1. It is clear from 
Eq. (3.34) that T(l, z) is just the usual short-range 
transition operator. 

(5) It is to be emphasized (cf. Sec. IV of Ref. 9) that 
the spectral integrals are to be performed before taking 
the limit E- 0+. 

(6) The function 15.(A - fl), which is supposed in the 
limit E- o· to enforce energy conservation, has been 
introduced in Theorem 2 in analogy with the short­
range case. As will be seen in Sec. V, this may not be 
the most natural way to exhibit energy conservation for 
charged particle problems. 

(7) Since 158 in Eq. (3.31) vanishes if channel (3 has at 
least two charged fragments, Theorem 2 gives in this 
case a formula for the (channel) operators Sy8 rather 
than Sy8 - l y8 ' This is not unreasonable, since I. 
Herbst29 has recently shown in the two-particle case 
that the Coulomb scattering operator is more singular 
than a delta function. That is, S in the momentum space 
representation is more singular as a distribution than 
I itself. Thus there is no apparent reason why the iden­
tity operator should be subtracted from the scattering 
operator for channels with charged clusters. 

IV. THE OPERATOR L(v,z) 

A. Bilateral Laplace transforms 

The principal mathematical tool that will be used in 
the study of the operator L(v, z) is the bilateral Laplace 
transform of Hilbert space -valued functions. The essen­
tial elements of the theory of such transforms are re­
viewed in this subsection. 

To define the bilateral Laplace transform, suppose 
that 1: R-H is a strongly measurable mapping from the 
real line R into a Hilbert space h. Then the Bochner 
integral 

f(s);;; Ja dte-sti (t), (4.1) 

when it exists, is called the bilateral Laplace trans­
form of I. 

Two useful properties of these transforms are the 
following: 

(1) If the integral f(s) converges at two points Sl and 
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sz, Re s 1 < Re sz, then it converges and is holomorphic 
in the strip Re Sl < Re s < Re sz. 

(2) If the two mappings 11 and h are such that f1(S) 
= fz(s) in some common domain (strip) of convergence, 
then f1(t) =fz(t) for almost all t. The proof of these prop­
erties for H -valued functions follows from a change of 
notation in the well-known proof for complex-valued 
functions. 30 

It is also useful to have an inversion theorem. 

Lemma 4: Assume the following. 

(i) The spectral family E~ of a self-adjoint operator 
H = f "AdE~ is defined on a separable Hilbert space h. 

(ii) A complex-valued function f(s, "A) is defined on 
SXA, whereS=={sECI s=a+iT, a<a<b} (hereCde­
notes the complex numbers), and A is an interval, finite 
or infinite, of the real line R. The function f(s, "A) is, for 
fixed "A E A, a holomorphic function of s in the strip 5 
and such that 

lim f(a + iT, A) = 0 
IT 1-:.1 

uniformly in every closed subinterval of (a < a < b). 

(4.2) 

(iii) There is a real-valued function h(s) such that 
If(s, "A) I ~ h(s) for all s E 5 and "A E A and such that for 
fixed aE (a, b) the function h(a+ iT) is Lebesgue integra­
ble on (- 00 < T < 00). 

(iv) The integral f(s, H)et> == f Af(s, "A)dE~et> exists for all 
s ES and all et> E/-(. 

(v) The integral j(x, H)et> == hf(x, "A)dE~et> exists for all 
x E R and all et> E/-(, where 

1 ia+i~ 
lex, "A)==~ dseXSf(s,"A) (a<a<b) 

7T'l a -i 00 

is the inverse bilateral Laplace transform of f. 

Then for all et> Eh 

f(s, H)et> = i: dxe-SX1(x, H)et>, 

for a < a < b, and 

- 1 fa+i~ 
f(x, H)et> = -2 . dseXSf(s, H)et>, 

7Tl . 
a-Ie(! 

(4.3) 

(4.4) 

(4.5) 

for a < a < b and x E R. The integrals in Eqs. (4.4) and 
(4.5) are to be understood as Bochner integrals. 

Proof: The integral in Eq. (4.3) converges by hypoth­
esis (iii), and it is independent of a by Cauchy's integral 
theorem and hypothesis (ii). Equation (4.5) then follows 
from the definition of lex, H)et> and Lemma 2. To prove 
Eq. (4.4), choose, for a given a E (a, b), a' and b' so 
thata<a'<a<bl.<b. Letfi(a)==(27Tr1f:'~h(a+iT)dT. Then 

_ lii(a,)e-x(a_a,) forx~O, 
le-SXf(x, "A) I::; (4.6) 

h(b')eXW - a ) for x< 0, 

for all "A E A, and the right-hand side of inequality (4.6) 
is Lebesgue integrable on (-oo<x<oo). Therefore, Eq. 
(4.4) follows from Lemma 2 and from Theorem 19 of 
Ref. 30. QED 

Finally, a convolution theorem is useful. 
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Lemma 5: Assume that the functions fk and the self­
adjoint operators Hk = f AdE~k) satisfy the assumptions 
of Lemma 4 on the separable Hilbert spaces /-( k' k = 1, 2, 
respecti vely. Let 1k(X, Hk) be the inverse bilateral Lap­
lace transforms offk(s,Hk}, k=1,2. Suppose that B is a 
transformation from H2 into HI for which the products 
f1(SI> H1)Bfz(sa, Ha) (a< ak == Re Sk < b, k= 1, 2), and 
Idx,H1)B1z(x,Hz)(xER), are well-defined onhz, and 
for which fl(X, HI)B is bounded. Then 

- - 1 ia+l~ 
f 1(x, HI)Bfa(x, Hz)et> =-2 . dse%SF(s) 

1Tt u-i C(I 

(a + aa < a== Re s < b + aa, x E R), where almost 
everywhere 

1 faz+l~ 
F(s) == 27Ti dsd1(s -sa, H l)Bfa(sa, Ha)et> 

(4.7) 

a2'"'i.o 
(a<az<b). (4.8) 

The integrals in Eqs. (4.7) and (4.8) are to be under­
stood as Bochner integrals. 

Proof: Choose ak==Re SkE (a, b), k= 1, 2. Since 
11 (x, H 1)B is bounded, it maybe moved inSide a Bochner 
integral. Hence, for et> Eha 

- - 1 faz+/,. -
fl(X, H1)Bfa(x, Hz)et> = 27Ti . dszeXSa f1(x, H1)Bfa(sa, Hz)et> 

a2-tflO 

(4.9) 

The order of integration in the last integral may be in­
terchanged by Theorem 3.7.13 of Ref. 26. The result 
is given by Eqs. (4.7) and (4.8). QED 

B. The generalized resolvent equation 

The starting point for most investigations in the time­
independent scattering theory for short-range forces is 
the resolvent equation, or some further development 
thereof (such as the Faddeev-Yakubovskil equations). 
Such an equation for L(v, z), 0< Re v < 1, is developed 
in this subsection. 

It is more convenient to write 

L(v, z) =i[2r(1- v}]-IJ*M(v, z}J, 

where 

M(v, z) == (i/2)V-1r(1 - v)r(v)(z - H)-v, 

= (i/2t"1(7T/sin7Tv) (z - H)-v. 

(4.10) 

(4.11) 

The theory is then developed in terms of the operator 
M. 

The fact that R(z):; (z - H)-I is raised to a complex 
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power in Eq. (4.11) is a considerable inconvenience. 
For this reason a representation of M(v, z) as a linear 
function of R is presentedo 

Theorem 3: For fixed nonzero z, 0 < arg z < 11, and for 
v in the strip 0< Re v< 1, the operator M(v, z) has on 
Ii the representation 

M(v, z) = f~~ dte t (1-") (z + tiet - H)-i (40 12a) 

= Ia~dYY-" (z + tiy - H)-i. (40 12b) 

Proof Define 7(t, >t) == et (z - >t + tietr 1 for fixed non­
zero z, 0 < arg z < 11, and all real (t, >t). The bilateral 
Laplace transform f(v, >t) of 7 is given by f(v, >t) = (i/2)"-1 
X(11/sin11v)(z ->t)-", provided that 0< Re v< 1. [This fol­
lows from Eq. (6.2(3)), p. 308, of Ref. 31 with the 
variable changes s - v = 1 - s, x - t = Inx. ] The function 
f(v, >t) satisfies the requirements of Lemma 4, yielding 
Eq. (4. 12a). A change of variables t-y=el yields Eq. 
(4. 12b). QED 

Remark: The fact that sin 11V has zeros at the integers 
means, in particular, that the representation of Eq. 
(4.12) is not useful if Re v= 1. For this reason it is ex­
tremely useful to have the flexibility allowed by Theorem 
1 in assigning the value of the parameter y. 

Resolvent-like equations for M(v, z) and for 

M(t, z) == et(z + tiet - H)-l (4.13) 

can now be derived in a straightforward way. For each 
channel 8 let a self-adjOint extension HB of the channel 
Hamiltonian Ha be defined. This extension must have 
the same domain as the full Hamiltonian H and must 
satisfy the equation HaPa = PaH B on that domain. (Exam­
ples of such extensions are provided by the so -called 
cluster Hamiltonians. 9.12). Operators MB and MB are 
defined in the same way as M and M, respectively, 
but with H replaced by H B' 

Theorem 4: For 0 < Re v < 1 and 0 < arg z < 11, the 
operator M(v, z) is the unique solution of 

M(v, z)= 

where 0 < Re v < c < 1. For all real t and all z with non­
zero imaginary part the operator M(t, z) is the unique 
solution of 

(4.15) 

Proof: This theorem is proved in essentially the same 
way as Theorem 5 below. QED 

This theorem provides the Coulomb analog of the 
resolvent equations that form the basis of the time-in­
dependent theory of scattering with short-range 
interactions. 

It is interesting that Theorem 4 can be rewritten in a 
Slightly more general way that does not refer to exten­
sions of the channel HamiltOnians 0 To do this define the 
operators M' and M' in the same way as M and M, re-
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specti vely, but with H replaced by H' 0 Let V* denote 
the adjoint of V = H J - JH' • 

Theorem 5: For 0 < Re v < 1 and 0 < arg z < 11, the 
operator M(v, z) is the unique solution of 

J*M(v, z)= 

1 iC+i~ 
M' (v, z)J* + 211i dorM' (v - or + 1, z)V* M(or, z), 

c-ioo (4016) 

where 0 < Re v < c < 1. For all real t and all z with non­
zero imaginary part the operator M(t, z) is the unique 
solution of 

J*M(t, z) =M' (t, z)J* + e-tM'(t, z)V*M(t, z). (4.17) 

Proof: The proof follows the standard treatment of 
the usual resolvent equation. The operator if is a solu­
tion of Eqo (4.17) since 

M'J* +e-tM'V*M=M'J* + (z -t tiet -H'r1V*M 

= (z + tiet - H,(l{J* (z + tiet - H) 

+J*H -H'J*}M, 

= (z +tiet -H')-l(Z + hel -H')J*M, 

=J*M. (4.18) 

To prove that th! solution of Eqo (4.17) is unique, con­
Sider solutions N of the homogeneous equation 

J*N=(z+hel -H'r1v*N. (4.19) 

Equation (4. 19) implies that J* N maps H into 1) H" the 
domain of H', and hence that 

0= (z + tiet -H')J*N - V*N (4.20) 

= J* (z + tiel -H)N. 

Recall that Po, where f3 = 0 is the "free" channel, is 
the identity on H. It then follows from the equation 

(4.21) 

valid for all ~H, that J* is nonsingular (although J is 
singular). Equation (4.20) thus implies 

(4022) 

The self-adjointness of H and the fact that 1m z t- 0 now 
imply that N= 0 and hence that the solution of Eq. (4.17) 
is unique. 

To obtain Eq. (4.16) take the bilateral Laplace trans­
form of Eq. (4.17), using Lemma 5 to deal with the 
second term on the right side. Existence and uniqueness 
of the solution of Eq. (4.16) follow from that of Eq. 
(4.17) and the uniqueness and continuity properties of 
the bilateral Laplace transform. QED 

Direct comparison of Theorems 4 and 5 is facilitated 
by writing the equations of Theorem 5 channel by chan­
nel. Equation (4. 17) is, for example, equivalent to re­
quiring for all channels f3 that 

(4.23) 

where MB is defined in the (now) obvious way. It is clear 
that not only does Eq. (4.23) not refer to extensions of 
the channel Hamiltonians but also requires equality only 
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on p;r = He. This subtle distinction between the equa­
tions of the two theorems is, of course, of no conse­
quence when the extensions H B are known, but may be 
important for the construction of more general theories. 

Comparison of Eq. (4.16) with the resolvent equation 

J*(z _H)-I= (z -H'rIJ* + (z -H'rIV*(z _H)-l (4.24) 

is also of interest. For this purpose one notes that 
M(v, z) is, for z fixed, meromorphic in the right half v 
plane with poles at the positive integers. In particular, 
the residue at V= 1 is (H -zrl. The Cauchy residue 
theorem (Ref. 26, p. 97) can therefore be applied to 
move the contour of integration in Eq. (4.16) to the 
right of the pole of the integrand at T = 1. The resulting 
equation is 

J*M(v, z)=M'(v, z)J* +M'(v, z)V*(z _H)-I 

1 1. c+j~ 
+-2' dTM'(v-T+1,z)V*M(T,z), 

7ft . 
C-t<Xl 

(4.25) 

where 0 < Re v < 1 < c < Re v + 1. Upon substitution of. 
Eq. (4.11) into Eq. (4.25) one obtains an equation for 
(z - H)-v that is valid in some open domain containing 
O<Revo:l: 

J*(z -H)-v=(z _H')-vJ* +(z -H')-vV*(z _H)-l 

+ (M)l-v sin 1TV ~ (C+i~ dTM'(v _ T + 1, z) 
1T 21Tt} c-i ~ 

X V*M(T, z). (4.26) 

The strong limit as v-I of the last term on the right 
side of Eq. (4.26) is zero, leaving one with Eq. (4.24). 
Thus, Eq. (4.16) can be properly said to generalize 
the usual resolvent equation, Eq. (4.24). 

The equivalent equations (4.16) and (4.17), or alter­
natively Eqso (4.14) and (4.15), are the Coulomb ana­
logs of the resolvent equations of short-range theories. 
They suffer the standard ills of multichannel resolvent 
equations, but these can, with one exception, be over­
come with a development of a Faddeev-Yakubovskii 
type 0 7-8 Such equations will not be written here, since 
further work should be done to ascertain the most natu­
ral way to define the transition operator T (cf. remarks 
following Theorem 2 and also Sec 0 V). Once this has 
been done and the analogs of the Faddeev-Yakubovskil 
equations written down, there remains the problem of 
compactness of the kernels of these equationso How this 
is to be circumvented remains, of course, an important 
matter for further research. 

V. THE TWO-BODY AMPLITUDE 

The formulas of the preceding sections can be used 
to compute the two -body Coulomb scattering amplitude 
in a mathematically rigorous way. The calculation is 
done in the center of mass momentum coordinate sys­
tem and recovers the well-known32 amplitude 

S(lr k.)=o(Ik/ l
2 

_ Iki l
2
)f(lr. Ir.). 

.'~, ,. 2/J. 2/J. ~, n; (5.1) 

The function f is defined by 
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_ _ iO'Z l Z2 ( 2k )21 0
m(k) r(1 + iO'1](k» , 

f(k"k;)- 1Tlkt- kI 12 Ikt-kll r(1-iO'1](k» 

where k= Iktl = Ikjl and 

1](k) = /J.z1zzk-t, 

(5.2) 

(5.3) 

/J. being the reduced mass of the system. This result is 
obtained in a straightforward, although lengthy, manner 
that is not plagued with the divergences encountered in 
many previous calculations. 17-19 

In the two-body calculation the motion of the center 
of mass is suppressed so that the operators Ho, F, and 
A are defined in terms of relative coordinates. The ex­
plicit representations are 

(Hof)(x):= (21Tr 3/2 f dkelll:'X
( IkI 2/2/J.)f(k), (5.4) 

(Ff) (x):= (21Tr3/2 f dke i ll:' lI1](k)!(k), 

where 1](k) is defined in Eq. (5.3); and 

(Af)(x):= (21Tr 3/2 f dke i ll:'''1](k)ln(21 k 12/ /J.)! (k) 0 

(5.5) 

(506) 

In Eqs. (5.4)-(5.6) the function! is the Fourier trans­
form of f. The spectral measures E~ and FG correspond­
ing to Ho and F, respectively, have therefore the 
representations 

(EU)(x) = (21Tr 3/2 f dke i ll:'''8(A - [I k 12 /2/J.])!(k) (507) 

and 

(FGf)(x) = (21Tt3/2 f dke 1 11:' "8(A -1] (k»!(k), (508) 

where 8 is the usual Heaviside functiono Finally, the 
operator J is in the two -body case just the identity. 

Now let ~ and ¢ be Schwartz test functions such that 
their Fourier transforms ~ and ¢ have nOnintersecting 
compact support. It is further assumed that the origin 
k= 0 does not lie in the support of either ~ or ¢. Then 
it follows from the previous paragraph and from Theo­
rems 1 and 3 that the equation 

holds, where S, has the form 

iE' (4 T )1 Olnl (4 T. )ia~1 
S,(kt, k;) = 2T(y)t(l _ ~) 

xi~ dyy-vC([TI + Ti+ in iY]/2; kt, k;)o (5.10) 
o 

In Eq. (5.10) the parameter y can be arbitrarily chosen 
from the open unit interval (0, 1). The parameter v is 
given by 

(5.11) 

where 1]1 = 1]( I itt I) and 1]1 = 1]( I kj I ). The parameters Tf 
and Ti are the final and initial kinetic energies, T, 
=(lk,I 2/2jJ.) and T i =(lk j l

2/2/J.), respectively. The func­
tion G in Eq. (5. 10) is the usual Coulomb Green Func­
tion' for which the representation (2') of Schwingerl7 
is adopted: 33 

(5. 12) 

where ~ is a complex number and 
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G1 == - (a f.J.Z1ZZ!;/1TZ) 10 1 
dppiw (1 - p2)[2p~ I k, - ~ IZ 

- f.J.(~ - TfW -Ti )(1 - p)Z]"2, 
(5.13) 

(5. 14) 

The problem now at hand is to compute the limit of Eq. 
(5.9) explicitly. 

The contribution to (l/J, SCP) corresponding to the first 
term on the right side of Eq. (5.12) is easily calculated 
to be 

!~~ f dk ~*(k)¢(k)r(y + 2iCHI(k»[r(y)]-1 exp[ - 2i(7)(k)ln€]. 

(5.15) 

It is straightforward to prove with a change of variables 
I kl- 7)(k) and an application of the Riemann-Lebesgue 
lemma that the expression (5.15) is zero. 

Equation (5.9) is therefore true with S. replaced by 

S(l)(1r Ir.) == i EY(4Tf);~f(4Ti )i~if ~ d -v 

• .." ~ 2r(y)r(1 - v) yy 
o 

(5.16) 

A change of variables p- 0':= 2p1/2(1 - p)"1 in Eq. (5.13) 
and subsequent substitUtion of the result into Eq. (5.16) 
yields 

where 

P= ay-V(Tf + T; + i€ + i y )6 + (1: aZ)1I2Y;w
o

, (5.18) 

D =0 0'21 it, -:It; IZ(T, + T; + i E:+ iy) + f.J.[ (T, - Ti)2 + (E:+ y)2]. 

(5.19) 

Here v is defined by Eq. (5. 11) and Wo is obtained by 
substituting ~== (Tf + T; +i€+iy)/2 into Eq. (5.14). 

As long as E> 0 the integrations over the variables 
k.F, k;. y, and a can be performed in any order. The 
proof of this relies on the estimates 

I P I ~ ay-Y I T, + T; + i E + iy I (5.20) 

and 

(5.21) 

These inequalities follow from straightforward algebra 
and the observations that Imwo> 0 and that both Re D and 
1m D are sums of strictly positive terms. It follows 
from Eqs. (5.20) -(5. 21), the assumed properties of 
~ and 4>, and Tonelli's theorem that the multiple inte­
gration in Eqs. (5.9) and (5.17) is absolutely convergent 
and hence, by Fubini's theorem, can be evaluated with 
any order of integration. 

Further, if Tf *" T; the first term on the right side of 
Eq. (5.21) can be dropped. This permits the applica­
tion of the Lebesgue dominated convergence theorem to 
prove that S~l) vanishes in the limit €- 0 uniformly on 
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compact subsets of the complement of the set Tf == T I • 

One concludes, not surprisingly, that energy is roughly 
conserved and that only the region T f :::; T; contributes to 
the integral in Eq. (5.9). 

Assume, therefore, that I T, - Ti Is 00 , for some 
arbitrarily small but nonzero 00 , for all it, and k; in the 
(compact) supports of ~ and 4>, respectively. Let Q. 
denote the integral in Eq. (5.9) with S. replaced by the 
S!1) given in Eq. (5.17). Then, in terms of the variables 
X:= (T" it,/ I it, I, k;/ 1:It; I) and 0:= T, - T; the integral Q, 
takes the form 

Q,==€yfdX.CdY.CdatodoRPD-Z, (5.22) o 0 -00 

where 

(5.23) 

The problem now is reduced to showing how the energy 
conservation delta function emerges from the integra­
tion with respect to o. 

For this purpose various estimates of the o-depen­
dence of the integrand are needed. Application of the 
mean value theorem of the differential calculus yields 

R (X, 0) == R (X, 0) + ORo (X, 5), (5.24) 

where Ro= (aR/ao) and 0<6< o. Because of the assumed 
properties of ~ and;P, the function Ro has compact sup­
port and is bounded in that support. A Similar expan­
sion can be made for P, 

P(X, 0, y, a) = P(X, 0, y, a) + oPo(X, 0, y, a), (5.25) 

with Po= (ap/ao) and 0< 6< o. A bound for Po is easily 
constructed from the equation 

p-1p =~ lnP= - av lny- (2T - 0 + i€+ iy)"1 
6 ao al'l ' 

+ 2i ~ ln6 + (1: a2)17Z)' (5.26) 

The functions (av /al'l), (2T, - 0 + i_E:+ jY)"\ and (awo/al'l) 
are all bounded in the support of l/J *CP. One needs also 
the straightforward estimates 

!In(1+(1:a2)17Z)!dn3+ IlnO'I (O<E<OO), (5.27) 

and 

12T,-l'i+i€+iyls(const)(1+y) (O<E<1), (5.28) 

valid on the compact support of ~*¢. These facts, 
together with Eq. (5.20), yield the estimate 

Ipols (const)ay-Y(1 + y)[1 + Ilny I + Ilnal]. (5.29) 

The denominator function D must be estimated with more 
care. Let ~ denote 

(5.30) 

and let Do be given by 

Do:= aZ~(X, O)(2T, + i E:+ iy) + f.J.[ 62 + (E:+ y)2]. (5.31) 

Then 
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a2D- 1{[ .:l(X, 0) - .:l(X, 0) ](2T, + i E:+ iy) + oA(X, o)}. 

(5.32) 
Since Re D is a sum of positive terms, the estimate 

(5.33) 

holds. From Eqs. (5.32) and (5.33) it follows that 

IDoD-l - 11 $. (const) I 0 I (5.34) 

for (X, 0) in the support of ~*¢ and for y, a> O. 

Let Ro and Po denote R(X, 0) and P(X, 0, y, a), respec­
tively, and write the identity 

RPD-z - RoPoDoz=D(nD~D-Z[(R - Ro)P+ Ro(P -Po)] 

+ RoPo(DoD- 1 + 1)(DoD-l -1)}. (5.35) 

The boundedness of DoD- 1 and Ro and the Eqs. (5.20), 
(5.24), (5.25), (5.28), (5.29), and (5.34) imply the 
inequality 

I RPD-z -RopoDiizl~ (const) IDol-zl 0 lay-Y(1+ y) 

x [1+ lIn y 1+ lIn a I ], 
(5.36) 

valid for y, a> 0 and (X, 0) in the support of ~*¢. Now 
substitute the estimate 

(5.37) 

into the right side of Eq. (5.36) and integrate with re­
spect to O. The result is obviously integrable with re­
spect to (X, a, y) for all X in the support of 'iP*$ and all 
y, a> O. By Tonelli's theorem the right side, and hence 
also the left side, of Eq. (5.36) is absolutely integrable 
for all E, 0:5 E~ 1. Furthermore, by Fubini's theorem, 
the integrations can be done in any order. It then fol­
lows that in the limit as E- 0 the integrand in Eq. (5.22) 
can be replaced by R(X, O)P(X, 0, y, a)Dii2• 

The problem now is to calculate the integral 

Q~O) = EY! dX~~ dy ~~da l::dOR(X, O)P(X, 0, y, a)Do2 

(5.38) 

= c! dX fo~dy fo~ daR (X, O)P(X, 0, y, a)/J.-2 

(5.39) 

where 

(5.40) 

The principal sheet of the logarithm is assumed cut 
along the negative real axis. Using the bound 

2T 
IDll2: yZ + -' .:l(X, 0)a2, (5.41) 

!-f. 

one easily proves that the first term on the right side of 
Eq. (5.39) is absolutely integrable, with the estimate 
being independent of E. Application of the Lebesgue 
dominated convergence theorem then shows that it does 
not contribute to the limit. It only remains to estimate 
the second term. Since Re Dl> 0 for E> 0 the log term 
in Eq. (5.39) is well defined and bounded. Since also 
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(5.42) 

one findS with the aid of Eqs. (5.20) and (5.28) that 

I PDi3/21s (const)ay-Y(1 + y)(E+ yr3/2 [(£+ y)2 + 0'4]-3/4. 

(5.43) 

This inequality, the boundedness of R(X, 0) and the log 
term, and Tonelli's theorem imply that the second 
term of the integral of Eq. (5.39) is absolutely integr­
able with respect to all variables for all E> O. Make now 
the change of variables 0'- P= E- 1a, y - X= E-1y. Then the 
second term on the right side of Eq. (5.39) becomes 

(5.44) 

where 

D2= (1 +X)2 + /J.-lp2.:l(X, 0){2T, + iE(1 + x». (5.45) 

The term in (5.44) proportional to i E(1 + x), 

!-f.-2t! dX 10"' dx{"'dP R(X, 0) F1+Y-VX-Vp(1 +x) 

EP 2iwO D-3/2l (Efi5;+ iOo) 
x 1 + (1+ ~p2)172 2 n Efi5;-iOo ' 

(5.46) 

also does not contribute in the limit E- O. To see this, 
write the integral as 

! dX J~dx R(X, O)fE(X, x), 
o 

(5.47) 

where 

f{X X)=El+Y-VW2X-v(1+xy~dPP( EP )
2iW

O 
, , 2 1 + (1+ ~p2)172 

o 

XD-3/2ln(Ev'D;+iOo). (5.48) 
2 Efi5;. - i 00 

The integrand of Eq. (5.48) can be bounded by using the 
fact that the log term is bounded (even for E= 0) and 
also the estimate 

I D21z ReDz 2: (const) [(1 + X)2 + pZ], 

valid for X in the support of R (X, 0). Thus 

If, 1:5 (const) EX-'I'(1 + x)~ .. dp p[(1 + x)Z + p2]-3/2 

:5 (const) EX-Y. 

(5.49) 

(5.50) 

Thus, f,(X, x) - 0 pointwise as E- O. Since f, is absolute­
ly integrable for E> 0 [cf. remark following Eq. (5.43)] 
and approaches zero pointwise, the Lebesgue dominated 
convergence theorem would imply that the integral of 
Eq. (5.46) vanishes if some integrable bound for fE 
could be found that is independent of E. This is provided 
by the inequality 

/ D2 /z 2: (const)[(1 + X)4 + ~p4(1 + X)2], (5.51) 

valid for X in the support of R(X, 0), which leads to 
If, Is (const) EX-'I'(1 + x).r dp p[ (1 + Xl4 -1 ~p4(1 + x)Zr3/ 4 

:5 (const)x·Y(1+x)"1. (5.52) 

The Lebesgue dominated convergence theorem thus ap­
plies, proving that the limit as E - 0 of the integral of 
Eq. (5.46) is zero. 
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Finally, consider the remaining term in (5.44), 

ef ('" cf'" 
Il-

z i dX Jo d]o dp 

( 
f.P )

2iW
O 

XR(X,O)CVx-VpTf 1 + (1 + ~pZ)l/Z 

D-3/zl (f.fl5;+iOo). (5.53) 
x 2 n 15"-'" f.VV2 tvo 

It is easy, using Eq. (5.49), to see that the Lebesgue 
dominated convergence theorem holds so that the limit 
as f. - 0 can be taken through the integrals in (5. 53). In 
that limit, Wo approaches CiT/f == CiT/I == (v - y)/2 and the 
log term approaches i1T. The limit is 

(1ji, SCP) == J dK l'''dx l"'dp 1l-21TTfR(X, O)x-Vp( ip)V-Y o 0 

x [(1+ X)2 + 2Tf ll-l,~(X, 0)p2]"3/2, (5.54) 

where now it is understood that I ~ I == I ~ I. This inte­
gral can actually be done. By making the change of 
variables p - p:= (1 + x}[2Tf 1l- 16o(X, 0) )"lf2p in Eq. (5.54) 
one obtains 

(5.55) 

1T2 Y
-

V 
( Il )(V-Y) /2 

== J dX R(X, 0) 2A.(X, 0) 112 2T
f
6o(X, 0) , 

x{r(1 - v)r(yHr[1 + (v - y)/2]r[i - (v - Y)/2]} . 
r(l+y-v)H 2r(ij 

(5.56) 

Now recall the classical doubling formula [cf. Eq. 
(1. 2(15)), page 5, of Ref. 34] for the gamma function, 

(5.57) 

and recall that r(~) == 2- 1
1T1/

Z
• Setting z == (1 + y - v)/2 in 

Eq. (5.57) and substituting the result into Eq. (5.56) 
yields 

(V-Y) /2 

(1ji, SCP)== J dXR(X, 0) 260(;, Ol2TfA.~X, 0)) 
r(1 - v)r(y)r[1 + (v - y)/2] 

x 1l2r[1 - (v - Y)/2] • (5.58) 

Substituting the definition of R into Eq. (5.58) and writ­
ing the result in terms of the original momentum vari­
abIes yields the result 

which was to be proved. 

Remarks. (1) The wave functions cP and 1ji have been 
chosen to be of a type that are dense in the space of 
square integrable functions. Since S is bounded, exten­
Sion of the left side of Eq. (5.59) to arbitrary square 
integrable functions is immediate. Extension of the 
right side would also be immediate were it not for the 
strong singularity of the function /(~, k;) when ~ == ~ • 
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An extensive discussion of this problem has been given 
by I. Herbst. 29 

(2) In Theorem 2 an approximation o.(Tf - T i ) to the 
energy conservation delta function was introduced. This 
was done in analogy to short-range formulas. It is note­
worthy that the function O. does not appear in a natural 
way in the two-body calculation. Energy conservation 
is enforced in a far more subtle way by the function Do 
in Eq. (5.38). This leads one to suspect that exhibiting 
energy conservation via the function oe may not be use­
ful. One should look for alternative, more natural, ways 
of achieving that goal. 

VI. DISCUSSION 

In the foregOing sections the foundations of a time­
independent multichannel scattering theory for nonre­
lativistic charged particle systems have been examined. 
An important feature of the theory is that the scattering 
operator is specified, not by the resolvent operator, 
but by a complex power of the resolvent operator. As a 
first step in development of the theory a generalized 
resolvent equation was developed to encompass these 
complex powers. This equation was shown to have a 
unique solution and to reduce to the usual resolvent 
equation in the absence of Coulomb potentials. Finally, 
the two-body problem was treated in the context of this 
formulation of scattering theory. 

The objections to the present theory that were outlined 
in Sec. I are apparently circumvented by the theory of 
this paper. 

For example, the channel operator F8 is multiplica­
tive in the momentum space representation with the 
form [cf. Eq. (71) of Ref. 11] 

F~(kl' ••. , kn) :=/e(kl> ... , ~)g(kl> ..• , k,,), (6.1) 

where 

Here it is assumed that there are n clusters in channel 
(j with charge numbers ZT' masses mn and momenta 
kr. In this representation the differentials dF8.~ are to 
be replaced by O(T-/8(k1, ••• , k,,))dT, where 0(.) is the 
Dirac delta function. The imaginary part of the complex 
power v in Theorems 1 and 2 therefore consists of 
terms of the form Ci/8 , where Ci is the fine structure 
constant. As this is what is expected on the basis of 
relativistic theories, 13-15 the objection raised in this 
regard in Sec. I is apparently overcome. 

In addition, none of the previously encountered diver­
gences appeared in the two -body calculation of Sec. V. 
This can be directly attributed to the incorporation of 
complex powers of the resolvent into the theory. We 
conclude that previous difficultiess• 17-20 with the two­
body problem are the result of studying the wrong 
operator! 

The next step in the development of the theory is to 
write down equations of the Faddeev-Yakubovskil. type. 
The problem here is how to exhibit energy conservation, 
a matter of some subtlety as was pointed out in Sec. V. 
Research on this topic is in progress and will be the 
subject of a forthcoming paper. 



                                                                                                                                    

1377 A.G. Gibson and C. Chandler: Multichannel scattering theory 1377 

*Supported in part by Sandia Laboratories, SURP Contract 
51-6640. 

1 L. D. Faddeev in Three-Body Problem in Nuclear and Par­
ticle Physics edited by J. S. C. McKee and P. M. Rolph 
(North-Holland, Amsterdam, 1970). 

2A.M. Veselova, Teor. Mat. Fyz. 3, 326 (1970)[Theor. Math. 
Phys. 3, 542 (1970)]. 

3Gy. Bencze, Nucl. Phys. A196, 135 (1972). 
4J. C. Y. Chen in Case Studies in Atomic Collision Physics 
edited by M. R. C. McDowell and E. W. McDaniel (North­
Holland, Amsterdam)(to be published). 

51.H. Sloan, Phys. Rev. A7, 1016 (1973). 
SW. P. Reinhardt, Phys. Rev. A2, 1767 (1970). 
7L. D. Faddeev, Mathematical Aspects of the Three-Body 
Problem in Quantum Scattering Theory (Israeli Program for 
Scientific Translation, Jerusalem, 1965). 

BO.A. Yakubovskii, Yad, Fiz. 5, 1312 (1967)[Sov. J. Nucl. 
Phys. 5, (1967)]. 

9C. Chandler andA.G. Gibson, J. Math. Phys. 14, 1328 
(1973) . 

IOJ. D. Dollard, thesis, Princeton (1963). 
l1 J . D. Dollard, J. Math. Phys. 5, 729 (1964). 
12J.D. Dollard, Rocky Mtn. J. Math. 1, (1971). 
13J.K. Storrow, Nuovo Cimento 54A, 15 (1968). 
14T. W. B. Kibble, Phys. Rev. 173, 1527 (1968). 
15D. Zwanziger, Phys. Rev. Lett. 30, 934 (1973). 
16J. C. Y. Chen and C. J. Joachain, Physica 53, 333 (1971). 
17J. Schwinger, J. Math. Phys. 5, 1606 (1964). 
1BG. L. Nutt, J. Math. Phys. 9, 796 (1968). 
19J. C. Y. Chen and A. C. Chen, Advances in Atomic and Mo­

lecular Phy sic s, edited by D. R. Bates and 1. E stermann 
(Academic, New York, 1972), Vol. 8. 

J. Math. Phys., Vol. 15, No.8, August 1974 

20M.R.C. McDowell and D. Richards, J. Phys. B4, L105 
(1971). 

21D. Mulerin and 1.1. Zinnes, J. Math. Phys. 11, 1402 (1970). 
22C. Chandler and A.G. Gibson, J. Math. Phys. 15, 291 

(1974) . 
23V. B. Matveev and M. M. Skriganov, Teor. Mat. Fiz. 10, 238 

(1972)[Theor. Math. Phys. 10, 156(1972)]. 
24E. Prugovecki and J. Zorbas, J. Math. Phys. 14,1398 (1973). 
25The family of operators f(t) is said to be essentially bounded 

on a set ~ if it is strongly measurable in ~ and IIf(t) II is 
bounded except in a set of zero measure. 

26E. Hille and R. S. Phillips, Functional Analysis and Semi­
groups Colloquium Publication No. 31 (AMS, Providence, 
R.1., 1957). 

27F. Riesz and B. Sz. -Nagy, Functional Analysis (Ungar, 
New York, 1955). 

2BE. Prugovecki, Nuovo C imento 4B, 124 (1971). 
291. Herbst, Commun. Math. Phys. 35, 181 (1974). 
30D. V. Widder, The Laplace Transform (Princeton U. P., 

Princeton, 1946). 
31Tables of Integral Transforms, edited by A. Erdelyi 

(McGraW-Hill, New York, 1954) Vol. 1. 
32A. Messiah, Quantum Mechanics (North-Holland, Amster­

dam, 1965), Vol. I, p. 422. 
33Schwinger's notation is slightly different from ours. To ob­

tain our equations the variable changes Zt?- (- aZ1 Z:!), 
E-I:, k-.J2f7ii were made in his equations. The derivative 
in his equation (2') has also been done explicitly. 

34Higher Transcendental Functions, edited by A. Erdelyi 
(McGraw-Hill, New York, 1953), Vol. I. 



                                                                                                                                    

The maximal solvable subgroups of the SU(p,q) groups and all 
subgroups of SU (2,1)* 
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A general method is proposed for obtaining all conjugacy classes of maximal solvable subalgebras of 
an arbitrary semisimple Lie algebra over a zero characteristic field F. The method is applied to 
explicitly construct all q + I maximal solvable subalgebras S K of the algebra of SU (p ,q) for 
p ~q >0 (over the field of real numbers). The dimension of SK for O~K~q is (2K+I)X 
(p +q -K)-I and it contains p +q -K-I compact elements. The low-dimensional pseudounitary 
groups with O~p +q ~4, O~q ~p are considered in detail and different realizations of the maximal 
solvable subalgebras are presented. Finally, all subalgebras of the physically interesting algebra 
SU(2,1) are found (not only the maximal solvable ones). The invariants of the subalgebras are found 
in all cases when they exist. 

I. INTRODUCTION 

In many applications of group theory and group repre­
sentation theory in phySiCS it is important to know all 
the subgroups of a given group, in particular to classify 
all possible chains of subgroups into equivalence class­
es with respect to inner automorphisms of the group 
itself. 

There are several reasons for the interest in this 
problem. Thus, a typical situation is when a physical 
system has a certain symmetry, described by a group 
(e. g., a Lie group) G, then a further interaction is in­
troduced, e. g., an external field, decreasing the 
symmetry to Go C G. A list of subgroups of G will thus 
provide a classification of possible breakings of the 
initial symmetry. 

A further reason for the importance of subgroup 
chains is their connection to group representation theory 
and in particular to the chOice of bases for representa­
tions of Lie groups. Thus a basis for the representa­
tions of a given Lie group G may be obtained by con­
Sidering a complete set of commuting operators, con­
taining all the Casimir operators of the group, some 
further operators from the algebra or enveloping alge­
bra of G (and possibly some further operators like re­
flections, etc). The basis functions will be the common 
eigenfunctions of such a set of commuting operators and 
nonequivalent sets of operators lead to nonequivalent 
bases. In particular, if all the continuous operators in 
the set are chosen to be Casimir operators of G or its 
subgroups, then we obtain the most commonly used 
"subgroup type" bases. In the opposite case we obtain 
"nonsubgroup type" bases which are also of considerable 
physical interest, 1 but will not be discussed in this 
paper. 

The wave functions (or state vectors) of quantum 
theory can very often be identified with basis vectors of 
the representations of a certain group, e. g., the 
Poincare group2 (inhomogeneous Lorentz group), the 
Galilei group,3 the group SU(3) (e. g., when considering 
internal symmetries of elementary particles4 or the 
motion of nucleons in the average field of a nucleus5) or 
some other group. Different complete sets of commuting 
operators, determining the basis, correspond to the 
observability of different phySical quantities (to the 
appearance of different quantum numbers, e. g., linear 
momentum versus angular momentum) and thus to dif-
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ferent phySical situations. Consider for example the 
group SU(3). In elementary particle phySiCS the impor­
tant chain of subgroups is SU(3)::::> S[ U(2) x U(1) 1::::> U(1) 
x U(1), where the SU(2) subgroup is associated with 
isotopic spin. In nuclear phYSiCS, on the other hand, 
the important chain is SU(3)::::> 0(3)::::> 0(2), where the 
group 0(3) is imbedded irreducibly into SU(3) and corre­
sponds to the angular momentum of the particles 
involved. 

A very important application of group representation 
theory in physics is due to the fact that it is possible to 
expand physical quantities, e. g., scattering amplitudes 
in terms of the basis functions of representations of a 
given group. Thus, the group 0(3) provides the standard 
formulas of partial wave analysis, the group 0(2,1) 
underlies Regge pole theory, 6 etc. The homogeneous 
Lorentz group 0(3,1) has been used to provide two­
variable expansions of relativistic scattering ampli­
tudes, 7,8 the Galilei group to provide the same for non­
relativistic amplitudes. 9 The different subgroup reduc­
tions, corresponding to different bases, lead to expan­
sions in terms of different special functions, each of 
which may be particularly appropriate in a definite 
physical situation. Thus, the reduction 0(3,1)::::> 0(3) 
::::> 0(2) leads to expansions that simplify speCifically for 
low energy scattering; those corresponding to the re­
duction 0(3,1)::::> 0(2, 1)::::> 0(2) simplify to the contrary 
for the limit of very high energies. 7 

The subgroup structure of the groups 0(3,1),8,10 
E(3),9 and their subgroups has been completely clari­
fied. Some work has also been done on the subgroups of 
the Poincare groupll and SU(2, 1). 12 Dynkin13 has solved 
the problem of finding all the semisimple subgroups of 
an arbitrary complex semisimple Lie group (see also 
Ref. 14). The case of real semisimple Lie algebras has 
also been treated. 15 

For phySical applications one would like to know all 
subalgebras, not only the semisimple ones and particu­
larly those with invariants; thus we attack the problem 
from the opposite end, namely find all the maximal 
solvable subalgebras of the algebra of SU(p,q). The 
method is however directly applicable to the case of 
maximal solvable subalgabras of an arbitrary semisim­
pIe Lie algebra. 

Let us finally mention that the SU(p,q) groups and 
their algebras are of interest in physics for a multitude 
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of reasonS. Thus, SU(1,1), being isomorphic to the 
three-dimensional Lorentz group 0(2,1), underlies 
Regge pole theory6 and also figures in various models 
in elementary particle physicsl6 and also in atomic 
physics. 17 The group SU(2, 1) can be used to provide 
crossing symmetriC expansions of scattering ampli­
tudes. IB The group SU(3, 1) has been studied in various 
connections in elementary particle theoryl9 and the group 
SU(2, 2) is of course of special importance, being locally 
isomorphic to the conformal group of space -time (for 
reviews see, e. g., Ref. 20). Higher groups, in particu­
lar SU(6, 6) have been studied21 in attempts to combine 
intrinsic symmetries [like SU(3)] with the Lorentz group. 

A complete classification of all subgroups of SU(p, q) 
is thus of considerable interest. One-parameter sub­
groups (and the corresponding subalgebras) have already 
been classified. 22 The claSSification of maximal solvable 
subalgebras, given in this article, should together with 
the work on one-parameter subgroups and on semisimple 
subgroups considerably simplify the task of finding all 
subalgebras. In this article we do indeed list all sub­
algebras of SU(2, 1). 

Ii. MAXIMAL SOLVABLE SUBGROUPS OF 
SEMISIMPLE GROUPS 

A. Discussion of the problem of finding all classes of 
subgroups of a given Lie group 

We consider the problem of classifying all chains of 
subgroups 

(1 ) 

(the G i for i = 1, ••• ,n are continuous subgroups of the 
Lie group G) under the continuous automorphism group 
of G. 

In terms of the Lie algebra L =L(G) of the infinitesi­
mal operators of G, the problem is to classify the 
chains 

(2) 

of properly descending subalgebras of L over the real 
number field R under the automorphism group Aut(L) 
of Lover R. 

In the final analysis one wants to represent the 
classes of conjugacy of the R-subalgebras of Lunder 
Aut(L) by a list of representatives. 

In more general terms one wants to establish a list 
L (L, F) of the classes of conjugacy of a finite -dimen­
sional Lie algebra L over a zero characteristic field F 
under the group of automorphisms AutF(L) of Lover F. 

By Levi's theorem23 for every F-subalgebra S of L 
there exists a decomposition 

S=R(S) +X (3) 

of S into the direct sum of the maximal solvable ideal 
R(S) of S and a semisimple subalgebra X of S. 

Moreover, assuming F to be the real number field, 
any two Levi decompositions (3) are conjugate under the 
group of automorphisms Inn(S, L) of L that is generated 
by the automorphisms 
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exp[adL(x)]:L - L 

~ adL(x)i 
exp[adL(x)]u= LJ -.-, -U (XES, UEL) 

i'O J. 

of Lover R with the adjoint representation 

ad:L-L 

over R refined by Lie multiplication 

adL(x)u=[x,u) (xEL, uEL). 

According to Whitehead's proof, which later on was 
greatly Simplified by various authors, 24 the task of per­
forming a Levi decomposition (3) can be carried out by 
solving certain systems of inhomogeneous linear equa­
tions over F. In particular, for any given semisimple 
F -subalgebra Y of L, one can find a solution X contain­
ing Y. 

In view of these facts our task can be broken up into 
the following four tasks. 

(i) To represent the conjugacy classes of solvable 
subalgebras So of Lunder AutF(L). 

(ii) To determine the normalizer subalgebra 

for any solvable F -subalgebra So in L and to determine 
its maximal solvable ideal (radical) R Nor L(SO)' 

(iii) To perform a Levi decomposition of NorL(So): 

Nor L(SO) = R(Nor L(SO») -+- Y. 

(iv) To represent the conjugacy classes of the semi­
simple subalgebras of Y under the normal subgroup 
Inn( Y, Y) = Inn ( Y) (inner automorphism group) of the 
automorphism group of Y over R. 

The task of determining the normalizer subalgebra 
NorL(S) of a subalgebra S reduces after extending an 
F basis bi> ••• , ba of S to an F basis bi> ' •• , bT of L to 
the task of finding a solution basis I; a+l, i> ••• ,I; T, i 

(1 ~ i ~ p) of the system of linear homogeneous equations 

[Ctll;k,ibk),bi]=O (modS), i~j~(J, 
inasmuch as the (J + p elements bi> ••• ,ba and 
L: ;=a+l I;k, i bk (1 ~ i ~ p) forIn: an F basis of Nor L(S), 

The task of determining the Killing radical KR(S) of 
the F-subalgebra S with F-basis bi> •.• ,ba and multipli­
cation rule 

[b i , bi] = t Yikj bk (Yj~ E F) 

reduces to the task of finding a solution basis 
1Jlk' ••• ,1Jak (1 ~ k~ p') of the system of linear homoge­
neous equations 

tt Y~aYi'1Ji=O (l~a<J9~(J) 
1=1 j=l J 

with Killing constants 

y .. = f. ~ ya . Yo". , 
t) Q;""l tk"l co wJ 

inasmuch as the elements L: ~=11J ik b i (1 ~ k ~ p') form an 
F basis of R(S). Similarly deal with centralizer, radical. 
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Regarding task (iv), we view it as an extension of the 
task of the ordinary representation theory of classical 
Lie algebra, which is simply the task of representing 
the classes of conjugacy under InnDF!x! of the F-homo­
morphisms of a semisimple Lie algebra X of finite 
dimension over F in the simple matrix algebra DF!X! 
formed by all matrices of degree f over F with vanish­
ing trace. Progress has been made for F= C. For the 
field of real numbers, we are still far away from a 
complete solution of task (iv), though we believe we 
know the methods to achieve it. 

Task (i) of representing the conjugacy classes of 
solvable subalgabras can be reduced to the following 
steps. 

(i. a) To represent the classes of conjugacy of the 
maximal solvable subalgebras of Lunder AutF(L). 

(i. b) To represent the classes of solvable subalgebras 
So of a maximal solvable subalgebra S of Lunder 
AutF(S,L), the stabilizer of Sin AutF(L). Reduce to: 

(i. b. a. ) To represent the conjugacy classes of the 
F-subalgebras Soo of the radical R(L) under 
Aut(R(L),L). 

(i. b. b) To determine for a given F-subalgebra Soo of 
R(L) the normalizer NorL(Soo) and a representative set 
of the classes of conjugacy under AutF(Nor L(SOO)' L) of 
those solvable subalgebras So of NorL(Soo) that intersect 
R(L) in Soo. 

In regard to (i. a) we remark that every maximal 
solvable F-subalgebra S of L contains the radical R(L) 
of L and that for any Levi decomposition L =R(L) +X 
of L there exists the decomposition S=R(L) +(Sn X) and 
vice versa (Sn X is a maximal solvable F-subalgebra 
of X). 

Finally the following task remains: 

(i. a. a) To form a representative set MS(L) of the 
conjugacy classes under AutF(L) of the maximal solvable 
subalgebras of a finite -dimensional semisimple Lie 
algebra L over a field F of characteristic zero. 

In view of the fact that L is the direct sum of its mini­
mal ideals 

where L 1 , ••• ,Lr are simple non-Abelian finite-dimen­
sional Lie algebras over F and that a solvable F-sub­
algebra S of L is maximal solvable precisely if sn L j is 
a maximal solvable Lie subalgebra of L j for i = 1, ... , r 
and S= L:~=l S n L j , it follows that we need to solve task 
(i. a. a) only for simple non-Abelian Lie algebras of 
finite dimension over F. 

Since for any solvable F -subalgebra S of L also the 
F-subalgebra of L generated by S and by the scalar ring 

S(L) = {Ii I Ii E End(L) & V x [XE L ~Ii adL(x) = adL(x)lij} 

is solvable, it suffices to deal only with the case in 
which L is centrally simple and finite dimensional over 
F. Hence 
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In this paper we develop a general method for solving 
the task (i. a. a) and apply it to the special case of the 
special pseudounitary Lie groups SU(p, q). Note that 
S(L) is Abelian if L is semisimple. 

B. General theorems on maximal solvable subgroups 

We shall derive a theorem, stated precisely in the 
end of this section, giving a criterion for a subalgebra 
S of L to be maximal solvable. The theorem is stated 
in terms of a certain decreasing chain of linear sub­
spaces, called a flag (defined below). 

By Lie's theorem, for any finite-dimensional Lie 
algebra L over a zero characteristic field F and for any 
solvable F-subalgebra of L, the elements X of S for 
which the adjoint linear transformation adL(x) is nilpo­
tent form a nilpotent ideal N(S,L) of S with an Abelian 
factor algebra. 

For any field extension E of F we obtain the extended 
Lie algebra 

L®E=EL=LE 
F 

of Lover E such that 

N(SE' L E) = N(S,L)E' 

This is because of the linearity of the definition of 
N(S,L). 

The Killing ideal KR of L is defined as the radical of 
the Killing bilinear form on L. Since the Killing bilinear 
form on L stays invariant under field extension, the 
same is true for the Killing radical: 

KR(LE) =KR(L)E' 

For any ideal X of L also the radical ideal R(X) of X 
is an ideal of L (N. B. : only for characteristic zero!). 

Because of linearity the normalizer concept is invari­
ant under field extension, in other words for any F­
subalgebra S of L we have 

NorL (SE) = (NorL(S)h· 
E 

The centralizer of S in L is the ideal 

ZL(s)={xlxEL &[x,SJ=O} 

of NorL(S). Again we have the invariance 

ZL (SE)=(ZL(S)h. 
E 

The intersection, sum and product of ideals are also 
invariant under extension, in particular the center of S 
defined as z(S) = Z L(S) n S and the derived algebra 
DS= [S, S], also R(L)/KR(L) = z(L/KR(L) and R(L). 

A solvable F -subalgebra S of L is said to be of 
maximal type if 

S d R(Nor L(N(S, L)). 

This concept is invariant under field extension. For 
any solvable subalgebra S of L we have 

[S, R(NorL(N(S, L))] <;: R(NordN(S,L)), 

and hence S+R(NorL(N(S,L)) is solvable. An invariant 
embedding of S into another solvable F-algebra is ob­
tained in this way, such that the new solvable subalge­
bra coincides with S precisely if S is of maximal type. 
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For any solvable F-subalgebra S of L the factor alge­
bra Nor dN(S, L» over its radical is semisimple so that 
there is a Levi decomposition 

NorLCN(S,L» =R(NordN(S,L») +X, 

where X is a semi simple F -subalgebra X of 
NorLCN(S,L». 

Supposing now that S is of maximal type, then we have 

N(S, L) <;;;; R(NorL(N(S, L») <;;;; S<;;;; NorL(N(S, L» 

so that it follows that 

N(R(Nor L(N(S,L»),L) = N(S, L), 

S=R(NorL(N(S,L») +sn X, 
(4) 

snx is Abelian, and N(Sn X,L)=O. 

Note that the nilpotency of adx(x) for some element x 
of the semisimple Lie algebra X implies the nilpotency 
of ~(x) for any representation ~ of X in a ring of 
matrices over F (or an extension of F). Conversely, if 
for some faithful matrix representation ~ of X over F 
or an extension of F the matrix ~(x) is nilpotent, then 
adx(x) is nilpotent, also adL is nilpotent. 

Hence in particular 

N(Sn X,L)=N(Sn X,X)=O. (5) 

If S is a maximal solvable subalgebra of L, then S n X 
is a maximal solvable subalgebra of X. Because of (5) 
we find that S n X is a Cartan subalgebra. 

An element x of a semisimple Lie algebra X of finite 
dimension over F is said to be compact if it is contained 
in a Cartan subalgebra of L that is a maximal solvable 
subalgebra. A Cartan subalgebra H of L consists only of 
compact elements precisely if H is a maximal solvable 
subalgebra of L. This is due to the existence of ele­
ments of H which belong only to one Cartan subalgebra 
(regular elements). 

The Cartan subalgebra H of a finite-dimensional 
semisimple Lie algebra over the real number field is 
compact precisely if all roots are purely imaginary on 
H. Indeed, if for some element x of H one of the roots 
would not be purely imaginary, then among the roots of 
H there is one, say Ci, for which the real part of XCi 

would be maximal and positive. If Ci is real on H, then 
the sum of the root space of Ci and of H is a solvable 
subalgebra of X larger than H, which is a contradiction. 
Hence Ci is not real on H which means that the complex 
conjugate Ci* of il' is a root distinct from Ci and that 
there is a two-dimensional linear subspace M of X, 
intersecting H in zero and invariant under H with roots 
Ci and Ci*. In view of the maximal property of H we find 
that [M, M] = 0 so that again M + H is a solvable subalge­
bra of X larger than M, which is a contradiction. 

Our concept of compactness finds its justification by 
the remark that a Cartan subalgebra H of X is compact 
precisely if the set of linear transformations exp ad(x) 
(x E H) is compact in the standard topologization of 
EndRX. 

We note that an element of a finite-dimensional semi­
simple Lie algebra X over the complex number field is 
compact precisely if X vanishes. Hence a solvable sub­
algebra S of a Lie algebra L over the complex number 
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field (or any algebraically closed field of zero charac­
teristic) is maximal solvable precisely if it coincides 
with the radical of NordN(S, L». 

Without proof we mention that all maximal solvable 
subalgebras of L are conjugate under Inn(L) and also 
that any two compact Cartan subalgebras of a semisim­
pIe Lie algebra L of finite dimension over R are conju­
gate under Inn(L). 

We continue the study of a solvable subalgebra S of 
maximal type of finite-dimensional semisimple Lie 
algebra L over a zero characteristic field F, using 
some faithful representation space M of L of finite 
dimension over F or over some extension of F (e. g. , 
for the adjoint representation we have M=L). Again 
we note that the application of an element of L to M is 
nilpotent if and only if its adjoint representation is 
nilpotent. 

Using this remark, we associate with S a properly 
decreasing set of linear subspaces Mo=M, Mj+l 
=N(S,L)Mj> 

M=Mo~Ml~" '~Mr=O, 

called a flag. 

The flag normalizer in L is defined as 

NorL=NorL(Mo,' •• ,Mr)={xlxEL&xMj<;;;;M; (O~ i~ r)}. 

The flag centralizer in L is defined as 

ZL=ZL(Mo,'" ,Mr)={YIYEL&yMj<;;;;M j+1 (O~i<r)}. 

Both subsets are subalgebras of L such that Z L 

=N(ZL,L) is an ideal of NorL. 

Moreover, for the particular flag associated with S 
we find that N(S,L)<;;;; Zr., S<;;;;NorL, and ZLn 
NorLCN(S,L» is an ideal of NorLCN(S,L» , contained in 
the radical of NorL(N(S,L». Since S is of maximal type, 
it follows that ZLn NordN(S,L» 

N(S, L) <;;;; Z L n NorLCN(S, L» <;;;; N(S, L), 

ZL n NorL(N(S,L» =N(S,L). 

However, the normalizer of a proper subalgebra of 
any nilpotent Lie algebra is always larger than the 
proper subalgebra itself. 

Hence 

(6) 

The flag factors Mj_1/M/ define representations ~i of 
Nor L (Mo, •.• ,Mr) = Nor Lover F (or an extension of F) 
by setting 

~i(X) (u/M i) = xu/M i 

for u of M i _1 and x of NorL (i=l, 2, ... ,r). The rep­
resentation ~i maps the radical of Nor L onto the radical 
of ~i (Nor L) as is well known from the representation 
theory of Lie algebras of zero characteristic. 

Hence 

ZL<;;;;R(NorL) 
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Asuming now that S is a maximal solvable subalgebra 
of L it follows that S contains R(NorL) as an ideal. 
Moreover, from the general representation theory for 
zero characteristic fields we know that 

[NorL, R(NorL)]S::N(NorL, L). 

Since R(NorL) is contained in S, it follows that [Nor L, 
R(Nor L)] belongs to S and hence 

[Nor L, R(Nor L)] s:: N(S, L) = Z L' 

~i([NorL' R(NorL)]) =[~f(NorL)' R(~I(NorL»]=O 

(1~i~r). 

It follows that the Lie algebras ~I (Nor L) are the 
direct sum of the center and the derived algebra. 

Hence the center z of ~i(Nor L) satisfies 

Using the Levi decomposition 

Nor L = R(Nor L) -+ Y, 

we find that 

S=R(NorL) +sn Y, 

where S n Y is a compact Cartan subalgebra of Y. 

(7) 

(8) 

(9) 

Conversely, let us assume that for the solvable sub­
algebra S of L we have (6)-(9), where sn Y is a com­
pact Cartan subalgebra of the semisimple subalgebra 
Y of L. For any solvable subalgebra SI of L properly 
containing S we either have 

N(S,L) e N(Su L), N(S, L) e NorN (SI. L)(N(S, L», 

NorN (SI. L)(N(S,L» s:: ZL' 

which is a contradiction, or 

N(S,L)=N(SuL), SCSI' SIS::NorL' 

However, according to (6)-(9), S is already a maximal 
solvable subalgebra of NorLand we again have a 
contradiction. 

It follows that S is a maximal solvable subalgebra of 
L. We have thus established the follOwing theorem. 

Theorem: A solvable subalgebra S of a semisimple 
Lie algebra L of finite dimension over a zero character­
istic field F is maximal solvable precisely if for a given 
faithful representation space M of finite dimension over 
F (or an extension of F) the conditions (6)-(9) are 
satisfied by the flag associated with M under S and its 
centralizer and normalizer under L [note that S n Y is 
a compact Cartan subalgebra of the semisimple Lie 
algebra Yas is mentioned after Eq. (9)]. 

The proof of the above theorem also yields the follow­
ing result. 

Corollary: Every nonzero solvable subalgebra S of a 
semisimple Lie algebra L of finite dimension over the 
field F of characteristic zero determines a maximal 
solvable subalgebra S* of L containing S as follows. If 
S e S + R(Nor LN(S, L», then set S* = (S + Nor LN(S, L» * . 
If R(NorL(N(S,L}»S::S, then let SI be a maximal solvable 
subalgebra of NorL(S) n NorL(N(S, L» containing Sand 
set S* =Si. 

J. Math. Phys., Vol. 15, No.8, August 1974 

C. Application to the SU(p,q) Lie groups 

Let us now pursue the case when F=R is the field of 
real numbers and 

L =LSU(p,q) 

= {xl x E C(p·q)X(P+Q) & x+(1 tB - I) + (I (fJ -I ) x - 0 P q P q - P+Q' 

p~ q ~ O}, 

(where Ip is the unit matrix of dimension p and x' is the 
matrix Hermitian conjugate to x). 

In this case the complexification of L is the simple 
algebra LSL(p +q,C)=DC(P+Q)X(P+Q) of dimension (p +q)2 
-1 over the field of complex numbers C. 

The maximal solvable subalgebras of Lc over Care 
known to be conjugate under Inn(SL(n, C» to the rings of 
matrices LST(p +q, C) formed by the upper triangular 
matrices of degree p +q and zero trace over C [Borel 
subalgebras of LSL(p +q,C)]. 

We want to determine the maximal solvable R-subalge­
bras of L=LSU(p,q) under Inn(L). We use the faithful 
representation space M = C(P.qlXl of L over the extension 
C of R that is formed by the (p +q)-columns over C. 

After a suitable Hermitian equivalence transformation 
of Ip (fJ - Iq to an Hermitian symmetric nonsingular matrix 
D, the R-algebra N(S, L) is contained in the upper tri­
angular nilpotent algebra 

DLT(p +q,C) 

={YIY=(Ylk)EC(P+Q)X(p+q)& Ylk=O if i~ k} 

so that we have 

N(S,L)s::N(/l" .• ,ls;C) 

={Y = (Y jk )& Y1k E C'jxfk & Y fk = O'jX'k 

ifi~k, i,k=1, 2, .•• ,s; 

S, Il> ••• ,Is are natural numbers satisfying 

11 +/2 + ... +Is =p +q}, 

such that the linear subspaces 

Mj=tCcjP:?l:!,. 'j' 1~j~p +q-{fl + ... +/1-1) 
1 ,-I 

(note that C;xl denotes the kth unit column) of the (p +q)­
column space C(P.q)XI over C are characterized by the 
property that 

M1+I=N(S,L)M j (O~i<s). 

Hence 

NordN(S,L»M j eM i , 

NorL(N(S, L}) n N(R(NorL(N(S, L»),L). 

Because of the nilpotency of N(1l> ••• ,ls;C) and the 
maximal property of S it follows that 

CN(S,L) = N(R(NorCL(CS,CL», CL) =N(fl, ... .ts; C), 

where XJ is a simple R-algebra for which 
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CXj={(Xlk)lxlk=OfIXfk if i*j or k*j and 

xlk=element of DLCfjXfj if i=k=j}, 

D=(Dlk ), DlkECflxfk. 

Since 

x'D +Dx=O 

for x of Xj' it follows that D Ik = 0 if Uk and either fl > 1 
or fk > 1. 

Furthermore, because of the nonsingularity of D it 
follows that the matrices D jj are nonsingular if fj > 1. 
Also, D jj is Hermitian symmetric. 

The matrix 

Do= (D lk I fl= 1 & fk= 1) 

is also nonsingular, Hermitian symmetric and subject 
to the condition 

x~Do +Doxo=O 

for Xo = (X ik I fi = f~= 1 & X= (xaS) E N(S,L». 

Since the complexification of the R-Lie-algebra 
formed by all matrices Xo is the full upper triangular 
nilalgebra of the corresponding degree, it follows that 
after a suitable transformation of S by an upper triangu­
lar matrix we shall have 

1 
1 

1 
1 

In view of the fact that the complexification of N(S,L) 

is N(fl' ••• ,fs;C) and that x+D +Dx=O for all x of 
N(S,L), it follows that 

(a) There are no two distinct indices j with fj > 1. 

(b) Iifj >1, then the number offl's with i <j is equal 
to the number of f;'s with i > j 0 

Since it is our aim to establish a list of representa­
tives of certain classes of subalgebras of LSU(p, q) 
conjugate under transformations by elements of SU(p,q) 

it is permissible to transform the Lie algebra LSU(p,q) 
itself by some nonsingular matrix. 

Thus, in order to obtain all nonconjugate [under 
SU(p, q) 1 maximal solvable subalgebras of the Lie alge­
bra LSU(p, q) with P 3- q 3- 0 it is convenient to utilize the 
q + 1 distinct realizations of this algebra that are formed 
by the matrices X of degree p +q over C satisfying 

X+D. +D.X=O, K=O, 1, ... , q, (10) 

where 

0 0 0 1 

L' o },= 0 I
p

_l 0 0 

Do= 0 0 0 -1._1 0 
-I. 

1 0 0 0 
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0 0 0 H. 

0 Ip_. 0 0 
D-.- 0 0 -1._. 0 

(11) 

H. 0 0 0 

and where Is is the identity matrix of degree sand HT is 
the r-dimensional matrix of the type 

(note that the zeros in D. are in general square or rec­
tangular matrices with all elements equal to zero). 

We then require that the matrices X satisfying (10) 
leave the flag of the p +q subspaces 'f/h=l CCh(P+.)Xl 

(l$;j$;P +q), i.e., 

(12) 

invariant. 

In this manner we obtain the follOwing q + 1 distinct 
maximal solvable subalgebras S. of the Lie algebra 
LSU(p,q) [and any other maximal solvable subalgebra 
is conjugate to precisely one of these under SU(p, q) 1: 

1. So is compact, has the R -dimension p + q -1 and 
consists of the (p +q)-dimensional diagonal matrices 

Aj = real, 

(13) 

and D. is Do. 

We have 

dimSo=p+q-l, No=p+q-l (14) 

(where N. is the number of compact elements in S.). 

2. S. in the case when p = q or p = q + 1 is of special 
interest since its complexification coincides with a 
Borel subalgebra of LSL(p +q, C). In this case we have 
D.=H •. 
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For p=q we have 

~= ~+~,~ 

o , - rq +isq 

o 

For p =q +1 we have 

rq + isq , aq,q~1' iaq 

o , iaq +1 , - a:. q +1 

S= q 

o 

o 

with 2(S1 +S2 + ... +Sq) +aq+l =0 (here and below Latin 
letters correspond to real numbers and Greek ones to 
complex numbers). 

The dimensions of the maximal solvable algebra and 
its compact (and Abelian) subalgebra in this case are 

dimSq=t(p+q)(p+q+l)-l, Nq=P-l. (16) 

3. S. for 0 < K";; q in the case when the complex exten­
sion of S. is not a Borel subalgebra of SL(p +q, C) and 
S. not compact. The matrix D. has the general form, 
given in (11). In this case we have 

s-.- (17) 

with 

o 0 ... a .. 
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a l 2q-1 , ia1 

ia2, 

a 12q , ia1 

ia2 , - a\2q 

-r3 +iss , -a*23 , -a*13 

o ,-r2+is2 ,-a\2 

o 

o 

a1p+q_'+U'" ,a1P"l-l 

a 2 P+q-'+U ••• , ib2 

(15a) 

(15b) 

, - cr* 1 JHq-l 

ib", ...... , - a* 2,t)+q-K+l' - a* IP+q-K+l 
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with 2 Im( all + 0'22 + ... + a •• ) + a.+1 + .. , + ap+q_, = O. 

The dimensions of S. and their maximal compact sub­
algebras are 

dimS. = (2K + 1)(p +q - K) -1, N. =p +q - K -1. (18) 

In the following section we shall consider specific 
examples in detail. 

III. MAXIMAL SOLVABLE SUBGROUPS OF LOW 
DIMENSIONAL PSEUDOUNITARY GROUPS 

Let us now specify the results of the previous section 
for the cases of greatest physical interest, when 
p ~ q ~ 1, P +q~ 4. We shall make use of the results 
summarized in Eqs. (10)-(18). 

A. ThegroupSU(1, 1) 

We have two possible realizations, corresponding to 

Do=(~ _~) and D1 = (~ ~). 
It is easy to see that Eq. (10) implies 

(
ia a) (c ib) Xo = * . and Xl ='d ' a - za z -c 

respectively, where Latin letters correspond to real 
numbers and Greek letters to complex ones, The uni­
tary matrix Z transforming one realization into the 
other 

ZX1 Z-1 =X
O 

can be chosen to be 

1 ( 11) 
Z=/2 -11' 

The flag determining the two different maximal 
solvable subalgebras consists of the subspaces 

(~) and {(~) , (~)}. 
Indeed the condition 

(19) 

implies f3= 0 or d = 0, respectively (w is an arbitrary 
complex number), Thus, we obtain two maximal solv­
able subalgebras 

(ia 0) 
So=\O -ia ' (c ib) 

Sl = 0 - c ' 

Clearly the subgroup generated by the one-parameter 
subalgebra So is the group of rotations 0(2). The two 
parameter subalgebra Sl generates the group of transla­
tions and dilatations of a straight line. The algebra So 
contains (consists of) one compact element, the algebra 
Sl contains none, 

The usual physical notations correspond to the in­
variant form determined by Do' The generators are 
denoted 

dO 1) 1 ( 0 i) 1 (i 0) 
K1 =2\10' K 2 =2 -i 0' L 3 =2\0 -i ' 
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(20) 

The subalgebra So then corresponds to L 3 , Sl to 
{KlJ L3+Ka}. 

B. The group SU(2, 1) 

Again we have only two possible realizations of the 
invariant form, corresponding to 

(1 0 0) (0 0 1) 
Do= 0 1 0 and Dl = 0 1 0 , 

o 0 -1 1 0 0 

so that the general element of the algebra can be written 
as 

x,~~;. ~. La +.)or K'~-"c ~,. ~._) 
(21) 

respectively. The operator Z transforming Xl into Xo 
as in (19) can be chosen in the form 

(

//2 0 l/12J 
Z= 0 1 0 . 

-1/12 0 l/n 

(22) 

Introduce the three vectors 

(23) 

We impose the condition X.el = weI (the second flag con­
dition X.ea = wlel + wae2 is satisfied automatically) and 
find the maximal solvable subalgebras: 

So= 0 ib 0 and 51 = 0 ic -15* - .(24) 
(

ia 0 0 ) (b -he 15 id ) 

o 0 - i(a + b) 0 0 - b - he 

The algebra So contains two independent compact ele­
ments' 51 has dimension five but contains only one com­
pact element obtained by putting b =d = 15 = 0, The five­
dimenSional solvable algebra could of course also have 
been obtained using the other realization of SU(2, 1), 
The invariance of the vector space determined by the 
vector el must then be replaced by the invariance of the 
space Ze l = (l/12)(el - e3 ). The maximal solvable sub­
algebra Sl is then obtained in the form 

(

.a 

SI = Z51Z-1 = - 0'* 

C - i(a +b/2) 

C. The group SU(3, 1) 

a c +i(a +b/2) 

ib - 0'* • 

-a -i(a +b) 

The two possible realizations of the algebra of 

(24') 

SU(3, 1) are given by the invariant forms corresponding 
to 

o 1~ o 0 
1 0 . 

o 0 
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The general element of the algebra can be written as 

ia* a (3 I' 

- a* ib 6 E 

- /3* - 6* ic 

y* E* ~* -i(a +b +c) 

or 

d-i(e+f)/2 tJ. v ig 

p ie (1 - /l * 
K1 = 

T - (1* if - v* 

ih -p* - T* 

and the matrix, transforming one form into the other, is 

1 0 0 1 

1 0 V2 0 
z=,.f2 

0 0 V2 
0 0 1 

We introduce the vectors 

"~ (~). "~G) e,~O} e·~O) 
and impose the flag conditions 

(XKeS=w1e1 +W2e2 +wses follows automatically). 

We obtain two maximal solvable algebras: 

0 0 0 

80 = 0 ib 0 0 

0 0 ic 0 

0 0 0 -i(a +b +c) 
(25) 

tJ. v ig 

ie 0 - JJ.* 
81 = 0 if - v* 

0 o -d-i(e+f)/2 

The dimension and number of compact elements in these 
cases is: 

dim80 =3, No=3, 

and 

dimS1 = 8, N1 = 2. 

D. The group SU(2, 2) 

For the group SU(2, 2) we have three distinct possible 
realizations, corresponding to 

Dj~ ! _~ ~), Dj~: 
~ 0 0 -1 ~ 0 
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o 1) o 0 
-1 0 

o 0 

and 

(

0 0 0 V 001 0 
D2 = 0 1 0 0 • 

1 000 

Using (10), we find that a general element of the 8U(2, 2) 
algebra is 

ia (3 y 6 

ib E ~ 
Xo= y* E* ic '17 

6* ~* -'17* - i(a +b +c) 

e -h(b +c) (3 I' ia 

6 ib E - /3* 
K1= 

~ E* ic 1'* 

id -6* ~* -e -h(b +c) 

and 

P +iq (3 Y ia 

6 r-iq ib -1'* 
X2= 

E ic -r-iq - (3* 
(26) 

id -E* -6* 

respectively. The connection between these realizations 
is 

with 

Z __ l_ 0 1 
-12 0-1 

(

1 0 

-1 0 

o 1) ( 1/v'2 1 0 - 0 
1 0 and z= 0 

o 1 -1//2 

Imposing the usual flag conditions 

o 0 
1 0 
o 1 
o 0 

1/~) 
o . 

1/12" 

we find that the three maximal solvable subalgebras are 

. and 

so=(if i1 i~ ~) 
o 0 0 - i(a + b + c) 

(3 Y 
ib 0 
o ic 

- (3* 
y* , 

o 0 

ia ) 

-e -h(b +c) 
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p+iq f3 I' ia 

Sa= 
0 r-iq ib -1'* (27) 

0 0 -r-iq - (3* 

0 0 0 

The dimensions of interest are 

Finally let us note that we could have obtained all three 
maximal solvable subalgebras uSing one realization, 
e. g., the one usually considered in physics, namely Ko' 
The flag conditions would, however, have to be applied 
to three different flags, namely 

The general element of the corresponding maximal 
solvable algebra is respectively. 

ia f3 'Y d +i[a +(b +c)/2] 

51 = 
- f3* ib 0 -(3* 

So= So, 
1'* 0 ic 1'* 

d-i[a+(b+c)/2] -f3 -I' - i(a +b +c) 

and 

ia f3 I' d +h(2a +b +c) 

- f3* ib e +ii(b - c) - f3* 
S2= 

1'* e -h(b -c) ic 1'* 

d -h(2a +b +c) -(3 -I' - i(a +b +c) 

IV. COMPLETE CLASSIFICATION OF ALL 
CONTINUOUS SUBGROUPS OF SU(2, 1) 

A. Discussion of the methods 
The problem of classifying the general chains of sub­

groups (1) of a given Lie group G was discussed in 
Sec. IIA. We have already found all maximal solvable 
subgroups of SU(p,q) in Sec. lIe and made the results 
more explicit for SU(1, 1), SU(2,1), SU(3,1), and 
S[,(2, 2) in Sec. III. 

It should be pointed out that it sometimes happens 
that the continuous group generated by a linear Lie 
algebra L over the real number field is not closed in 
the standard topology. In that case its closure is a lin­
ear continuous group with a Lie algebra L containing L 
as a proper ideal with an Abelian factors algebra. Such 
cases will be pOinted out below. 

To continue further, we must examine the Lie algebra 
L of G, and 

(1) find all classes of solvable subalgebras (contained 
in the already found maximal ones), 

(2) find all classes of semisimple algebras, 

(3) find all classes of subalgebras having a nontrivial 

Levi decomposition (i. e., both a nontrivial semisimple 
and solvable subalgebra). 

For low-dimensional Lie groups we find it advanta-
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geous to approach the problem from two ends. 

1. We first classify all one-dimensional subalgebras 
Ll and write down a representative A of each class 
explicitly. [For the algebra LSU(p,q) this has been 
performed. 21] We then turn to two-dimensional subalge­
bras L2 ={A,B} and consider separately the case when 
the derived algebra G has dimenSion dimL~=O or 1. 
We then let one of the generators, say A, run through 
all classes of one-dimensional algebras, always writing 
it in a specific simple form, leaving B as a general 
element of L and requiring that A and B satisfy the 
appropriate commutation relations. This allows us to 
specify B and thus to obtain aU classes of two-dimen­
sional subalgebras and specific representatives of each 
class. 

Three -dimensional subalgebras L 3 = {A, B, C} can 
then be studied, using our classification of one- and 
two-dimensional subalgebras. Indeed, the derived alge­
bra L ~ can have dimenSion 3, 2, 1, or O. If dimL ~ = 3, 
then L3 is semisimple and easy to find; if dimG=2, 
then we can let G run through all two-dimensional sub­
algebras that we have already classified and search 
only for a third element, forming the subalgebra L3 • 

If dimL; = 1, we can similarly make use of our classifi­
cation of one-dimensional subalgebras. If dimG = 0, 
then L3 is Abelian and easy to find. Thus we proceed 
from k-dimensional subalgebras to (k + 1)-dimensional 
ones, always making use of the already existing classi­
fication of lower dimensional subalgebras. 
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2. The second approach is opposite in spirit to the 
first one, in that we start from the highest dimensional 
subalgebras and proceed to the lower ones. We proceed 
by searching for all elements of L that satisfy certain 
additional conditions (making sure that these conditions 
are group properties). Thus we may require that a cer­
tain flag is invariant, that a certain vector subspace is 
invariant, that a certain vector space is annihilated, 
that a real vector remains real or is given a specific 
phase, etc. Imposing successively stronger and strong­
er conditions, we obtain lower dimensional subalgebras. 

As an illustration we consider subalgebras of SU(I,I) 
when both procedures are essentially trivial and then 
proceed to SU(2,1) (this last algebra has been treated 
previously, 12 uSing less general techniques and some 
subalgebras were unfortunately omitted, in particular 
the maximal solvable subalgebra SI)' 

B. Subgroups ofSU(1, 1) 

Let us first start from the one-dimensional subalge­
bras. We denote the generators of Lorentz transforma­
tions (boosts), along space axis 1 and 2, Kl and K2 and 
the generator of rotations L3 (we use the local isomor­
phism between SU(1, 1) and 0(2,1)]. The relations are 

(Kl>K2 ]=-L3, (K2 ,L3]=Kl> (L 3,Kl ]=K2 

and the generators can be represented as in (20). 

It has been shown earlier22 that there are three dis­
tinct classes of one -dimensional subalgebras, repre­
sented' e. g., by 

L 3, K2, and L3 - Kl • 

The two -dimensional subalgebras {A, B} 

(A,B]=O or (A,B]=A. 

(28) 

(29) 

Putting A equal to L3 or K 2 , we find that no operator 
B can be found in the algebra to satisfy either of Eqs. 
(29). However, putting 

we find that for a = 0, a = t we have a two -dimensional 
subalgebra 

{L3-Kl ,K2 } satisfying (L3-Kl>K2]=L3-Kl 

of the type (A,B]=A. It has been shown8 that an algebra 
of this type has no invariants [no nonconstant polynomial 
P(A,B) exists, commuting with both A and B]. 

The alternative procedure, starting from the highest 
dimensional algebras and imposing successive restric­
tions, is equally simple in this case. Indeed, the one­
parameter subalgebra L3 is obtained by requiring that 
a general element Xo of the algebra leaves the vector 
space (~) invariant. The two-parameter maximal solv­
able subalgebra {L3 -Kl>K2 } is obtained by requiring 
that, e. g., the vector U) is invariant. If we add the 
condition that Xo annihilates the vector U) we obtain the 
subalgebra L3 -Kl and if we require that X leaves CD 
invariant, in addition to U), we obtain the subalgebra 

K 2 • 

The results are summarized in Table I. 
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C. Subgroups of SU(2, 1) 

We shall obtain the subalgebras of dimenSion dimL ~ 3 
by imposing restrictions on general elements of SU(2, 1). 
Those with dimL = 2 will be obtained starting from the 
one-dimensional ones, claSSified earlier. 22 We find it 
convenient to use the three -dimenSional defining repre­
sentation of SU(2, 1) in the form Xo of Eq. (21). With 
apologies to mathematiCians, who use different notations 
and to phYSiCists, who use still different ones, we intro­
duce a basis of the algebra in the form 

A = 0 -2i 0 , 
(

i 0 0) ~ 0 1 0) (0 i 0) 
B= -1 0 -1 , C= i 0 i , 

o 0 i o -1 0 0 -i 0 

(' 0 i~ E~G o 1~ r 0) D= ~ 0 ~, o 0 , F= 0 0 o , 
-1 0 -1 o 0 0 -i 

G~ (-! 1 n H~ i D, 0 0 (30) 
0 ° 

so that a general element is 

~
i(a +d +j) b +g+i(c +h) e +id ) 

K= -b -g+i(c +h) -2ia b +ic 

e-id -b-ic -i(a-d-j) :31) 

We make use of the vectors el , e2 , and e3 introduced in 
Eq. (23) (note that el and e2 can be transformed into 
each other by an SU(2, 1) transformation, whereas e3 

cannot be thus transformed]. 

Let us first obtain all maximal subalgebras. The 
requirement that the space el - e3 be invariant, i. e. , 
X(e l - e3 ) = a(el - e3 ) with a complex, leads to the condi­
tionsj=g=h=O and we obtain the maximal solvable 
subalgebra Sl of Eq. (24') 

(32) 

satisfying the commutation relations 

(A,B]=3C, (A,CJ=-3B, (A,D]=O, (A,E]=O, 

[B,C]=2D, [B,D]=O, [B,Ej=B, 

(C,D]=O, (C,Ej=C, (D,E]=2D. 

TABLE I. Subalgebras of LSU(1, 1). 

Class 

2 

3 

4 

No. of Generators 
ele-

Algebra Invari­
ants of 
algebra ments 

1 

2 A=L3 -Kj , [A,BI=A­
B=K2 

(33) 

Group 

0(2) (a rota­
tion) 

0(1, 1) (a pure 
Lorentz trans­
formation) 

E(1) (a trans­
lation) 

Translations 
and dilatations 
of a straight 
line 
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The requirement Xe2 = ae2 similarly leads to the 
algebra 

{A,D, E, F} - LS[U(1) x U(1, 1)], 

satisfying 

[A,D] = [A,E] = [A, F] = 0, 

(34) 

(35) 
[F-D,E]=-2F, [E,F]=2(F-D), [F,F-D]=2E. 

The condition Xe 3 = ae3 leads to the sub algebra 

{A, F, G, H} -LS[U(2) x U(l)] 

with the commutation relations 

[T,G]=2H, [G,H]=2T, [H,T]=2G, 

where T=HA +F) and y=H-A +3F), 

(36) 

(37) 

If we require that the operator X leaves a real vector 
real, Le" Xf=f', where f=xjej andf'=x;e j with xi> x; 
real, then we obtain the algebra 

{B, E, G}- LO(2, 1), 

satisfying 

[X,E]=-G, [E,G]=X, [G,X]=E 

with X= -B +G, 

(38) 

(39) 

This completes the list of all maximal subalgebras of 
LSU(2, l)-a five-dimensional solvable algebra (32), two 
four-dimensional ones (34) and (36), and one three­
dimenSional Simple algebra (38), 

Let us now find all four - and three -dimensional sub­
algebras of the above maximal subalgebras, We start 
from the maximal solvable subalgebra S1' so that the 
element X already satisfies S(e1 - e3 ) = a(e1 - e3 ). Let us 
add additional requirements. If we require I a 12 = 1, 
e, g., X(e1 - e3 ) = ie

j
4>(e1 - e3 ), we obtain the restriction 

a2 + e 2 = 1, i. e., we obtain a one -paramete r class of 
four-dimensional algebras 

{B,C,D,R=cos<pA +sin<pE; 0,,; <p <1T}, (40) 

satisfying 

[B,Cj=2D, [B,Dj=O, [C,D]=O, (41) 

[B,Rj = 3cos<pC +sin<pB, [C, Rj = 3 cos<pB +sin<pC, 

[D,R]=2sin<pD. 

Demanding that X annihilates the space (e1 - e3 ), i. e. , 
X(e1 - e3 ) = 0, we obtain the three-parameter nilpotent 
algebra 

{B,C,D}, (42) 

satisfying 

[B,Cj=2D, [B,D]=O, [C,Dj=O. (43) 

Let us now require that, in addition to conserving the 
e1 - e3 space, X should act in a definite manner on the 
vector e2 , 

Thus, the requirement Xe2 = ae2, a complex, implies 
b = c = 0, i. eo, gives the algebra 

{A,D,E}, (44) 
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satisfying 

[A,D]=O, [A,Ej=O, [D,E]=2D, (45) 

The condition that X projects the space e2 onto e1 - e3 , 

i. e., Xe2= a(e1 - e3 ), a complex, again leads to the al­
gebra (40) (with <p=1T/2); however, the condition I al 2 

= 1, e. g., Xe2 = e ;4>(e1 - e3 ) yields a new algebra, gener­
ated by D, E, and Y = cos<pB + sin<pC, 0,,; <p < 1T. This 
algebra can be Simplified by an SU(2, 1) transformation 
so that UDU-1 =D, UEU-1 =E, UYU-1 =B. Indeed, it is 
sufficient to put 

(

eXP[ - i(<p + 1T)/3 0 0 ) 

U = 0 exp[i2( <p + 1T)/3 0 • 

o 0 exp[ - i(<p + 1T)/3 

Thus we obtain the subalgebra 

{B,D,E}, 

satisfying 

[B,D]=O, [B,Ej=B, [D,Ej=2D. 

(46) 

(47) 

Further restrictions on elements of the maximal 
solvable algebra S1 lead to two- and one-dimensional 
subalgebras, which we shall conSider below, The semi­
simple subalgebras (34) and (36) do, however, contain 
further three-dimensional subalgebras. 

Indeed, an element XELS[U(l)xU(l, 1)] of (34) by 
necessity satisfies Xe2 = - 2iae2' If we add the require­
ment Xe2 = 0, i. e" a = 0, we obtain the subalgebra 

{D,E, F}-LSU(l, 1), (48) 

If we impose X(e1 - e2) = a(e1 - e3 ), in addition to Xe2 
= 2iae2, we obtain the intersection of S1 with LS[ U(l) 
XU(l,l)], which is again the algebra {A,D,E} of (44). 
Further restrictions lead to lower dimenSional 
subalgebras, 

An element X E LS[U(2) x U(1)] of (36) satisfies Xe 3 

= i(a - f)e3 • The condition Xe 3 = 0, i. e., a = f gives the 
algebra 

{A +F, G,H}-LSU(2). (49) 

Thus, we have so far found that SU(2, 1) has one five­
dimenSional solvable subalgebra, one continuous family 
of solvable four-dimensional ones, two further four­
dimenSional subalgebras, and six three-dimensional 
subalgebras. 

Let us now simply list the classes of one-dimensional 
subalgebras found previously. 12,22 Changing the notations 
of Ref. 22 Slightly, we can list the following classes of 
one -dimensional subalgebras: 

A continuous family of compact algebras 

cos<pA +sin<pF, 0,,; <p <1T, 

all corresponding to U(l) groups. 

A continuous family of noncompact algebras 

cos<pA +sin<pE, 0 <<p <1T, 

corresponding to 0(1,1) groups, 

(50) 

(51) 

Four individual mutually nonequivalent noncompact 
algebras represented by 
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B, D, A +D, and A -D. (52)-(55) 

Finally, let us obtain all classes of two-dimensional 
subalgebras of LSU(2, 1). The basis elements of the al­
gebra {X, Y} can be chosen to satisfy either [X, Y] = 0 or 
[x, YJ = X. We can always choose X in one of the stan­
dard forms (50)-(55), leave Y general and find all Y 
satisfying one of the above commutation relations. In 
this manner we obtain a number of two-dimensional 
algebras, some of which can be further simplified by an 
SU(2, 1) transformation, leaving X invariant and sim­
plifying Y. We drop all details and simply list the four 
Abelian and two solvable nonabelian algebras obtained. 

Taking X in the form (50), we obtain one algebra for 
any 0,;; cp <7T, namely, 

{A,F} with [A,F]=O 

and two nonequivalent algebras for cp = 0 only: 

{A,E} with [A,E]=O 

and 

{A,D} with [A,D]=O. 

(56) 

(57) 

(58) 

The choice of X in the form (51) yields no new two-

TABLE II. Continuous subgroup structure of SU(2, 1). 

Dimension 

of Aigebro 

8 

5 

4 

3 

2 

51 
A,B,C,D,E 

solvable 

0<.< n 

5 [U(1)xU(I,Ij] 

A,D,E,F 

IP,X] = D 

dimensional subalgebra, X=B yields two new subalge­
bras, namely 

{B,D} with [B,D]=O (59) 

and 

{B,E} with [B,EJ= -B. (60) 

The chOice X=D yields one continuous class of alge­
bras, namely, 

{D,Hcot(cpA +E)]} with [D,Hcot(cpA +E)]]=D, 0 <cp <7T. 

(61) 

Finally, the choices X =A + D or X =A - D yield no new 
subalgebras. 

Thus, we have obtained a complete classification of 
all subalgebras of the algebra of SU(2, 1), each of them 
corresponding to a Lie subgroup of SU(2, 1) itself. The 
results of this section are summarized in Table IT, 
showing all the subalgebras and all mutual inclusions 
amongst them. All subgroup chains of the type (1) for 
SU(2, 1) can be directly read off from this diagram. 

Let us remark here that the connected closed sub-

5U(I,ll 

D,E,F 

5 [U(2)xU(J)] 

A,F,G,H 

5U(2) 

A+F, G,H 
simple 

B,E 

[E,B]=B 

0(2,1) 

B,E,G 

simple 

1 
0(2) 

cos.A+sin. F 

0,". < n 

X'=t (cot. A+ E) 

0'" • < n 

J, Math. Phys., Vol. 15, No.8, August 1974 
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group structure of SU(2, 1) is identical with the one 
given on Table II, except that the sub algebra 0(2) in the 
last row generates a nonclosed group whenever tancp is 
irrational. Its closure in this case is obviously the two­
parameter compact group U(1) x U(1) generated by A 
and F, 

D. I nvariants of the subalgebras of SU(2, 1) 

We are mainly interested in subalgebras that have 
invariants (Casimir operators), i. e" subalgebras, the 
enveloping algebras of which have nontrivial centers. 
Let us find the invariants of all the subalgebras of 
LSU(2, 1) 

One-dimensional subalgebras 

A one-dimensional algebra {X} always has an inva­
riant, namely X itself. 

In order to find the invariants of the two- and higher­
dimensional algebras, we shall make use of the adjoint 
representation of the corresponding algebra and consid­
er functions j(Xl> x2, ' •• ,xn ), when n is the dimension of 
the algebra. We construct the generators of the algebra 
as differential operators and require that they all anni­
hilate the function j(x1 , 0 , , ,xJ [so that j(x1 , •• , ,xn ) is 
invariant under the transformations of the adjoint rep­
resentation of the group], Each such invariant that can 
be expressed as a homogeneous polynomial in xl> .•. , xn 
corresponds to an invariant of the algebra, 

Two-dimensional subalgebras 

(a) If {X, Y} is Abelian, then both X and Yare obvious­
ly invariants, Thus both generators of the following 
algebras are invariants of the algebras: 

{B,D}, {A,D}, {A,E}, {A, F}. 

(b) If [X, Y] = X, then we write the generators as 

a 
X=X­ay' Y=-X~ ax 

and let X and Yact on the space of functions j(x, y), The 
conditions 

Xj(x, y) = 0 and Yj(x, y) = 0 

clearly imply f(x, y) = const, so that the algebra {X, Y} 
has no invariant (this agrees with a general theorem on 
the absence of invariants for certain solvable Lie alge­
bras, proven earlierB

). 

Three-dimensional subalgebras 

The invariants of the simple three -dimensional sub­
algebras of LSU(2,1) are obvious, namely, 

LSU(2) -{A +F, C,H}, Ia=f(A +F)2 +C2 +H\ (62) 

LSU(1, 1) -{D,E,F} 

LO(2, 1) -{B, E, C}, 

Now let us consider the solvable subalgebras. 

ConSider algebra (42), put 

B=2d:c ' C=-2da~' D=O 
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(63) 

(64) 

(65) 

and operate on the functionsf(b, c, d). The condition 
Bf=Cj=Df= 0 implies 

j(b, c, b) = j(d). 

Thus we find that only a function of d is an invariant, 
hence the only operators that commute with B, C, and 
D are polynomials in D and we find that the only inde­
pendent invariant is the obvious one: 

{B,C,D}, Invariant=D. (66) 

The algebra (44) can be represented by 

a a 
A=O, D=2d

ae
, E=-2d

ad 
• 

The requirementAj=DF=EF= 0 implies j(a,d, e) =j(a) 
and hence we again have only one independent invariant 

{A,D, E}, Invariant: A, (67) 

Finally, the algebra (46) is represented by 

B=b~, D=2d~, E= -b~ -2d~. 
ae ae ab ad 

This time Bj(b,d,e)=O impliesf(b,d,e)=j(b,d), Dj=O 
is automatically satisfied, and 

aj aj 
Ef(b d)= -b- -2d- =0 ., ab ~d 

implies 

aj /~ = _ d(d) = _ 2d so that d= const b2• 
ab ad db b 

Hence the invariants are arbitrary functions of one 
variable j(d/b2). Since no function of d/b2 can be written 
as a polynomial in b, d, and e the algebra {B,D,E} has 
no invariant (D/B2 is not an operator in the enveloping 
algebra). 

Four-dimensional subalgebras 

The invariants of the algebras (34) and (36) are again 
obvious, namely 

LS[U(2) x U(1)]-{A, F, C,H}, Ia=f(A +F)2 +C2 +~, 

Ia= -A +3F, 
(68) 

LS[U(1) x U(1, 1)]-{A,D,E, F}, Ib = (D _ F)2 +E2 _~, 
(69) 

ConSider now the solvable subalgebra (40). The 
generators can be represented as 

a . a 
B=2d- +(-3 coscp c +smcp b)-, oc or 

a 0 
C=-2d ab +(3coscpb +sincpc)ar, 

D=2 sincpd a~ , 

R = (3 coscp c - sincp b) a~ - (3 coscp b +sincp c) a~ 

-2 sinCPd~. 
ad 
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The requirement Dj(b,c,d,r)=O impliesf=j(b,c,d) or 
cp=O. For cp*"O the condition Bf=O then givesf=j(b,d) 
and Cf= 0 implies f=j(d). Finally Rf= 0 implies that 
{B, C, D, R} for <P"I= 0 has no invariant. 

Consider now the special case of (40) for 1> = 0 when 
the algebra is represented as 

B=2d~-3c..i.., C=-2d..i..+3b~, D=O, 
ac aa ab aa 

A= 3c ..i.. -3b~. 
ab ac 

We have Dj(a,b,c,d)=O, hence D is an invariant. 

The condition 

1 'Of 'Of 
-Af=c- -b-=O 
3 ab ac 

implies 

j(a, b, c,d)=j(a, b2 +c2 ,d). 

Further, Bf=O and Cf=O lead to the same condition 

4d 'Of -3 'Of =0 x=b2 +c2 • 
ax aa ' 

This equation can be immediately solved and we find 
that f is an arbitrary function of two variables 
f(d,3(b 2 +c2

) +4ad}. An arbitrary polynomial in the 
operators D and 3(B2 +C2

) +4AD will hence commute 
with A, B, C, and D, and we find that the algebra for 
<p = 0 has two independent invariants: 

{A,B, C,D}, 11 =D 
(70) 

Let us-note that the algebra {A,B,C,D} is of some 
interest in physics since after complexification it can 
be identified with the "harmonic oscillator algebra, ,,25 

i. e., the algebra of a boson creation a+ and annihilation 
operator a, the number-of-particles operator a+a, and 
the identity operator I. Indeed, we have 

(a+,a]= -I, (N,a+]=a+, (N,a]= -a, 

(a+, Ij=(a, I]=(N, 1]=0, 

so that we can identify 

I=4iD, a=B - iC, a+ =B +iC, N=iA/3. 

Five-dimensional subalgebra 

Let us finally show that the maximal solvable algebra 
S1 itself has no invariant. Indeed, the commutation 
relations (3.3) are satisfied by the operators 

A=3c..i.. _3b..i.., 
ab ac 

a a a 
B=c- + 2d- +b-, 

aa ac ae 

C= 3b ..i.. _ 2d i... +c..i... 
aa ab ae 

a 
D=2d-, 

ae 

a a a 
E= -b- -c- -2d-' 

ab ac ad 

The condition Dj(a, b, c,d, e) = 0 implies f=j(a, b, c,d); 
Af=O gives 

c 'Of _ b of =0 
ob ac ' 
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i. e., f=j(a, b2 +c2,d). Condition Ef=O gives 

of 'Of 0 2 2 
xa;+d ad = , x=b +c, 

implying that f = f(a, (b 2 + c2
) / d}. Finally Bf = 0 and Cf = 0 

give the equation 

of 'Of b2 +c2 

-3 oa +4 oy =0, Y= -d-' 

Solving this equation, we find that in order to be invari­
ant under the regular representation f must depend on 
one variable only, namely 

f=f(3(b
2 +~d +4 ad). 

Since (3(B2 +C2
) +4ADl/4D is not an operator in the 

enveloping algebra, we find that S1 has no invariant. 

Some results of this section are summarized in Table 
ill, where we list all nonconjugate chains of subgroups 
of SU(2, 1), including only groups the algebras of which 
satisfy the conditions: 

TABLE III. Chains of SU(2, 1) subgroups with invariants 
providing state labels. 

1. SU(2,1) S[U(2) xU(I)] S[U(l) xU(l)] 

{A,F,G,H} - {- (A+3F)/2,A+F} 

II = tA +F)2+G2+H2 I3=A+F 

I 2=-(A+3F)/2 

2a. SU(2,l) S[U(l) xU(l, 1)] 
! 

S [U(I) x U(I) ] 

{A,D,E,F} - {A,F} 

II =(D_F)2+E2 _F2 I3- F 

I2=A 

\ 
S[U(I) xO(I, 1)] 

b. {A,E} 

I3=E 

S[U(I) xE(l)] 

c. {A,D} 

I3=D 

3a. SU(2,1) 0(2,1) 0(2) 

{B,E,G} t- {G} 

II = (B I - G)2 +E2 _ G2 ~ I2=G 

\\ 0(1,1) 

b. 

\ 
{E} 

I2=E 

E(2) 

c. {B} 

I2=B 

4a. SU(2,1) Harm. oscillator group E(I) 

{A,B,C,D} .. {B} 

II=D 

1\ 
I3=B 

12=3(B2+C~ +4AD 
{A,D} 

b. 
13=A J 
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(a) They have at least one invariant. 

(b) That invariant is not simultaneously an invariant 
of a larger algebra in the same chains of subalgebras. 
We also list the corresponding invariants. 

Several comments are in order here. 

(i) Besides the seven obvious chains of subgroups 
1, 2a-c, 3a-c, leading through a maximal semisimple 
subgroup, we obtain two less obvious ones 4a, b, lead­
ing through the solvable group generated by {A,B,C,D}. 

(ii) Each of the subgroup chains, except those involv­
ing 0(2,1), provides a complete set of commuting 
operators. Thus, the common eigenfunctions of each 
of these sets will provide a nondegenerate system of 
basis functions for the representations of SU(2, 1). If 
we wish to use the 0(2,1) chain, then one operator is 
missing and states labeled by the same eigenvalues of 
the invariants II and 12 (in Table III) may occur more 
than once in a given representation of SU(2, 1), It follows 
that we have a "missing label problem," which can, 
however, be resolved, e. g., by constructing a further 
operator, commuting with the invariants 11 and 12 , but 
not related to any subgroup. The analogous missing 
label problem for the SU(3):::J O(3):::J 0(2) reduction has 
been resolved in this manner. 26 

V. CONCLUSIONS 

The main content of this paper is a theorem, formu­
lated and proven in Sec. II B, which provides a method 
for determining all maximal solvable subalgebras of any 
semisimple Lie algebra over a zero characteristic 
field F. The method was then applied in Sec. II C to 
explicitly construct all q + 1 maximal solvable subalge­
bras of LSU(p,q). In Sec. III we have presented very 
explicitly the maximal solvable subalgebras of LSU(p, q) 
for 4;. p +q;' 0, p;. q;. O. Finally, in Sec. IV we have 
claSSified all subalgebras of LSU(2, 1), constructed the 
invariants for all subalgebras that have invariants and 
proved that the other subalgebras have no invariants. 

A continuation of this study classifying all continuous 
subgroups of the conformal group SU(2, 2) will be 
published separately. 
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Representations will be given for the nonrelativistic local current algebra consisting of p(x), the 
particle number density, and J(x), the flux density of particles. These representations correspond to 
the N IV limit of (i) a free Bose gas, (ii) Bose gas in an external potential, (iii) free Fermi gas, and 
(iv) Bose gas (in one dimension) with a two-body interaction potential V (x) = 2/x 2. In each case the 
generating functional L (f), the ground state expectation value of exp[i p(f)], determining the 
representation will be given. It will also be shown the generating functional satisfies a functional 
equation of the form [v-ivf(x)](l/i)[8/8f(x)]L(f) =A(x, (l/i)(8/81)L(f) and that the 
Hamiltonian written in terms of p and J has the form H = (l/8)J dxK(x)t [1/ p(x)] K(x) with 
K(x)=Vp(x) +2iJ(x)-A(x,p). 

1. INTRODUCTION 

Several physicists l-5 have suggested formulating 
field theory in terms of local currents instead of the 
canonical field operators. As an aid in understanding 
this approach we will study in this paper the nonrela­
tivistic local current algebra consisting of p(x), the 
particle number density, and J(x), the flux density of 
particles. [Only the smeared fields, p{f) = fp(x)f(x) dx 
and J(g) = f J(x) • g(x) dX, where f(x) and g(x) are test 
functions, are to be considered as operators. ] Repre­
sentations of this algebra can be determined from the 
generating functional L{f, g), the ground state expecta­
tion value of exp[ip{f)] exp[iJ(g)]. 6,7 We will study rep­
resentations corresponding to the N Iv limit. These 
representations are obtained by considering the repre­
sentation corresponding to an interacting system of N 
particles in a box of volume V, then taking the limit (of 
the generating functional which defines the representa­
tion) as N - 00 and V - 00 in such a way that N Iv - p, the 
average particle density. 

In the previous papers it was shown that L{f, g) can 
be expressed in terms of correlation functions and that 
the Hamiltonian (considered as a Hermitian form) can 
be expressed in terms of pIx) and J(x). In this paper we 
will provide several illustrations of these results. All 
of the examples considered are systems for which the 
N-particle ground state wavefunction is known. Our 

. procedure will consist of calculating all the correlation 
functions for the N-particle systems and then using 
these to determine L{f, g) in the N IV limit. For many 
purposes it is sufficient to know L{f) = L{f, 0). For each 
example, L{f) is shown to satisfy a functional equation 
of the form 

1 15 ( 1 15 ) [V - iVf(x)] i I5f(x) L{f) = A x, T I5f L{f). 

This leads to the following expression for the Hamil­
tonian in terms of p(x) and J(x): H = if dx K(x) t[11 
p(x)] K(x), where K(x) = Vl'(x) + 2iJ(x) - A(x, p). 

Hopefully, after becoming familiar with this approach 
we will be able to write the Hamiltonian in terms of p(x) 
and J(x) for any interacting system of particles. This 
leads directly to a functional equation for L{f). By solv­
ing this equation we could determine representations in 
the N IV limit for cases when it is not possible to find 
the N-particle ground state wavefunction. 
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In Sec. 2 the p, J algebra will be definedo The N-par­
ticle representations will be reviewed along with the re­
sults on the N I V limit from the previous paper. 

In the subsequent sections, L{f), the functional equa­
tion for L{f), and an expression for the Hamiltonian in 
terms of p(x) and J(x) will be derived for each of the 
following examples: 

(i) free Bose gas (Sec. 3), 

(ii) Bose gas in an external potential (Sec. 4), 

(iii) free Fermi gas (Sec. 5), 

(iv) Bose gas (in one dimension) with a two-body 
interaction potential V(x) = 2/x2 (Sec. 6). 

The last example is the most interesting since a rep­
resentation of the p, J algebra corresponding to an in­
teracting system is given. 

2. SUMMARY OF RESULTS ON REPRESENTATIONS 
OF THE p,J ALGEBRA 

The p, J algebra is defined by the following commu­
tation relations among the smeared fields: 

[P{fl), P{f2) ] = 0, 

[p{f) , J(g)] = ip(g· V f), 

[J(gl),J(g2)]=iJ(g2' Vgl - gl' Vg2)· 

(2.1) 

In computing the N IV limit representation we will 
use the correspondence between N-particle represen­
tations and quantum mechanics. An N-particle represen­
tation 7 is defined on the Hilbert space: 

H = {L~(RN) = symmetric functions for bosons 

L~(RN) = antisymmetric functions for (spinless) 
fermions. 

In either case 

N 

P {f) = ~ f(x",) , 
m=l 

N (2.2) 
J(g) = - ~i 6 [2g(x",) • V m + (V, g)(xm)]. 

m=l 

It will be useful to introduce the quantity, K(g) = - p(v 0 g) 
+ 2iJ(g). In the N-particle representation. 

Copyright © 1974 American I nstitute of Physics 1394 
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N N 

K(g) = 2 l:) g(xm) • v m or K(x) = 2l:) 6(x - Xm) V m' 
m=1 m=l 

(2.3) 

Once the N-particle ground state wavefunction, 
0N(Xl' •• XN), is given, the generating functionals are 
determined by 

= J dx1'" J dXNO~(Xl' "XN) 

x exp[ij(x1)]' •• exp[ij(xN)] 0N(Xl ••• XN) (2.4a) 

and 

LN(f, g) = (ON, exp[ip(f)] exp[iJ(g)]ON) 

= J dx1 " • J dXN 0; (xl ••• XN } 

N 
x II {exp[ij(xm») exp[ij(Xm, g)j} 0N(Xl" 'xN), 

m=l 

(2.4b) 

where j(x, g) = - M2g(x) • V + (V, g)(x»). 

Remark: In Ref. 7 it was shown that exp[itj(x, g) ]1/J{x) 
= i/I(<pf(x»{det[om<pf(x)nW / 2, where <pf(x) is the flow cor­
responding to the vector field g defined by, (a/at) <pf(x) 
= g 0 <pf(x) and <p~X) = x. 

In order to take the N /V limit, it will be convenient to 
express the generating functional in terms of correlation 
functions. The nth correlation function for an N-particle 
representation is defined by 

R~N)(Yl" 'Yn;xl" ·xn) 

= [N!/(N - n)!]f dZn+1 0 .. J dZN 

x O:<'Yl ••. Yn, zn+l .•• ZN)ON(Xl •• 0 x., zn+l ° 0 • ZN) 

(2.5a) 

Let 

(2.5b) 

In the preceding paper6 it was shown that 

LN(f)=I;on\ l dxl" °ldXnF(X1)' •• F(xn)R~N)(Xl·· 'Xn), 
n- • V V 

(2.6a) 

where F(x) = exp[ij(x») - 1, and 

LN(f, g) =£ -\ jdx1 [dYl'" ( dXnl dYn 
n-O n. v J v J v v 

x fr 6(Xm - Y m) {exp[if(Km) ] exp[ij(Xm, g) ] - 1} 
m=l 

XR~N)(Yl" 'Yn;Xl' "x.). (2.6b) 

Furthermore, if R~)(Xl" 'x.) -Rn(Xl" 'Xn) in the N/V 
limit and IRf)(Xl" 'Xn) I ~ cnnn/2

, where c=const, then 
in the N/V limit 

LN(f) -L(f) .. 
= Po (l/n!) r: dXl ••• r: dx. F(Xl) ••• F(Xn)Rn(X1 ° 0 ° x.). 

(2.7) 
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In addition to determining representations in the N /V 
. limit we will be interested in expressing the Hamiltonian 
in terms of p and J. We will use the following results 
from the preceding paper6: 

There is an operator of the form 

K(x) = K(x) - A(x, p) (2.8) 

such that K(x) annihilates the ground state 0; i. e., 
K(x) ° = O. The Hamiltonian (for time reversal invariant 
systems of spinless particles) can be written as 

-If - t
1 -H - '8 dxK(x) p(x) K(x). (2.9) 

Furthermore, the generating functional satisfies the 
functional equation 

. 1 6 ( 1 6) [V-zVj(X)]i 6f(x)L(f)=A x'i 6j L(f), (2.10) 

After determining L(f) in the N /V limit, we will find 
an A(x, p) such that Eq. (2.10) is satisfied. This im­
plies (0, exp[ip(f) ]K(x) 0) = 0, where K(x) = K(x) - A(x, p) . 
For physical reasons (explained in the previous paper), 
Span{exp[ip(f) ]O} is dense in a representation corre­
sponding to a system of spinless particles. It therefore 
follows that K(xHt= O. Then the results of the previous 
paper allow us to conclude H is given by Eq. (2.9). 

Finally, we will show that the various N/V limit 
representations we determine are unitarily inequivalent. 
This is a consequence of translational invariance and 
the cluster decomposition property. A representation 
satisfies translational invariance and the cluster de­
composition property if 

lim L(f + hxJ = L(f)L(h), where hx .. (x) = h(x - Aa). 
x· .. 

(2.11) 

In the previous paper it was shown that two representa­
tions satisfying translational invariance and the cluster 
decomposition property are unitarily equivalent iff their 
generating functionals are equal. 

3. FIRST EXAMPLE: THE INFINITE FREE BOSE GAS 

The free Bose gas is the first example we will con­
sider since it is the simplest case in which to illustrate 
the procedure we will be using. The representation cor­
responding to the free Bose gas was first given by 
Goldin and SharpS and treated in great detail in Ref. 9. 
There it was shown that: (i) L(f) = exp[p J (exp[ij(x)] 
-l)dx], (ii) (V-iVj)(l/i)[6/6j(x)]L(f)=0, and (iii) 
H = i J dx K(x) t[ 1/ p(x) ]K(x). The Hamiltonian was origin­
ally motivated by formal manipulations when p and J are 
written in terms of the canonical fields. 1 The 1/ p(x) 
term appearing in the Hamiltonian has been given a 
rigorous meaning in Refs. 8 and 9. In addition to giving 
an alternative derivation for L(f), we will show the 
Hamiltonian follows from the N /V limit of the Hamilton­
ian for N free bosons in a box of volume V. 

We begin by calculating the correlation functions for 
N free bosons in a box of volume V. The Hamiltonian 
for N particles is given by 

N 
HN =- ~~ v~. 

n=l 
(3. 1) 



                                                                                                                                    

1396 Ralph Menikoff: Generating functionals 

The ground state wavefunction is UJxl .. • x N) = V-N/2. 
The correlation functions can easily be computed from 
Eq. (2.5b). The result is R!N) (xl ° ° ° Xn) =N! /(N - n)! V"'. 
In the N/V limit, R:;') -Rn=P". Equation (2.7) then 
gives the generating functional in the N /V limit, 

;"1f' f L(f) = ~o n! dX1' • • dx" F(Xl) ••• F(xn)pn, 

where F(x) = exp(if(x)] - 1, 

= exp~ f dx(exp(if(x)]-1)]. (3.2) 

Remark: p is the average density. It may also be 
thought of as the ground state expectation value of p(x); 
p = (Up(x) U). This expectation value is a constant for an 
infinite volume by translational invariance. 

Since for N particles we have the ground state ex­
pre~ed as a wavefunction, it is easy to find the opera­
tor K(x) needed to obtain the Hamiltonian in terms of p 
and J. Using Eq. (2.3b), we find K(x) UN = O. Thus the 
Hamiltonian given by Eq. (2.9) becomes 

HN = ~ 1 dxKt(x) ptX) K(x). (3.3) 

This suggests in the N /V limit the Hamiltonian is given 
by 

1 1 f
~ 

H ="8 _00 dx Kt(x) p(x) K(x) . (3.4) 

To verify this, we must show K(x)U= 0 (in the N /V 
limit). As explained in Sec. 2, it is sufficient to prove 
Eq. (2.10) is satisfied. In this case Eq. (2. 10) reduces 
to 

(V - iVf) i Of~x) L(f) = O. (3.5) 

By using L(f) given in Eq. (3.2) it is easy to check that 
Eq. (3.5) is true. Thus we can conclude the Hamilton­
ian for a free Bose gas in the N /V limit is given by 
Eq. (3.4). 

By similar means L(f, g) can be calculated. The re­
sult is 

L(f, g) = exp(p f dx{exp(ij(x) ][deto mcpl(x)n]1/2 - 1}), 

(3.6) 

where rpl is the flow corresponding to the vector field g. 

Furthermore, it can shown L(f) satisfies transla­
tional invariance and the cluster decomposition property 
[Eq. (2.11)]. As a result, representations of the free 
Bose gas corresponding to different densities are 
unitarily inequivalent. 

Finally, we mention some additional properties that 
can be proved for the free Bose gas representations 
(with given average density P): 

(i) The exponentiated currents, exp[ip(f)] and 
exp[iJ(g)], are irreducible. 9 

(ii) The translation operators are in the closure of 
the exponentiated current algebra. 6 

(iii) Span{exp[ip(f)U} is dense. 9 

Other representations can be obtained by taking the 
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direct sum of representations with different densities. 

'4. SECOND EXAMPLE: INFINITE BOSE GAS IN AN 
EXTERNAL POTENTIAL 

The generating functional for a Bose Gas in an ex­
ternal potential u(x) can be calculated in a similar man­
ner to that of a free Bose gas. The Hamiltonian for N 
particles in a box of volume V is given by 

N 

HN =~ [- tv: + UN (x,.) - Eg], 
r=l 

(4.1) 

where Eg = the ground state energy per particle. Let 
wN(x) = the single-particle ground state wavefunction 
defined by 

(4.2) 

with normalization IvdxWN(X)2/V= 1. The ground state 
wavefunction for the N-particle system is then 

N 
U - IT V-1 / 2W (x ) 

N - r=l N r 
(4.3) 

Remark: (1) The Hamiltonian has been defined such 
that H NnN = O. (2) There are several subtle details in 
connection with the N/V limit which we will not discuss 
since we are mainly interested in the form of the 
representation and the Hamiltonian. However, it is well 
to be aware of these points. First, there is the bound­
ary conditions at the edge of the box. Normally the 
wavefunction is required either to be periodic or to 
vanish at the edges. The boundary conditions are needed 
to fully specify the Hamiltonian for the system of in­
terest. Different choices of boundary conditions may 
give different results in the N /V limit. Second, there is 
the question of how to restrict the potential to the box. 
The potential UN(X) may be chosen in any convenient 
manner as long as in the N /V limit we describe a sys­
tem of particles in the potential u(x). For example, we 
might truncate the potential, UN(X) = u(x) for x in the 
box; or we could make the potential periodic, UN(X) 
= z:=-~ u(x + nL), where L = the length of the box. Final­
ly, the lV/V limit does not exist, for perfectly good 
physical reasons, for every potential. For example, a 
harmonic oscilator potential u(x) = kx2 for large x is 
sufficiently large and repulsive to cause particles to 
clump together around the origin in the lV/V limit. 
(i. e., in the N /V limit an infinite number of particles 
would be found in a finite region around the origin. ) 

The correlation functions can be computed from Eqs. 
(2.3b) and (4.3). The result is 

N' n 
R~N)(Xl· .. x,,)=(N_·n)! V""P,lWN(Xr)2. (4.4) 

In order to obtain L(f) in the N /V limit, we will suppose 
that wN(x) - w(x) in the N /V limit. Then 

R~N)(Xl ••• x,,) - Rn = pnn W(Xr)2. (4.5) 
r=l 

If we further suppose that the WN(X) are bounded, then 
the generating functional in the N /V limit is given by 
Eq. (2.9) which becomes 

L(f) = i; 1.. f dXl •• ·f dx" F(Xl) ••• F(x,,) 
li=fln! 
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XP"W(Xl)2 • •• W(Xn) 2 

= eXP{J dxpw(x)~(exp[ij(x)] - 1)}. (4.6) 

Let Po(x) = the ground state expectation value of p(x). 
Then, 

Po(x)=(O,p(x)O)=~ Oj~x) L(f)lf:O=PW(x)2. (4.7) 

Now L(f) can be written as 

L(f) = exp{J dxpo(x)(exp[ij(x)] - 1)}. (4.8) 

Thus L(f) for a noninteracting Bose gas in an external 
potential has the same form as L(f) for a free Bose 
gas. They are both determined by (0, p(x) 0). Since a 
free Bose gas is translational invariant, in the N /V 
limit (0, p(x) 0) = p, a constant. An external potential 
breaks this symmetry. It is the only nontranslational 
invariant system we will consider in this paper. (How­
ever, it does satisfy the cluster decomposition 
property). 

By similar means L(f, g) can be calculated. The 
result is 

L(f, g) = exp[p J dx w(x)( exp[ij(x) ] 

xexp[g(x) .V+(V·g)(x)/2]-1)w(x)}. (4.9) 

To obtain the Hamiltonian, we must again determine 
the appropriate form for the operator K(x). Using Eqs. 
(2.3) and (4.3), we find 

K(X)ON=(~ 20(X-X r )Vr)(h V-1/2WN(Xr») 

=(t 2o(x-x r) VWN (xr»)(n V-1/2WN(X) 
r=l WN r=l 'J 

Thus, 

- Vw KN(x) = K(x) - 2p(x) _N (x) 
WN 

and 

1 ( - 1-
HN= '8 lv dxKN(x)t p(x) KN(x). 

In the N /V limit we would expect 

K(x) = K(x) _ 2p(x) Vw (x) 
w 

= K(x) - p(x) V lnpo(x) . 

(4.10) 

(4. 11) 

This expression can be verified by checking that Eq. 
(2.10), which in this case becomes 

. 1 0 1 0 
(V-IVj)i Of(x)L(f)=(Vlnpo)(x)i oj(x) L(f), (4.12) 

is satisfied. By using Eq. (4.8) for L(f), Eq. (4.12) 
can easily be proved true. Therefore, the Hamiltonian 
for a Bose gas in an external potential is given in the 
N/V limit by 

11= - t 1 -H= '8 _= dxK(x) p(x) K(x), 
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where K(x) is given by Eq. (4.11). We can gain further 
understanding of this form of the Hamiltonian through 
the following formal manipulations. From Eq. (4.11) 
and (4,13), 

H = ~ f dx[K(x) - p(x) V InPo(x)]t ptX) [K(x) - p(x) V lnpo(x)] 

=.!J dxK(x)t_
1

-K(x) 
8 Po(x) 

-~ f dx V lnpo(x) [K(x) t + K(x) ] 

+ ~f dxp(x)Vlnpo(x)' Vlnpo(x) . 

Since K(x) t + K(x) = 2Vp(x), 

H= ~ f dxK(x)t ptX) K(x) 

+ f dxp(x)[tv2 Inpo(x)+ivlnpo·Vlnpo] 

Using Po(x)=pw2(x), we have 

tv2 Inpo(x) + iv lnpo' V lnpo = t(v2w/w)(x). 

If in the N/V limit Eq. (4.2) remains true, 

t(v2w/w)(x) = u(x) - Eg. 

Therefore, 

From Sec. 3 we may identify if dx K(x) t[l/p(x)]K(x) 
with the kinetic energy for bosons. The term 
f dx p(x) [u(x) - Eg] corresponds to the potential energy. 
Thus H has the expected form. 

The following (one-dimensional) example will 
illustrate some of these results: 

Let 

w(x) 

~ 1- [( 1/41T) + (1/ 7T2
) cos( 7TX)] 

= (~- (1/27T)[1 + (1/27T) sin(27Tx) - x] 

Then 

1 
cos( 7TX) for I x I ~ t, 

wH(x) = oSin(27TX) for t < Ix I ~1, 
for 1< Ixl. 

for Ixl ~ t, 
for t < I x I ~ 1, 
for 1 < I xl. 

NOW, let u(x)=twH(x)/w(x). Then [- t{d2/dx2) +u(x)]w(x) 
= O. (See Fig. 1), 

The ground state, for this potential, can be solved in 
any box (with L > 2) if periodic boundary conditions are 
imposed. For N particles in a box of length L let u (x) 

( ) 
1 1 ' N 

= U x for - 2L < x < 2L. The single-particle ground 
state is wN(x) = w(x) for - tL < x < tL. Clearly in the 
N /V limit WN(X) - w(x). Thus, for a Bose gas in the ex­
ternal potential u(x) in the N /V limit L(f) 
=exp{p! dXW(X)2(exp[ij(x)] -1)}. 
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U(X) 

W(X) 

FIG. 1. The external po­
tential u(x) vs x, and the 
single particle wavefunc­
tion w(x) VB X. 

------+-1 --x 

5. THIRD EXAMPLE: THE INFINITE FREE FERMI 
GAS 

In this section we will compute the generating func­
tional for a free Fermi gas. The N-particle Hamilton­
ian is 

(5.1) 

In a cubic box with edges of length L the ground state is 

ON = (VoN /N!)l/a detNxJexp(ik" 'x".)], (5.2) 

where it,. = 21T / L(nll na, n3) and nll na, n3 are integers such 
that 1k,,1 ~kf' the Fermi momentum. The Fermi 
momentum is determined from the average density in 
the usual way. The number of particles is N = ~1~I<IIf 1. 
In the limit this becomes 

N - J d3k V /(21T)3 = V( 41T/3)(kf /21T) 3 • 

Therefore, the Fermi momentum is related to the 
average density by 

p = (4/3) 1T(kf /21T)3. (5.3) 

Remark: By picking the number of particles N such 
that the ground state contains all the single-particle 
states with I k I ~ k" the ground state is unique. Also, 
N is odd since for every occupied state k, the state 
- k is also occupied except that k= 0 and - 0 are the 
same. As a result i(N-ll/aON is real and hence time re­
versal invariant. 

The correlation functions can be calculated using the 
following theoremlO: 

Theorem 1: If ON=(N!)-l/adetNxNf.(x".) and 
f dxf.(x)*fm(x) = D.,m, then 

R.(XI·· 'x,,) =N!/(N - n)! J dx,,+l'" J dXNI ON la 

= det.Xn[KN (xr' Xs)] 

where 

For the free Fermi ground state, f.(x) = V-I/a 

x exp(ik" • x). Therefore, the correlation functions are 
given by 

R~N)(XI ••• x,,) = det"".[GN(Xr - xs)], (5.4) 

where 

(5.5) 
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In the N / V limit 

GN(x) - G(x) = (21T)"3 J;tl<lof d3k exp(ik· x) 

=3P(sinz-zcosz)/Z31.=ktIZI (5.6) 

and R~N )(XI ••• x,.) - R.(XI ••• x,,) = det.x. G(Xr - xs) . 

In order to obtain L(f) in the N /V limit from Eq. 
(2.7), we must show ~N) is bounded. To do this, we 
need to introduce a few theorems on matrices. 

Let L be a linear vector space with an inner product 
( " ,) and let Wh wa'" w. E L. The quantity 

V(Wb wa 0 •• w.) = [det.x.(wr , ws ) ]1/2 

can be interpreted as the volume of a hyperparallel­
epiped formed from the vectors wl> w2 ' •• w.' 11 

Let 

h1 ;::: (WI' WI)l/a, 

~ = the magnitude of the component of vector wr 
orthogonal to the subspace spanned by the vec­
tors WI, wz, •.. , wr_l' 

Then it can be shown thatll 

V(Wb wa 0 •• w.) = hlhz " • h. 

By using this relation the following result can easily be 
proved: 

Theorem 2: V(WI'" w.) ~ V(WI ••• wr ) V(Wr+1 0 •• w.) 

Corollary 1: V(w1 '" w.) ~ V(w1)V(wa)'" V(w.) 

In Sec. 6 we will need the following corollary: 

Corollary 2 (Hadamard's Theorem): If A is an NX N 
matrix, then 

IdetAlz~ P.I(~ IAi~lz). 
Proof: Apply Corollary 1 to the matrix A tAo 

Corollary 3: If A is an N XN matrix and IAi~ I < c for 
l~j,k~N, then IdetAl < cHNNIZ. 

We can now show the correlation functions are bound­
ed. Let the vector space L be {(all az" • aN); aj E <t} with 
inner produce (A, B) = V-I ~:=l ajb j , and let Xr be the vec­
tor with components (Xr ) j;::: exp(ikj • Xr). Then 

GN(x r - xs) = (Xr' Xs) and R~N~XI' o. x,.) = det(Xr, X s). .x. 
By Theorem 2, 

RC;: )(XI 00 • x,,) ~ R~N )(XI ••• Xr)R<,:"..!(Xr+1 ••• x,,). 

Furthermore, by Corollary 1, 

We can now obtain the generating functional for a free 
Fermi gas in the N /V limit from Eq. (2.7). The result 
is 

det G(Xr - x..), .x. (5.7) 
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'where F(x)=exp[ij(x)-l] and G(x) is given by Eq. (5.6). 

An alternative expression for L(f) can also be de­
rived. For this purpose we will use the identity 

J dXl ••• J dXN(detNXN[h,.(Xs) ])*(detNXNf gT(XS )]) 

=N! detNxN[f dxhT(x)* gs(x)]. (5.8) 

Now, using Eqs. (2.5) and (5.2), we obtain, for the 
N-particle generating functional, 

'LN{f) = (lIN!)J v (dxNIV) ••• J V(dXNlv) 

x detNXN [exp(ik., • x"')] exp[ij(x:l)]' •• exp[ij(xN)] 

x detNxN [exp(ik., 'Xm] 

=detNxAO""n + J v(dxIV)(exp[ij{x)] -1) 

x exp[i(k., - k",) • x I}. 

By using the expansion 

(~ (_)(n-1) ) 
=exp L.J ---TrAn , 

n=l n 

Eq. (5.9) becomes 

LN(f) = exp L) --- dX1 .. • dlen ( ~ ( )n-l/v ~ 
n=l n! v v 

where 

In the N /V limit 

where 

(5.10) 

(5.11) 

Tn(Xl'" len) = (n-I)l G(x:l -x2 ) G(~ -x3)- _. G(Xn -Xl)' 

(5.14) 

Furthermore, (l/n!) ~perm Tn(x"l ••• x,) are the cluster 
functions of the correlation functions Rn(Xl ••• len). The 
expansion for L{f) given in Eq. (5.13) was discussed 
in the previous paper. 6 
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With a little more work L(f, g) can be calculated 
explicitly by similar means. The result is 

L(f,g)=~~fdXlfdYl'" fdlen jdYn n-on. 

i1 [O(Xr - Y T){ exp[if(Xr)] exp[ij(Xr, g) ] - 1}] 
T=l 

(5.15) 

where 

(5.16) 

and 

j(X, g) = - ii[2g(x) • V + (V· g)(x)]. 

Alternatively, 

~ ()n-l! f f f L(f, g) = exp E -n! dXl dYl • • • dlen dYn 

n 

X f1 [O(x,. - YT){ exp[ij(x,.)] exp[ij(x:T' g)] - 1} ] 
T=l 

(5.17) 

where 

Tn(Yl ••• Yn; Xl' •• len) 

(5.18) 

Remark: Clearly Rn(x1 ••• len; Xl' .• x,,) = Rn(Xl ... x,,). 
Furthermore, it can be shown that IRn(Yl'" Yn; 
Xl'" x,,) 12 ,,: Rn(Yl ..• Yn)Rn(Xl ..• x,,). 

In three dimensions neither the functional equation for 
L(f) nor an expression for the Hamiltonian in terms of 
p and J are known at present. However, for a one­
dimensional free Fermi gas both of them will be given 
in the next section. 

Remarks: (1) For a Fermi gas in an external potential 
the correlation functions have the same form as those 
for a free Fermi gas. Only the function G(x) occurring 
in Eqs. (5.16) and (5.18) need be changed. 

(2) It can be shown that L(f) for a free Fermi gas 
satisfies the cluster decomposition property [Eq. 
(2.11) J. As a result, representations with different 
average densities are unitarily inequivalent. Also, the 
free Bose and free Fermi representations are unitarily 
inequivalent since their generating functionals are un­
equal and satisfy translational invariance and the 
cluster decomposition property. 

(3) For both the free Bose gas and the free Fermi gas 
there is nothing in the Hamiltonian to set a scale of 
distance. Consequently, a scale transformation can 
only effect the average density. It can be shown for 
both cases that Rn,p(X) = (,p/Po)"Rn,po«p/PO)1/3x). As a 
result, 

(5.19) 

(4) The cluster decomposition property expressed in 
terms of the correlation functions is trivial for a free 
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Bose gas since 

R" .... :::: 75".'" :::: p "p ", :::: R"R", • 

For the free Fermi Gas it can be shown that 

6. FOURTH EXAMPLE: INTERACTION OF THE 
FORM A.{X-1)/x 2 IN ONE DIMENSION 

In this section we will calculate the generating func­
tional and find an expression for the Hamiltonian in 
terms of p and J for a one-dimensional Bose gas inter­
acting via a two-body potential U(x):::: 2/x2. We first 
consider a system consisting of N particles on a ring of 
length L. We can associate a periodic potential with 
the potential g/x2 by writing 

.. g7T2[ (7TX)]-2 
U(x)::::g "~ .. (x +nLt2::::17 sin T . (6.1) 

Sutherland12 has found the exact N particle ground state 
for this potential. We will first write his results in 
terms of currents and then proceed to the N /V limit. 

Consider the N-particle wave function 

'ItN:::: f1 Il/I(xj-xk)IA. (6.2) 
j<_=1 

Suppose l/I(x)=±l/I(-x). Let cp(x)=(d/dx)lnl/l::::l/!'!l/I(x). 
Then cp(x) == - cp(- x) and cp(O) == 0 (if l/! is well behaved). 
By direct computation it can be shown that 

- t t ~'ItN:::: (:.. tAL) [cp'(Xj - x_) + Acp(Xj - X_)2] 
j=1 uXj j~1< 

If there is a function a(x) such that 

(6.4) 

then 

(6.5) 

where 

(6.6) 

Remark: We have started with a special form for a 
wavefunction 'If and constructed a potential such that 'It 
is an eigenvalue of Schrodinger's equation. This pro­
cedure (due to Sutherland12) only works when functions 
'It and a can be found such that Eq. (6.4) is satisfied. 

J. Math. Phys., Vol. 15, No.8, August 1974 

It is easy to show that K(x)'If N = 2Ap(X}f dy cp(x 
- y)p(Y)'ItN. Let 

K(x) ::::K(x) - 2Ap(x)f dy cp(x - y)p(y). 

1400 

(6.7) 

If 'It is the ground state, then the Hamiltonian, given by 
Eq. (2.9), can be written as 

f LI2 1-
HN=t K(x)t-( )K(x). 

-L 12 p X 
(6.8) 

We will check that this Hamiltonian formally agrees 
with what is expected for a system of particles inter­
acting via the two body potential U(X). Substituting Eq. 
(6.7) into Eq. (6.8), we obtain 

H =1.fdXK(x)t _1_ K(x) 
8 p(x) 

+h2f dx fdY f dz p(x)p(y)p(z)cp(x- y)cp(x- z) 

=iA f dx fdY cp(x- Y)[K(x)tp(y) +p(y)K(x)]. (6.9) 

We can identify H dxK(x)t[l/ p(x)]K(x) with the kinetic 
energy (for bosons). From the commutation relations 
[Eq. (2.1)] we find 

d d 
K(x)t p(y) + p(y)K(x) = 2 dxP(x)P(Y) + 2 dy [0 (x -Y )p(Y)] 

and from Eq. (2. 2) 

- f dxf dy cp(x - y)[K(x)t p(y) + p(y)K(x)] 

=J dxJ dyp(x)(p(y)-o(x-y))cp'(x-y) 

Fu rthermore, 

J dxJ dyJ dZp(x)p(y)p(z)cp(x-y)cp(x-z) 

Therefore, Eq. (6.9) becomes 

H = - tL) ,,0.2 + tAL) [cp' (x, - x,) + cp(xj - X_)2] 
j UXj J~_ 

=t fdXK(X)t p(~)K(X) 

+t fdX jdYP(X)[P(Y)-o(x-y)]U(x-y). (6.10) 

This is the expected form of the Hamiltonian. 

It can also be verified that the generating functional, 
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satisfies the functional equation 

(6.11) 

We will now consider the case (Sutherland12
) in which 

I/i(X) = sin(1Tx/ L), cp(x) = (1T/ L) cot(1TX/ L), and g= X(X -0. 

Then the normalized wavefunction, 

. f· L/2 JL / 2 1 12 Wlth dx l ••• dXN 'l!N =1, -L/2 -L/2 

satisfies the SchrMinger equation 

H'l! N = (X21T2N/6)· (N2 -1)/ L 2'l! N 

with 

H= -t Y a~ +tgj~ r2 [sin(1T(xj ~x~))J2 

(6.13) 

(6.14) 

It also turns out 'l! is the Bose ground state for this 
Hamiltonian. 12 

A Fermi wavefunction for this Hamiltonian can also 
be constructed. Let R = the region for which Xl < x2 

< ••• < xn ' Let P be the permutation such that (xPl' 
xp2 , .•. , xp ) E R. Define 'l!F = (-)P'l!. To see that 'l! F is 
the Fermi ground state notice: (i) 'l!F is antisymmetric, 
(ii) 'l!F satisfies the Schr~dinger equation in the region 
R, (iii) for X>1, if x~=xm for any kif.m, then'l!='l!F 
=0 and (d/dx)'l!=(d/dx)'l!F=O. Therefore, 'l!F and (d/ 
dX)'l!F are continuous at the boundary of the region R. 
Finally, if N is odd, then'l!F is periodic; i.e., 'l!F(-tL, 
x2, ••• , XN)='l!F(X2"", xN,tL). 

Since LN(J) depends only on I 'l! 1 2 , for this interaction 
it is the same for both bosons and fermions. Also, 

where ~ is the flow corresponding to the vector field g, 
and J(x)=[(d/dx)~](x). Since'l!F(x1••• xN)=(-)p'l! and 
'l!F(~(X)"", ~(XN))= (_)P''l!, and the flow ~ is a one-to­
one continuous map on a ring, (-)p = (-)p.'. As a result 
L(J,g) is the same for both bosons and fermions. 
Therefore, for this particular one-dimensional example 
the boson and fermion representations of the p,J 
algebra are unitarily equivalent. This result depends 
crucially on the nature of flows in one dimension; i. e. , 
there are no flows that can interchange two points. In 
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three dimensions we expect the bose and fermi generat­
ing functionals L(j,g) to give rise to inequivalent 
representations of the p,J algebra. 

As the coupling constant is changed continuously the 
ground state wavefunction changes continuously. When. 
X-I, the coupling constantg= X(X -1) - O. Since the 
potential is infinite when two particles are at the same 
point, the ground state wavefunction must vanish for 
those pOints. Thus we might expect the Fermi ground 
state ('l! F) to go to the free Fermi ground state as X - 1, 
while the Bose ground state ('l!) changes abruptly in 
character when X -1. This result is in fact true. When 
X = 1, (d/ dxj)'l! I"." is no longer continuous. Therefore, 
'l! no longer satiJfi~s Schrodinger's equation (6.13). 
However, it can be shown12 that 

'l! F = (N! LN)-1/2n [2 sin(1T(xj - x~)/ L)] 
j>~ 

= (N' LN)-1/2 det [exp(ik X )] 
• NXN m " 

where km=21Tm/L and m=-t(N-l), 

-t(N-3), ... ,t(N-1) 

= the free Fermi ground state (in one dimension) 

for N particles. 

Since for this interaction L(j) is the same for both 
bosons and fermions as x-I, L(j) - the generating 
function for a free Fermi gas (in one dimension). 

A. The case A = 1: The free Fermi gas in one dimension 

We will now examine the N/V limit for a free Fermi 
gas in one dimension. From Eqs. (6.7), (6.8), and 
6.11 we have for N free Fermions on a ring of length 
L 

- iL'2 1T (1T(X-Y)) KN(x)=K(x) - 2 dYI cot L p(X)p{y) , (6.15) 
-L/2 

(6.16) 

l L'2 1T (1T(x-Y)) =2 dy- cot 
-L /2 L L 

(6.17) 

If we could interchange the N/V limit with the integrals 
in Eq. (6.15), we would obtain 

roo 1 
K(x)=K(X)-2J_ dy(x_y)p(x)p{y), (6.18) 

H=t [ dxK(x)t p~x)K(x), (6.19 ) 

(d! -it'(X))~ fJf~X) L(j) 
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(6.20) 

In Sec, 5 we calculated L(j) in the N/V limit for a 
free Fermi gas in three dimensions, By a similar cal­
culation, L(j) in the N/V limit for a free Fermi gas in 
one dimension is given by Eq. (5.7) with 

G(X)==jk
f 

dk ('k) 1 . k h - kf 
-k -2 exp t x ==-sm IX, were p=-. 

f 7T TTX 7T 

Since we know L(j) in the N/V limit, we can verify that 
Eq. (6,19) gives the correct Hamiltonian by checking 
that Eq, (6.20) for L(j) is satisfied. 

Remark: The singular nature of the term I/(x-y) 
appearing in Eqs, (6.18) and (6.20) makes it necessary 
to consider the integrals as the principle value, 
pI dy[I/ (X - y)]. = lime_o(f; + f:!)dy[I/ (x - y)]. , or as the 
limit of a sequence lim._of:., dy(x-y)/[€2+ (X_y)2]. In 
addition we will need to take advantage of the antisym­
metry. Therefore, we will use, I:. dy/(x- y). 
=limL .... P I::L dy/(x-y)' and as a result I:. dy/(x 
-y)·const=O. Alternatively the right-hand side of Eq. 
(6.20) may be written as 

LOG dy 1 0 
[rhs Eq. (6.20)] = 2P -'0 (x _ y) i of (x) 

x(T Of~) - P)L(j). 

Recall that 

Therefore, 

(d~l -if'(xl»)T Of~l)L(j) 

=~ (n! I)! eXP[if(Xl)]! dx2" .! dxn 

and 

!._O_ !._o_L( ) 
i of (x 1) i OJ(x2 ) f 

=~ (n! 2)! exp[if(xl )] exp[if (x2)J! dXa'" ! dXn 

1 0 
+O(Xl -x2)i Of(x)L(j). 

Due to the principle value the o (Xl -X2) term will vanish 
when integrated. Therefore, 

J. Math. Phys., Vol. 15, No.8, August 1974 

1402 

Remark: In the case we are conSidering Rn+/(x1 - xn+1) 

is a continuous function. Therefore the principle value 
is not needed and interchanging the order of integration 
is valid. 

Equation (6,20) can now be written as 

t eXP[if(x1 )]!dX ••• J dx (exp[i~x )J -1) ... 
n=2 (n _ I)! 2 n:f \ 2 

Therefore, to show that L(j) satisfies Eq. (6.20), it is 
sufficient to show that 

(6.21 

Recall that 

Rn = detnxn( G(xr - xs ) J 

Let the matrix 

A =A (
I", 1"'" n) 

n-l 1 ••• s' ... n 1'8' 

'where Ars=exp[kr-ks)xr] and r=I,2, .. ,nwith r' de­
leted and s = 1,2, ... ,n with s' deleted. By expanding 
the determinant by minors twice, first by the (n + 1) 
column and then by the (n + 1) row, we obtain 

detA (1 ... n +1) 
n+1 1 ••• n + 1 

(
I ••• r .•. n) 

X exp[i(kn+1 - kshn+J detAn_1 1 ~ . ••• s···· n 

As a result we have 

P (00 dXn+1 R 
J _«I Xl - xn+l n+l 

= ~". _n.2:) _ (-)r+sdetA _ ~ f dk fdk n (1'" 1"" n) 
27T 27T ros.1 nil··· s"'n 
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X f dk"+l exp[i(k - k )x] p roo dXnt! 
21T r "+1 r 1_ Xl - Xn+1 

=-i1Tsgn(kn .. 1-ks)exp[i(kn+1-ks)xJ 
and 

1_, d~n+1 exp[i(kr - kn+1)xr ](- i1T) sgn(k
n
+1 - ks) -.f 1T 

x ['(k -k) ]=exp[i(kr-ks)xr exp z n+1 s Xl 
X 1-Xr 

Therefore, 

pf dx"*, R 
Xl - Xn+1 "+1 

(
1", r'" n) XdetA A • 

n-1 1 0 e 0 S 0 0 0 n (6.22) 

When r*l, the first term equals ~;!:2[-1/(x1-xr)]detAn' 
while the second term vanishes since 

is equal to a determinant with the 1st and rth rows 
proportional. For r= 1 the two terms added together 
give 

Next consider 

d d 
-d Rn = -d detG(xr - x) 

X Xl 

o G'(x1- X2) ••• G'(x1- Xn) 

=det G(x2 - x2) G(x2 - xn) 

-det 
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Since G(x) = G(-x), G'(x) = - G'(- x), and detA =detAT, 
we have 

(

G/(X -x )G(x -x ) ... G(x -x») d 1112 In 

-R ==-2det •• • 
dX1 n G/(X -X )G(X -X ) ••• G(X -X) 

n 1 n 2 n n 

xdetA A • (
2, • • n) 

n-1 1 0 C. S 0 0 0 n 

Substituting these results into Eq. (6.22), we obtain 
Eq. (6.21). Therefore, we can conclude the Hamiltonian 
in the N/V limit for a free Fermi gas in one dimension 
is given by Eq. (6.19). 

B. The case ~= 2: Interacting potential 2/x 2 

in one dimension 

We will now derive the generating functional and 
Hamiltonian for the interacting case when X-= 2, [U(x) 
== 2/ rJ. We begin by computing the N-particle correla­
tion functions. Substituting equation 6.12 into equation 
2 . 5, we obtain 

(6.23) 

The square of the ground state for the interaction we 
are considering is the same as the jOint probability 
density function for the eigenvalues of a unitary self­
dual random matrix. 13 Consequently, we will find some 
results from random matrices very useful in explicitly 
calculating the correlation functions. In particular, it 
can be shown13 that 

n {2 sin[1T(xj - xk)/ L]}4 
J>k 

= de~Nx2N[exp(i21Tpx/ L), P exp(i21TX/ L) J, (6.24) 

where j==1,2, ••• ,N and p= - (N-t), - (N- %), ••• , 
(N - t). We are using the notation 

We will also use the result14 that 

Finally, we will need to use Laplace's theorem 15 to the 
effect that 
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det A= ~ (-)SdetA(~1'" ~s)detA(~s+1·" ~n), 
nXn Iii 11" • ls ls+1' •• In 

(6.26) 

where i1 <i2 < ••• <is,is+1 <is+2 < u. <in' a=i1 +i2 ••• 

+ is + jl + j2 + ••• js and Iii} = sum over all permutations 
suchthatj1<j2<'" <js andjs+l<js+2<'" <jn' 

Substituting Eqs. (6.24) and (6.26) into Eq. (6.23), 
we obtain 

N! 1 2N 
= (N- ), Ln (2N) , ~ det2nx2n n . .II>,q} 

[exp(i21Tpx/ L) ,p exp(i21TpX/ L)] 
I 

( )a fdXn+1 f~ d t x - L' • • L e 2(N-n)X2(N-n) 

[exp(i21TqXj./ L), q exp(i21TqXJ./ L)], 

(6.27) 

where j=1, 2, .. "n, j' =n + 1, •.. ,N and {p,q}={(-N 
-t), ... , (N -t)}. 

Next, by Eq, (6.25) we have 

f dXZ1 
••• f ~det2(N_n)X2(N_n)[exp(i21TqXj'/ L), 

q exp(i21TqXj./L)] 

( l L'2dX = (N - n)! det2(N_n)X2(N_n) L (q - q') 
-L /2 

1\ 1/2 
X exp[i21T(q' +q)x/L]j 

= (N - n)! {det[(q - q')oq', - qJP/2 

if for every q there is a - q, 

otherwise. 

Therefore in Eq. (6.27) we can write 

~= 
(P) 

and (_)a = + 1. Equation (6.27) becomes 
2N 1 N-1/2 N-1/2 

R(N)(X ••• x)= N' L""--- ~ ~ 
n 1 n . (2N)! n!1>1al / 2 I>n=1/2 

Since [N! 2N /(2N)! In::t/: (2q) = 1, by applying Eq. 
(6.25) with the indices x and p interchanged and with 
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d t(-(P/L)exp(-i21TPX/L) -(p/L)exP(-i21TPX,/L)) 
x e (p/L)exp(i21TpX/L) (p/L)exp(i21TpX,/L) 

N-1/2 
1" .~p) . 21TP (.. ) =y; U Z L smT Il<j-Xk , 

1>=1/2 
(6. 29a) 

x d t (- (p/ L) exp(- i21TPX/ L) exp(- i21TPX,/ L)) 
e (p/ L) exp(i21TpX/ L) exp (i 21TPX,/ L) 

1 N-1/2 2 
=- ~ - cos.3!E.(x. - x), 

L P=1/2 L J k 

1 N-1/2 1 

A~-1,2k-1 = L ld/2 2p/ L 

(

exp(- i21TP/ L) exp(- i21TPX,/ L)j 
X det 

exp(i21Tp/ L) exp(i21TpX,/ L) 

1 N-1/2 . 1 . 21TP 
=-L ~ (-z) /L sm-L (xj -xk)· 1>=1/2 p 

(6. 29b) 

(6.29c) 

In order to take the N/V limit of L(j), we need to 
show that R!N)= (detA <N»)1/2 is bounded. We can find a 
bound for detA by using Corollary 3 (Hadamard's 
theorem). 

A few preliminary steps are needed before we can 
apply the corollary to find a bound on R~N). Let 

1 N~/2. 1 -1 sin (21TNx/ L) 
GN(x) = 2L U exp(z21Tpx/ L) ='2L . ( /L) • P=-(N-1/2) sm 1TX 

Then from Eq. (6.29) we have 

A~7'>2k = (- i/21T)G~(xj - xk), 

A (N) - - A (N) - - G (x - x ) 2J,2k-1 - 2k-1,2j - N j k' 

A (N) '2 J"r"kd G ( ) 2J-l,2k-1 = - Z 1T 0 X N X • 

We can bound each matrix element of A as follows: 

1 N-1/2 2N 
1 GN(x) 1 .;; 2L ~ 1 exp(i2px/ L) I.;; 2L = j5, 

1>=-N+1/2 

1 N-1/2 2 
1 G~(x) 1 .;; 2L ~ 1 L

1TP 
exp(i21TPX/ L) I· 1>=-N+1/2 

fdx replaced by (1/L)I~:tj~ (1/2p) , we obtain G-N(X) 

R!N) (xl ••• X n) = (ciet2nX2~~:»)1/2, (6.28) 

where the 2n x 2n matrix AJk is defined as follows: 

1 N-1/2 1 
A(N) -- ~ --

2J,2k - L />=1/2 2p/ L 
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Since (p/L) <15, I G~(x)1 <;; 2rr"jJ. Furthermore, since 
GN(x) is an oscillating function of decreasing amplitude 
(for -~L<;;x<;;~L, see Fig. 2), 

max
'
'''<L

'
211'' dx GN(x) I 

(LI2N L I I 1 = J
o 

dxGN(x)<;;2N max GN(x) ="2. 

Therefore, IAjkl <;; c=max(p;p2,rr). Finally, by the 
corollary to Hadamard's theorem: 

R~N) = (detA)1/2 <;; (Y2c)nnn/2. 

Therefore, L{f) in the N/V limit is given by Eq. (2.7) 
which becomes 

=I; ~fdX ••• fdx F(x ) ••• F(x )R (x ••• x) 
n=O n! 1 n 1 n n 1 n , 

where 
(6.30) 

(6.31) 

For example: R1(x)=p and R2 (xl,X2 )=p2[1 
+ G' (Ii)Jg dx G(x) - G(Ii)2}, where Ii = 2rrp(xl - x2). 

Remark: Under the scale transformation x- ax, H 
-(1/a2)H. Therefore, L{f) for representations with 
different average densities are related as in Eq. (5.19). 

The Hamiltonian may be determined by the same 
method we used for the A = 1 case. Formally taking the 
N/V limit of the N-particle Hamiltonians suggests the 
following: 

K(x)=K(x) - 4 -Y p(x)p(y), {
'" d 

.... x-y 
(6.32) 

and (6.33) 

( !!:... - f'(x)\ ~ _li_L(j) 
dx ') 1 1if(x) 

{
'" dy 1 Ii 1 Ii 

=4P ... x- y i lij(x) i lij(y)L{f). (6.34) 

By checking that the functional equation (6.34) for 
L{f) is satisfied, we can verify the form of the Hamil­
tonian. Proceeding as we did in going from Eq. (6.20) 
to (6.21), we find that Eq. (6.34) is satisfied if the 
correlation functions satisfy the equation 

A sketch of the proof of this equation is given in the 
Appendix. We may therefore conclude the Hamiltonian 
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is given by Eqs. (6.32) and (6.33). 

The generating functional L{f,g) can also be calcu­
lated for this interaction. To do this, we need to 
compute 

By the same method used to obtain Eq. (6.24) it can be 
shown that 

2N 1 2n2-n 
= (2N) I LN (i)' 

nj) {2sin[(rr/L)(x -x )]'2sin[(rr/L) 
x n},k 2sin (rr/L)(Yj -x.) 

x detzNXzAexp(iPllj)' exp(ip~t)' exp(ip9".), p exp(ip9".)] 

where 

and 

llj = 2rrx/L, j=1,2, ••• ,n, 

~t=2rry;L, k=1,2, ••• ,n, 

6".= 2rrz"./ L, m= 1,2, ... , (N - n), 

p=-(N-i), -(N-%), ••• ,(N-~) 

Then by calculations similar to those used to compute 
R~N) [Eqs. (6.23)-(6.29)], we obtain 

=[(nm {2 sin[rr(xj - Xt)/ L]2 sin[rr(yj - Yt)/ L]})Z 
Lnnj)2 sinrr(Yj - Yt)/ L1 

detan"z"AJZ}/Z (6.36) 

where 

In the N/V limit 

R(N)(.) - R (.) 
n' n ' 

where Si(x) = g dx (sinx)j x, and 

L{f,g)=~n~JdXIJdYl."J dXn !dYn 
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(6.38) 

where 

j(x,g) = - ti[2g(x)ox + g'(x)]. 

Remarks: (1) It can be checked that 

(2) The correlation functions R~N)(y;X) given by Eq. 
(6.36) have been calculated for the Bose ground state. 
The Fermi ground state would give different correlation 
functions since R~N)(y;X) is determined by the integral 
f dz W N(Y' z)w N(x' z) and for bosons wN(Y, z)w(x, z) is 
positive while for fermions it has the same magnitude 
but varies in sign. [The correlation functions R~N)(x) 
= R!NI (x;x) are the same for both systems.] However, we 
have previously mentioned that the generating functional 
LN{f,g) is the same for bosons and fermions. Therefore, 
for this N-particle system the generating functional 
LN{f,g) is not determined by a unique set of correlation 
functions R!NI(y;X)' Thus R~N)(y;X) contains more 
information than is needed to determine a representation 
of the p, J current algebra. This result may be due to the 
one-dimensional nature of the system and not be true in 
three dimensions. The correlation functions R~NI (y;x) 
for the Fermi ground state have not been calculated. 
Nor is it known if the correlation functions Rn(Y;x) in 
the N/V limit for bosons and fermions are different. 

(3) For the two body potential A(A - 1)/ x2, we have 
calculated L{f,g) in the N/V limit for the cases when 
A = 1 and 2. The N/V limit might be expected to exist 
for other cases when A> 1 [i. e., A(A -1) > 0] and that 

(d~ -if'(x») T Bfix)L{f) 

_ r'" -.!:L !. _B_ !. _B_ ( ) 
-2AP J_ x-y i B.f{x) i Bf(y)L f , 

K(x) =K(x) - 2AP(x)f~ p(y), 
x-y 

1 f - )t 1 -() H=s dxK(x p(x)K x • 

(6.39) 

(6.40) 

(6.41) 

On physical grounds we can expect L{f) to satisfy the 
cluster decomposition property. Since for different A 
the operator K(x) is different, we may conclude by a 
theorem in Ref. 6 that the representations correspond­
ing to different A are aU unitarily inequivalent. By con­
sidering the ground state energy we can give a possible 
physical reason for this. From Eq. (6.13) the ground 
state energy per particle for a system of N particles is 
E/N=A2i'p2/6. As expected, the ground state energy in 
the N/V limit is infinite. However, for different coupling 
constants the difference in the ground state energies is 
infinite since the energy per particle is different. As a 
consequence of the unitary inequivalence of the repre­
sentations, if we tried to relate the ground states for 
different coupling constants by a perturbation series 
in A, the series would diverge. However, it is possible 
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that series in A for matrix elements would converge. 
(For example, the ground state energy per particle 
given above.) 
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(4) After calculating the correlation functions 
Rn(xl··· xn) for the case A=2(u(x) = 2/x2) , the author 
discovered that Dyson16 had previously calculated them 
using a different method. In his case they were the cor­
relations for the eigenvalues of random matrices from 
the symplectic ensemble. 

7. CONCLUSION 

It is hoped the examples presented here are helpful 
in gaining further insight into expressing field theory 
in terms of the local currents. They also may be useful 
in testing new apprOXimation schemes. 

Other work has been done in connection with this 
approach. Girard17 has studied the thermodynamics 
of the free Bose gas and the free Fermi gas using cur­
rents. Goldin and Sharpls have shown how to calculate 
the time dependent n-point functions, (a,p(Xl,t1)··· P(xn' 
tn)n) , where p(x, t) =exp(itH)p(x) exp(- itH), for the 
free Bose gas. In Ref. 9 it was shown that for the free 
Bose gas the functional equation (3.8) subject to the 
appropriate boundary conditions uniquely determines 
L{f). 
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APPENDIX 

We have used the result that the correlation functions 
for a system of particles interacting via the two-body 
potential U(x) = 2/x2 satisfies Eq. (6.36), namely 

!..!!...R =6 Rn + pi" ax Rn+l 
4 dXl n j¢l (xl - xJ) _ "+1 (xl - xn+l ) • 

(A1) 

In this section we sketch the calculation needed to verify 
the equation. 

To facilitate the computation we introduce the follow­
ing notation: 

where B is the 2nx 2n matrix 

B= 

and b is the 2 x 2 matrix 

(

eXP(- i21Tkx) 
b(k,x)= 

exp(i21Tkx) 
and 

- k exp(- i21TkX») 

k exp(i21Tkx) 
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where A means that the row (column) is deleted. 

The expansion of the determinant by minors is then 

(

XlXlOOOXnxn) 
det 

-k kooo-kk 
lIn n 

It is convenient to use Rn in the form given by Eq. 
(6.28), 

1 1~ dk L~ dk (Xl XlO 0 0 xnxn) R = - _1 00 • _n det 
n n! _rr 4k l _"rr4kn - -k ko.o-kk • 

lIn n 
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(A2) 

To compute PJ(dxn+i(Xl-Xn+l)]Rn+1 expand the deter­
minant in Eqo (A2)by the last two columns using 
Laplace's theorem [Eqo (6026)]. We get terms of the 
form 

Expand the determinants for those terms proportional to km(kp) by minors about the - km( - kp) row and interchange 
the variables kn+1 - km(kp). Taking into account the terms that vanish when integrated, we are left with 

pJ dXn+1 R 
Xl - Xn+l n+1 

__ 1_ fdk 1 0" fdknl~ dkn+l pf dX'+ l ~~ 2( l)k ('2 k ) - ( + 1)' 4k 4k 4k _ L:!L1. n + n+1 exp 1 7T n+lXm n . 1 n _~ n+1 Xl Xn+1 m_lp_l 

where 

l"H- 27Tkp) exp(- i27TkpX1) for m = 1, 

- t(xl - Xm)-l exp(- i27Tkpxm)+ HXl - Xm)-l cosp(xl - xm) exp(- i27TkpXl) for m * 1, 

and 

Upon summing over p and reconstructing the deter­
minants we obtain Eqo (AI). 

*Part of the work reported here is included in a thesis to be 
submitted to the University of Pennsylvania in partial ful-
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fillment of the requirements for the degree of Doctor of 
Philosophy. 
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